الحاسبات الإلكترونية

حِلْمٌ عَالِمٌ

نَسْفَ سَنَوَةٍ

تَعْمِي بِبَلَوْمٍ

الحَاسَابَات

الإلكترونية

وزِرَاعَةُ الإِجْتِهَادٍ

كمِلْكِ الفُلُودُ الأمنِّيّاتُ الإلكترونية

المكتبة المركزية العامة بغداد

قسم النشاطات
الرئيس القائد صدام حسين
رئيس مجلس قيادة الثورة رئيسيٌ للمجاهدين
مدير عام المركز القومي للحاسبات الألكترونية

مدير هيئة التحرير

الدكتور هلال عبد البيات

نائب رئيس هيئة التحرير

نبيل خليد عبد

رئيس التحرير

محمد فتح الله

هيئة التحرير

أحمد عماد عثمان

دم nächsten

شوك

عباس عل

الدكتورة عبد العاطية

محمد إبراهيم الشيخ

 세상

د. محمد علي شلال

د. محمد بن محمد بن

د. مظفر

د. لمباه حافظ

د. محمد حمدي

زهير محمد علي الجبلي
في هذا العدد

الموضوع

كلمة هيئة التحرير

لفات البرمجة للحاسينات الالكترونية

عثمان أحمد حميس

زيادة سريعة تناقل المعلومات في ذاكرة

البقاعات المغناطيسية

الدكتور وكاء فارام محمد الجبوري

مستقبل استخدام الحاسينات الالكترونية في التعليم

المساعد في (الرياضيات)

الدكتور مهدي فاطم موسى العبيدي

نبيل شبل عمليس

تطبيقات الحاسبة في الدراسات المختلفة للغة

العمانية

الدكتور سنان محمود عطاف باشي

سر عبد المنير الطالب

الأبواب النائية

- اهداف ومؤتمرات
- ملخصات بعضك
- معطيات معركة

نطاق وتقديمير
صقلية هيئة التحرير

ونحن نتوجه السنة العاشرة على صدور مجلة (الحاسبات الإلكترونية)، يسعد رؤية هيئة التحرير، أن تتقدم إلى القارئ الكريم بعدها السادس عشر، حيث كان العقد السابق مليء بالعمل الجاد والشاق في تعزيز الباحثين للكتابة باللغة العربية لفهم تطوير هذا العلم الحديث ووضع بدايات ومبادئ جديدة لاتخاذ من الإثارة ولعدد كبير من المبادرات في مجال تعريب بعض البرامج والحاسومات الإلكترونية كما تضمنت الإعداد الخمسة عشر الماضية عدد كبير من التطبيقات وطور الاستخدامات والأجهزة بالإضافة إلى استخدام الحاسومات في التعليم.

ونحن نتوجه السنة العاشرة لصدور المجلة تشكر جميع المساهمين من الباحثين ومقييمين واعضاء هيئة التحرير على جهودهم وعملهم العلمي الجاد، كما نتقدم للاخوة الباحثين والمختصين طلبا في رفد المجلة بموضوعاتهم لتعزيز مبادرة البحث العلمي العربي في مجال الحاسبات الإلكترونية، ونأمل بالمناسبة نود أن نشير إلى الزيادات للمكافآت التي أقرتها
هيئة التحرير مؤخرًا وذلك بحقيقة تشجيع البحث والتحرير، نرجو أن يكون ذلك أحد المحفزات للمشاركة في النشر. كما أن تطور الأجهزة الإلكترونية وتوسع استخدامها وانتشار الحواسيب ودورها في تطوير عملية التعليم والتعلم هو الأخير سيكون عاملا آخر يستدعي بنا إلى تطوير المجلة إلى الأفضل.
ركز حاسبة جامعة الموصل

(مراجعة لغوية)

نبيل خليل حسن

جامعة توهوكو - سنداي - اليابان

عاصم أحمد تميم

-7-
تعرف لغة البرمجة على أنها مجموعة من المعلومات أو الأرشادات تعطي إلى الحاسة لحل مشكلة معينة. instructions
وعندما يكتب البرنامج بلغة الحاسة فعلي machine language المبرمج يأخذ في حسابه معرفة سجلات الحاسبة .
والذاكرة وعناوين مواقعها registres والذاكرة وعناوين مواقعها memory addresses
وبناه لغة جديدة للحاسة ، يعتن بناء نموذج جديد يسهل من عملية البرمجة بالنسبة للمبرمج وينقذ من الوقوع في قيود مكونات الحاسة المادية ، وذلك هي وظيفة لغات البرمجة العالية المستوى . وهناك المئات بل الآلاف من لغات البرمجة لكل لغة خصائص معينة ووظائف معينة ، كما أن لكل لغة تركيب .
distinctive gramer and syntax مجرد وتركيب معنوي خاص بها يتناول هذا المقال لغات البرمجة المختلفة ذات الاستعمال الرياضي والفيزياوي ، ويشرح مفاتيحها وخصائصها المشتركة وصولاً إلى ابتكار التطبيقات المناسبة لكل منها .
كما يتناول المقال أيضاً أهمية وتنوعية تصميم اللغات المتوازنة لما لها من تأثير في زيادة القدرة الحسابية والسعة في الإنجاز .
في الشكل رقم 1 نماذج برمج مكتوبة بلغة الشاشة الشاشة

LOGO

ظهرت في معهد MIT في الولايات المتحدة الأميركية عام 1960. ومن خصائص هذه اللغة قدرتها على السيطرة على اداة تسمى

robot تكمن بمشابهة جهاز التسمية

turtule السلفة. لايعزات البرنامج اماما وخلفا ويمينا وشمالا. ويدور رافعا أو خافضا لقسم مثبت فيه، فيتحرك آثار حركته، كما تتقدم السلفة آثار مسررها، وليس بالضرورة أن تكون السلفة

جهاز آلياً ذا حجم فيزيائي، بل يمكن. وهو الأغلب حالياً. ان تظهر كمثبت صغير على شاشة التلفزيون تتحرك وفقا لاياعزات البرنامج على مساحة الشاشة تاركة خطوطاً أو نقاط مضيئة.

البرنامج بلغة LOGO اذن هو مجموعة من الإيعازات التي توجه

السلفة حيث تقوم بتخليطها.

وكما يلاحظ من الشكل رقم 1 فأن من هذه الإيعازات هو

الإيعاز وضع القلم penup ورفع القلم pendown والتحرك اماما 50 أو يمينا 144 Forward ... الخ والرقم

المجاور للإيعاز تمثل عدد نقاط التقدم أو درجة الانحراف. كما

نلاحظ ان حساب نجمة يرسم برسم خطوط باستعمال 50 والدوران يمينا (باتجاه عقارب الساعة) 144 درجة باستعمال

.right 144
يكتب الجمل الخمسة في جملة واحدة هكذا:

Repeat 5 (Forward 50 right 144)

وإذا أراد المبرمج رسم نجمة ذات نسعة اثنتين بطول 80 نقطة للذراع الواحد، فإن البرنامج يكون:

Repeat 9 (Forward 80 right 160)

ان التغيير فقط هو بعدد مرات الإعادة، وطول الذراع، ودرجة الدوران. فلذا إذا أراد المبرمج أن يكون برنامجًا عادمًا، فإن هذه الأعداد 9 و 80 و 160 يمكن أن تكون التغييرات.

Procedure متغيرات تستدعي عبر روتين To.

فما كانت وظيفة هذا الروتين رسم.to star نجمة، وها الاسم Star على سبيل المثال، فان الاعجاز ستستدعي الروتين ويقوم بتنفيذها، ونلاحظ في الشكل 1 أن المطلوب اداة وسيلة لامرار قيمتي star، ولطول الذراع ودرجة الانحراف إلى داخل الروتين

وستستخدم "ما" للدلالة على الأسماء المتغيرات في لغة LOGO.
ومن خواص القوة التي تتمتع بها لغة LOGO اقترابها من اللغات الطبيعية ذات معنى شاملاً Keywords والرموز والجمل واستعمال مفاتيح statements أو جمل تعبيرية declarations من خلال برمجة الشكل 1، إذ أن JML اعلانية points و isize المتفاوتان : المتغيران star وظيفتان عملية اما الجملة التعبيرية، فهي اللازمة لإنجاز العملية اما الفعل التي تمثل في الواقع خوارزمية الحل star و التي تمثل في الواقع خوارزمية الحلrepeat، والرقم الذي يتبعها هو اسم الفعل اما محتويات القوسيين فتمثل المفعول به.

مقارنة بين ست لغات برمجية:

هناك لغات برمجية شاها استعمالها وظفى على مئات اللغات البرمجية الأخرى، وسنحاول هنا استخدام ست لغات برمجية COBOL و PASCAL و BASIC و LISP و APL و FORTH وهي - بالطبع - لغة دنيا.

machine language
والمشكلة الحسابية المختارة كركيزه للمقارنة بين هذه اللغات هي: إيجاد مجموع الإعداد الفردية من مجموعة من الإعداد الصحيح. وهذه المشكلة يمكن برمجتها باستعمال لغة برمجة. فضلاً عن أن حل مثل هذه المشكلة يستلزم وجود شرط محدد، وهو كون العدد فردي، كما يستلزم قدرة اللغة البرمجية على التنفيذ التكراري.

BASIC

Dartmouth عرفت لغة **BASIC** عام 1965 في جامعة الأميركية، وأصبحت شائعة الاستعمال كلغة مجانية، واشتهر استعمالها في برمجة الحواسيب المايكروية. تبدأ كل جملة من جمل البرنامج المكتوب بهذه اللغة برقم (الشكل 2) إذا أن السيطرة على تنفيذ البرنامج يعتمد على ارقام الجمل لتسهيل عملية الانتقال داخل حدود البرنامج. ويستخدم الإيحاز لتحديد قيم المتغيرات في **LET** جمل الأحاسيس الحسابي، كما يستعمل الإيحازات في **FOR** جمل الأحاسيس الحسابي، كما يستعمل الإيحازات في **LOOP** التي يتكرر فيها التنفيذ على عدد محدد من الجمل المحمورة ب荚ههما.
ظهرت هذا اللغة عام 1970 على يدي Niklaus Wirth في المعهد التكنولوجي الفدرالي السويسري في زوريخ. وتفتتت إنها يجب الإعلان عن نوعية كل BASIC متغير مستعمل في البرنامج، كأن يكون متغيرا صحيح أو منظومة صحيحة...بالك مما تستعمل الكلمات بدل الأرقام للوصول إلى إما جملة أو مقطع داخل البرنامج أثناء الانتقال من جملة إلى أخرى (الشكل 3).

استخدمت لغة PASCAL بشكل خاص لنتائج لغات جديدة أخرى MODULA-2 (2). وقد ظهرت في السنوات الأخيرة لغة BASM (2). واعتمدت بالأساس على لغة PASCAL وقادت إليها بأن جملة البرنامج من لغة MODULA-2 (2) صيغة عن مجموعة من الوحدات البرمجية المستقلة التي لايعتمد بعضها على البعين الآخر.

وقد استخدمت لغة MODULA-2 (2) بشكل خاص في عمليات المحاكاة وتصميم الطائرات وفي البرامج المصاوبة في CAD.

ADA

انتقلت لغة ADA لحساب وزارة الدفاع الامريكية، معتمدة وقد اخذت شهرتها في الأونة الأخيرة، وأصبحت PASCAL على لغة (14).
من اللغات المتميزة والقوية على الرغم من ظور العديد من
التنقيحات على أصل اللغة، وتستخدم بشكل خاص في دوائر
الدفاع الأمريكية، المحاكاة، تصميم الطائرات، ومدى تمثيل
واذ هذه اللغة القابلة على تكوين تركيب جديد، لغات أخرى
وسائر الحديث عن اللغة AFAE في مجال آخر.

COBOL

جاءت لغة COBOL عام 1960 نتيجة لتوتر عقد بين مصممي
وستخدمي الحواسيب الإلكترونية، وهذا اللغة تأريخ طويل من
الاستخدام في الدوائر الحكومية والصناعة، وشركات
التأمين، الخ، وتركز استخدامها في معالجة الكميات الكبيرة
من البيانات، وتكون برنامج COBOL من أربعة أقسام أساسية
هي: التعريف، والمحول، والبيانات، والعمليات، وإذا كانت
معظم اللغات تشمل بسيط رياضية أو متعددة، فإن اللغة
تمثل باستخدام جمل واضحة المعنى، بينما بجمل اللغة
الإنكليزية، وعلى الرغم من أن قراءة برنامج بلغة
تكون واضحة، إلا أن كتابة البرامج بهذه اللغة يقود إلى الملل
ابحاثا (الشكل 4).

وبالمقارنة مع لغة COBOL، فإن لغة FORTH معروفة بлегتها القاسية وجودة اللغة التي تقوم مقام المفاتيح والبؤس لغة FORTH. وقد امكانها للكمساك، وهو استثناء من الذاكرة. وأذا تتطلب الأعداد بعضها فوق بعض في الكمساك، فإن آخر عدد يدخل الكمساك هو أول عدد يخرج منه عند الحاجة. وعلياً أن كل الحسابات والعمليات تجري على الكمساك، وتعد النتيجة النهائية.

至于 APL، اللغة الأكثر اختصارًا من FORTH. وقد عرفت عام 1961 على تأريخ كتاب صدر عن شركة IBM لمؤلفة Kenneth Iverson.
د. ا.د. ا.ة.عاليم المشاكل في الرياضيات التطبيقية، تم اجريت عليها تحسينات وإضافات جديدة تعزز من استعمالات – في مجال الحاسبات، واللغة متميزة، في تعاملها مع المنظومات APL، والمفهوم المحدد، مع الاعدادات الفردية، نفس الاعجاز واحداً يكفي القياس بالعمليات المشابهة على مختلف قيمة المنظومات

(الشكل 6).

LISP

تعتبر لغة LISP التي اُعلنت من معد John McCarthy الأمريكية اواخر عام 1950، من ابسط النّباتات التي سنذكرها، إذا لنا نوع واحد من العمليات يطلق عليها اسم استخدام الدالة، والهم من ذلك في اللغة هو أن القيمة المقدمة من استدعاء الدالة قد تكون استدعاء آخر الدالة أخرى، وتشتهر أيضاً في لغة LISP، كما تتألف النّباتات الحاسبة الحاسوب القابلة لاستخدام

LISP Processing

كما تسمى هذه اللغة اختصاراً لـ Lists. اذ ان كلاً من البرمجة والبيانات مركب على شكل قوائم.
كما أن البرمجة بهذه اللغة يتم على شكل دارات تكرارية iterative loops، ومن ثم يقع على واقع المبرمجين عند بناء برامج اختيار الأسلوب الذي يستغل خاصية الاستدعاء الذاتي recursive technique، والخاصة الاستدعاء الذاتي في أن الدالة تستدعي نفسها عددًا من المرات لحين تحقيق شروط معين، وعندئذ يبدأ عملية التعريض كل مرة الدالة قيمة للدالة الاقتراد وصولاً إلى الناتج النهائي.

يتكون البرنامج (الشكل 7) من قوائم من الاعتباد في إذا كانت القائمة فارغة NIL فان استدعاء الدالة يعيب في القيمة مفرط، أما إذا كانت أول قيمة في القائمة فردية فسوف تضاف إلى المجموع، ثم تستدعي الدالة نفسها مرة أخرى لتكرار العملية نفسها بعد حذف القيمة المستعملة في كل مرة، إلى أن نصل إلى نهاية القائمة فيتوقف التنفيذ وينبز على مجموع الأعداد الفردية.

لغة الحاسة

من المعروف ان الحاسة لاتتعامل مع البرمجة في نهاية المطاف إلا بشكل熏蒸ي، أي أن لغة وحدة المعالجة المركزية والسلسلات وغيرها هي اللغة التي تستخدم النظام.
الثنائي الذي يتكون من البت الواحد. وعند
تشفير الحساب تتكون من سلسلة من الأحاد والإضافات المتميزة،
ويمكن إيجاز البيانات أو عنوان data أو بيانات instruction
إبلاغ كتاب البرامج ضارباً الحساب باستخدام هذه المنحى
الثنائي (الشكل 8) إلا أن عملية الكتاب بالأعداد والأعداد
عملية مشددة وكثيراً الأخطاء.

وفي أوائل الخمسينات جرى المحاولات الأولى لتنظيم: ال
برامج التجميعية assemblers تستقبل كتاب البرامج من اللغة
الثنائية (الحاد والأعداد) إلى مجموعة من المعانيات التي
تخفف من استخدام الأحاد والأعداد، وذلك بظهور المنحى
الأدبي الذي يساعد على الحفاظ على واستخدام ADR كأوامر إضافية و
كأوامر تحويل ... انع واشدد بالthickness هذه
الاسماء المختصرة mnemonics تخلص المبرمج من تذكر الشكلية
للزمة لكل إيجاز من الأحاد والأعداد، وذلك عرفت المعانيات
التجميعية assembly languages للمبرمج الحساب ما يعني المقدرة المبرمج على الاستعمال
المباشر لكل إجزاء الحساب، كما يخص البرامج كنماذج
عاب في الآلات وسرعة التنفيذ، ويظل على المعانيات
المتجمعة باللغات الدنيا
low level languages لأنها قريبة
من لغة الحاسوب، وعملية التحويل إلى لغة الحاسوب
الثنائية عملية تحويل مباشرة.

فكل استغلال تجميعي يتحول إلى مكافحة التسلسل مباشرة عبر جداول خاصة لهذا الغرض.

وقد كانت عملية التحويل في البداية بدوية، ثم أصبحت تتم عبر برامج تجميعية بضعة أمتية.

إن حل أي مشكلة حسابية أو غير حسابية، كما يشتم أولاً
بجلبها بشكل عام من خلال خوارزمية، تحدد الشكل العام للحالة.

ثم يقع على عاتق المبرمج اختيار اللغة المناسبة لبرمجة الخوارزمية.

因而 كانت اللغة عادة المستوى الأول. فان برنامج مشكلة فيزيائية مثل: القوة = الكتلة × التفعيل، لا يعتمد عليه.

أما استعمال لغة ديناميكية، فإن المبرمج يجب أن يكـون على معرفة أجزاء الحاسة وسجلاتها، كي يستطيع برمجة الخوارزمية.

وتتاحت البرامج المكتوبة بلغات عالية المستوى الصحـي
برمجة خاصة تقوم بتحويل أو ترجمة هذه البرامج إلى لغـة الحاسوب.

وتحتاج أن أنواع من هذه البرامج: المترجم الأول،
البرامج المترجمة، وأو المترجمات، والنوع الثاني،
أو المفسرات،

وريسبرت
يقوم (المترجم) بتحويل البرنامج (كل) إلى برنامج بلغة الحاسة ، وتنفيسي الحاجة بعد انجاز الترجمة الأولى من البرنامج المكتوب بلغة عالية المستوى

وتمر عملية الترجمة في ثلاثة اطوار هي :

1- تكوين نسخة البرنامج باستخدام
2- تحويل النص إلى نص بـ شفرة الحاسة
3- انجاز مراقبة شفرة الحاسة

أما المفسار فأنه يقوم بتحويل البرنامج سطرًا سطرًا في كل مرة إلى لغة الحاسة وتنفيذها ، لذا فإن الفرق بين (المترجم) و (المفسار) شبه بالفرق بين ترجمة نص مكتوب على ورق ، وترجمة حديث مباشرية كلمة étape . ففي الحالة الأولى نقرأ النص كاملا ثم نترجمه كاملا . أما في الحالة الثانية فأنا نسمع ثم نترجم فقرة بعد أخرى . وبالتالي نحتاج إلى المفسار لاستمرار عند تنفيذ البرنامج ، بينما لانحتاج إلى بقاء المترجم في داكشرة الحاسة عند تنفيذ البرنامج بعد انجاز مرحلة الترجمة من اللغات العالية المستوى التي تستخدم المترجمات من اللغات التشغيلية COBOL و FORTRAN و PASCAL و C .
تستخدم المفسرات لغات APL و FORTH و LOGO. وهنالك من اللغات من يظهر باستخدام كلا الأسلوبين كلغتي LISP و BASIC. ويُفضل استخدام (المترجم) على (المفسار) في كون الأول سريع الانتهاء في التنفيذ، كما يُفضل استخدام (المفسار) في مراحل بناء البرامج واختبارها، لأن (المفسار) يشير إلى الخطأ مباشرة، كما يقوم بالتنفيذ مباشرة لكل جملة، مما يتيح للمبرمج تحديد أخطائه بسهولة.

ولتبسيط عمل (المترجم) للقارئ، فإن عملية الترجمة تتم - كما مسبقًا - عبر ثلاثة أطوار: compilation الطور الأول: التحليل الشامسي، وفيه يقوم المترجم بتشخيص الرموز المختلفة في نص البرنامج وتصنيفها ككلمات (Key words) ومتغيرات (variables) وثوابت (constants) وفي الشكل 9.

الطور الثاني: يقوم المترجم بتحديد العلاقات في التركيب بين المفاتيح وقواعد اللغة. فعلى سبيل المثال، يكون الإياب IF مرتبطاً في بعض اللغات بـ THEN.
الطروش الثالث : هو طور بناء البرنامج بشرطة الحاسوب .

machine code

وهناك قسم من المترجمات ذات طور رابع هو طور التماسح
اد يتم خلال هذا الطور تنقيح البرنامج وصولا
إلى تحسين كفاءة اداءه .

وتجري محاولات جادة لتحسين تدقيق المترجمات ، وبناء
قواعد لغوية سليمة ومتكاملة ، والاستفادة من خاصية الاستدامة
لتكون كل المعادلات الممكنة من
الذاتي recursive technique
تلك القواعد . و هناك صيغة جديدة في هذا المجال هي صيغة
compilier - compiler
المترجم - المترجم
المبرمجة باستخدام مترجمات لغة الغرض ، مما يسهل على
اللغات الجديدة استخدام مترجمات بهذا الغرض ، مما يسهل على
المبرمج استخدام لغة جديدة بعد تقديم المواصفات اللازمة لها
إلى المترجم - المترجم.

كما تهدف البحوث حاليا إلى بناء لغة برمجة عامية
universal شاملة ونقلهم من تلك PL/1
شركتي IBM عام 1965 كانت بهذا الاتجاه ، إلا أنها حققت نجاحات
جزئية محدودة . وان كثيرا من هذه الجهود لم تحقق المطلوب
بعد لمحبوبات فنية وتعليمية .

-23-
لغات البرمجة الحديثة واللغات المتوارنة

في مقابل اللغات البرمجة الروتينية غير procedural التي نوقشت قبل قليل، هناك لغات prescriptive الوصفية وروتينية nonprocedural برمجة غير روتينية اصبحت لها أهمية متزايدة واستعمالات كثيرة. إذ أن المستعمل لهذه اللغات لا يتدخل في صياغة برامجها الموجودة مسبقًا ولا في خوارزمياتها، بل يقوم بتوزيد هذه اللغات بالبيانات اللازمة واختيار البرنامج المطلوب لتنفيذها والحصول على النتائج. من هذه اللغات التي اشتهر استعمالها مع الحاسبات الشخصية هي VisioCalc و Lotus 1-2-3 و Multiplan و VisioCalc.

أول لغة ظهرت للاستعمال في الحاسبات الصغيرة، وأصبحت ذات فائدة في استعمالات الدوائر والأعمال. وتعوي هذه اللغة برامج معينة تظهر على شكل جداول مرسومة تحوي حقولًا تنتظر البيانات من قبل المستعمل، وتسمى هذه الجداول أول برنامج Spread Sheets. وبذلك يتخلص المبرمج تماما من التفكير بالامسية VisioCalc بكتابة أي برنامج، وتشتهر برامج المالية بشكل عام.

أما لغة Multiplan فتعمل على الحاسبات المايكرووبية UNIX أو Xenix أو MS-DOS أو CP/M بأحدى نظام التشغيل.
مكروت على اقرام مرتين Multiplan استعمالاً فكان البرنامج المطلوب يشتغل من هذه الاقرام الذكيرة.
وتتكون 3-2-1 Lotus التي انتجت عام 1983 من ثلاث مكونات هي:

1- الأوراق الإلكترونية
2- Business Graphic
3- Database Management

وإذا كانت هذه المكونات متصل ببعضها في النظام السابق، فأنها تتكامل مع بعضها في Lotus باستقلال وتساعد برامج الاستخدامات الأخرى تعمل على نظام تشغيل MS-DOS.

ويتم في إنجاز مهامه Symphony وتأتي منه تحويلات وإضافات جديدة إلى Lotus، إلا أنها تحتاج إلى مالايلات من 320 كيلو بايت.

ويعود السبب إلى وجود مكونات جديدة في RAII ويساعد الربط إلى الاتصالات مثل الاتصالات Lotus والبرمجة الميكروب والبرمجيات النصية macroprogramming ومعالجات البيانات database/forms, filter واستعمالات بيانات word processor.
يتم استعمالها بسهولة وباستخدام مفتيح واحد من مفاهيم البرمجة الحديثة لغة Prolog القريبة من اللغات الطبيعية، والتي تعد من الادوات الإسمنتية، إذ تحتوي اللغة هذه صيغ ثابتة بل علاقات تربط بين الأشياء، فيما لتكوين البرنامج (الشكل 10).

تتكون لغة Prolog فقط وليس لها declaration من معلقات، نظراً لحال في اللغات المعروفة، لذا فإن statements لم يكن في اللغة المعروفة، وتكون من مشابه المساواة أو Product hight with area من دون تعريف قيمة الارتفاع أو Area= Hight x width من لغة وانهائية المساواة المزدوجة حاجبها.

وهي كلمة عربية جديدة في لغات البرمجة ذات همة كبيرة قادت إلى بناء لغات الإشامية، الموجهة، object-oriented language، المكلفة، حسب رؤية، من الأشياء، التي يمكن لها أن تظهر بأسلوبها الحاضرة. إنها قد جذبت إلى مجموعة من الأشياء، التي يمكن لها أن تتناول مثلها عبر رسائل فيما بينها (الشكل 11).

وقد قدمت لغة 67 دلالات Algol المشتقة من لغة 60 Simula، لغة الإشامية الموجهة لها تلقى في البداية اهتماماً كبيراً،
لحيتن طورت اللغة Snakltalk عام 1970 مسكن مركز Xerox Palo Research Centre. وتتكون اللغات التي تعتمد هذه الدلائل على هيكل البيانات والخوارزميات، ومن ثم يبقى على المبرمج أن يتعامل مع الحاسوب على أخذ في ادخال البيانات واستخراج النتائج، مما عدا ذلك يبدو الأمر كصدد مقفل. وكما أن الكثير من الحيوانات مثل البطريق والجنسات والشمبان وغيرها فإن مختلفها في الخشف، كذلك فإن نماذج الأشياء المرجية تتطلب من المبرمج معلومات متكونة من أعداد واعداد مركز ومنظمات لإنجاز ما هو مطلوب من قبل الحاسوب كإجراء عمليات إضافية مثلا.

وتمارس الزخارف البيانية دوراً كبيراً في graphics. وتأتي الرسوم البيانية الكثير من مثل هذه اللغات، وبالأخذ فيما يتعلق بالإلكترونية، الادعائ باتجاه آخر لتصميم لغات البرمجة يعتمد على الحساب المتوازي الموزع distributed parallel computation. وتشمل بعض كلغات الحاسب التي تتكون من مراكز وحد معالجية واحد.

وبالنسبة إلى توزيع العمل الواحد لتنفيذه على مراكز وحد معالجات متعددة، في يمكن أن نتفقد البرنامج على حاسب ارقي ذات وحد معالج واحد مع
ملائمة طبيعة اللغة المستعملة وقادراتها على التنفيذ المتوازي.

وتعرض بعض لغات البرمجة المتوازية أعلاها في تنفيذ المهام استنادًا على توضيح العمليات التي يمكن أن تنفيذها Occam، بالتزامن مع ذلك مثل لغة Okel المبتكرة شركتها British Semiconductor Manufacturer.

هذه لغة برامج متوازية أخرى تعتمد على مترجمها لاستغلال الحسابات المتوازية. وقد استفادت من هذه اللغة بناءً على نظام جديد لإنجاز المشكلات التي تتطلب سرعة عالية بشكل متوازي. فالبرنامج بلغة Compel يتألف من اجتماع الرسومية assignment statement من جمل احترافية تجعل البرنامج يكتسب ما هو اسم الدال في الحاسبات الاعتيادية. لذا يقوم المترجم بانشاء تنظيم جديد لتحويل الجمل لتنفيذها بشكل متوازي، وجد دائمًا في الملاحظة على طريقة تنفيذ يمكن جيدة لتمثيل البرنامج قبل تنفيذه بشكل متوازي. يمكن أيضًا إيجاد الأماكن والجمل التي تستخدم جملًا لتنفيذها بالتصوير.

أن جميع الحواسيب الإلكترونية وحتى الفوضية إلى مشكلات أساسية في الترجمة، بما في ذلك:
كيفية جعل الموانئ المكون المشكلة متصلة فيما بينها

1- الشوازي الخشن

يعتمد على ذلك الناتج في اجزاء تجزء الوحدات المعالجة عدد قليل من وحدات المعالجة ذات سرعات عالية، لاستغلال عدد وحدات المعالجة 16 وحدة.

ويستخدم Coarse grain parallelism

2- الشوازي المتوسط

فيه من 32 إلى 1000 وحدة معالجة كل واحدة منها تمتلك Hiwercube Architecture حاسبة خاصة، مثال ذلك حاسبة الذي يحتوي 256 وحدة Intels Cosmic Cube التي تستعمل معالج. ولأن هذه الوحدات مرتبة على شكل معيّن، لذا فإن وحدات المعالجة الواقعية على أطراف المكعبات تأخذ وقتاً طويلاً نسبياً لإنجازات الإتصال فيما بينها مما يجعل هذه الحاسبة بطيخة عند وجود اتصالات كثيرة بين المكعبات، لذا فإن البرنامج يحتاج إلى خواص خاصة.

اللذي تمثل من الإتصالات البطيئة.
Fine grain parallelism is 3, which is 1024, and 256000 work units in 1 and 4. This means that the programmer should be able to handle a larger number of tasks, resulting in a significant increase in the number of calculations performed. This approach, known as Reconfigured and Dynamic Architecture, involves the construction of a new architecture that can be dynamically reconfigured.

From this example, it is clear that this new architecture was developed in 1983 at MIT, and is known as Connection Machine. It can handle 65,536 work units, which can be used by the vision computers in the automatic control system of the human air traffic control system. This requires a fast response for real-time communication.
ولا شك أن التقدم في بناء الرقاقات الإلكترونية، وبالخصوص رقاقات التكامل الكبير جدا (VLSI) سيد من إمكانية بناء تصاميم جديدة ذات كفاءة عالية، غير أن مشكلة بناء خوارزميات كنوار: تراكب هذا التطور التقني تبقى المشكلة التي تتطلب بحرشًا كبيرًا، لإزالت بطيئة لحد الآن.
Pendown
forward 50 right 144
penup

pendown
repeat 5(forward 50 right 144)
penup

pendown
repeat 9(forward 80 right 160)
penup

to star :size :points
 repeat :points(forward :size right 720/: points)
 penup

star 80 5

to star :size :points
 if :points 2
 (pendown
 repeat :points(forward :size right 720/: points)
 penup1)

star 80 9

LOGO

-32-
100 DIM T(100)
200 READ H
300 FOR I=1 TO N
400 READ T(I)
500 NEXT I
600 COSUB 1100
700 PRINTS
800 GOTO 2000
900 DATA 4
1000 DATA 23,34,7,9
1100 REM MAKES THE SUM OF THE ODD ELEMENTS IN ARRAY T(1...)
1200 LET S=0
1300 FOR I=1 TO N
1400 IF NOT ODD (T(I)) THEN GO TO 1600
1500 LET S=S+T(I)
1600 NEXT I
1700 RETURN
2000 END.

BASIC

The image contains a BASIC program. The program calculates the sum of odd elements in an array T(1...N). The code reads an input variable H, then for each element in the array, it checks if the element is odd. If it's not odd, it moves to the next element. If it's odd, it adds it to a sum variable S. After processing all elements, it returns the sum.
Program SUMOdd Numbers;
type TermIndex=1....100;
 Term array =array(TermIndex)of Integer;

VAR myTerms: TermArray;

Function sumOdds(n: TermIndex; Terms: TermArray): integer;
 Var i:=TermIndex;
 Sum:=integer;
 begin
 Sum:=0;
 for i:=1 to n do
 if odd(Terms[i]) then
 Sum:=Sum+Terms[i];
 SumOdds:=Sum;
 end;

begin
 my Terms[1]:=23;myTerms [2]:=34;myTerms[3]:=7;myTerms[4]:=9;
 Write In (Sum Odds(4,myTerms));
end.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NUMERIC-VARIABLE USAGE IS COMPUTATIONAL.
 02 TERMS PICTURE 9999 OCCURS 100 TIMES INDEXED BY 1.
 02 I-PICTURE 999.
 02 SUM PICTURE 999999.
 02 HALF-TERM PICTURE 9999.
 02 RNDR PICTURE 9.

PROCEDURE DIVISION.
EXAMPLE.
 MOVE 23 TO TERMS (1)
 MOVE 34 TO TERMS (2)
 MOVE 7 TO TERMS (3)
 MOVE 9 TO TERMS (4)
 MOVE 4 TO I.
 PERFORM SUB-ODDS.

SUB-ODDS.
 MOVE 0 TO SUM.
 PERFORM CONSIDER-CUT-TERM VARYING 1 FROM 1 BY 1
 UNTIL 11.

 CONSIDER-CUT-TERM.
 DIVIDE 2 INTO TERMS(I) GIVING HALF-TERM REMAINDER RNDR.
 IF RNDR IS EQUAL TO 1:ADD TERMS (I) TO SUM.

Cobol - 4- برنامع بلغة

البرنامج لإعداد مجموع الأعداد الفردية باستخدام
SUB-ODDS والنمطي استخدم عملية اختصار تعتمد
(CONSIDER-CUT-TERM) . إن هذه اللغة تحتوي على أدلة
لذا تحدد تقيم المنظومة معانا . إن الدارة
IF واحتمال القيم بالجملة PERFORM-VARYING
:SUMODDS
0 SWAPP
DO
SWAPDUP2MOD
IF+
ELSE DROP
THEN
;
LOOP
23 34 7 9 4 SUMODDDS

<table>
<thead>
<tr>
<th>WORD</th>
<th>STACK</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>23 34</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23 34 7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>23 34 7 9</td>
<td></td>
</tr>
<tr>
<td>SUMODDS</td>
<td>23 34 7 9 4</td>
<td>callsUOMODDS</td>
</tr>
<tr>
<td>0</td>
<td>23 34 7 9 4 0</td>
<td></td>
</tr>
<tr>
<td>SWAP</td>
<td>23 34 7 9 0 4</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>23 34 7 9 0 4 0</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>23 34 7 9 0</td>
<td>Remove loop control values</td>
</tr>
<tr>
<td>SWAP</td>
<td>23 34 7 0 9 9</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>23 34 7 0 9 9 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23 34 7 0 9 1</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>23 34 7 0 9</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>23 34 7 0 9</td>
<td>TOS=1; do IF to ELSE</td>
</tr>
<tr>
<td>+</td>
<td>23 34 7 9</td>
<td>skip past THEN</td>
</tr>
<tr>
<td>LESE</td>
<td>23 34 7 9</td>
<td>skipped</td>
</tr>
<tr>
<td>DROP</td>
<td>23 34 7 9</td>
<td>skipped</td>
</tr>
<tr>
<td>THEN</td>
<td>23 34 7 9</td>
<td></td>
</tr>
<tr>
<td>LOOP</td>
<td>23 34 7 9</td>
<td>Return to DO</td>
</tr>
<tr>
<td>DO</td>
<td>23 34 7 9</td>
<td></td>
</tr>
<tr>
<td>SWAP</td>
<td>23 34 9 7</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>23 34 9 7 7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23 34 9 7 2</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>23 34 9 1</td>
<td>TOS=1; do IF to ELSE</td>
</tr>
<tr>
<td>IF</td>
<td>23 34 9 7</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>23 34 16</td>
<td></td>
</tr>
<tr>
<td>WORD</td>
<td>STACK</td>
<td>COMMENT</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>ELSE</td>
<td>23 34 16</td>
<td>skip past then</td>
</tr>
<tr>
<td>DROP</td>
<td>23 34 16</td>
<td>skipped</td>
</tr>
<tr>
<td>THEN</td>
<td>23 34 16</td>
<td>skipped</td>
</tr>
<tr>
<td>LOOP</td>
<td>23 34 16</td>
<td>return to DO</td>
</tr>
<tr>
<td>DO</td>
<td>23 34 16</td>
<td></td>
</tr>
<tr>
<td>SWAP</td>
<td>23 16 34</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>23 16 34 34 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>23 16 34 34</td>
<td></td>
</tr>
<tr>
<td>NOP</td>
<td>23 16 34 0</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>23 16 34</td>
<td>TOS=0; do ELSE to THEN</td>
</tr>
<tr>
<td>+</td>
<td>23 16 34</td>
<td>skipped</td>
</tr>
<tr>
<td>LESS</td>
<td>23 16 34</td>
<td></td>
</tr>
<tr>
<td>PROP</td>
<td>23 16</td>
<td></td>
</tr>
<tr>
<td>THEN</td>
<td>23 16</td>
<td>Return to DO</td>
</tr>
<tr>
<td>LOOP</td>
<td>23 16</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>23 16</td>
<td></td>
</tr>
<tr>
<td>SWAP</td>
<td>16 23</td>
<td></td>
</tr>
<tr>
<td>DUP</td>
<td>16 23 23</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16 23 23</td>
<td></td>
</tr>
<tr>
<td>NOP</td>
<td>16 23 1</td>
<td></td>
</tr>
<tr>
<td>IF</td>
<td>16 23</td>
<td>TOS= 1; do IF to ELSE</td>
</tr>
<tr>
<td>+</td>
<td>39</td>
<td>skip past THEN</td>
</tr>
<tr>
<td>FLST</td>
<td>39</td>
<td>skipped</td>
</tr>
<tr>
<td>DROP</td>
<td>39</td>
<td>skipped</td>
</tr>
<tr>
<td>THEN</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>LOOP</td>
<td>39</td>
<td>no more iterations</td>
</tr>
</tbody>
</table>

FORTH

ortion بلغة

 يقوم البرنامج بلغة FORTH بجمع الاعداد الفريديا في FORTH! منظومة تتطلب عناصرها في مكدس، ويبدأ التعامل مع الاعداد

-37-
العليا من المكدي، يستخدم الإبعاز لتبادل أول قيمتين swap، مع بعضهما في المكدي إما الإبعاز dup فيكرر القيمة العليا في المكدي ويخرجها، إما الإبعاز drop فينجز القيمة العليا في المكدي، العاملان، و يقومان بتبديل الناتج بعد عند الإنجاز العملية محل القيمتيين التي أجبرت عليها العملية، ان الإبعاز do يقوم بإزالة القيمتيين من المكدي، وتكرار ذلك عدد المطلوب من المرات، إما الإبعاز if فينجز العملية عندما تكون القيمة في أعلى المكدي لتساوي صفرًا ولا تم الإنجاز سابين و ELSE.
البرنامج في لغة APL

هذا البرنامج يحسب مجموع الأعداد الفردية في منظومة واحدة وتفرع المنظومة في سطر واحد من دون الحاجة إلى استخدام عدد القيم التي تتكون منها المنظومة. عبارة تنتج من اليسار إلى اليمين في حالة ما إذا وجدت أقواس فانها تغيّر اتجاه التحليل.

في هذا المثال العبارة (21/TERMS) تنتج اولا والثاني تحسب الباقي بعد قسمة كل قيمة موجودة في المنظومة على القيم وتكوين صف بنفس الحجم الذي يملكه (أهميّة) التمثيل الدولي من العمليات، فضيّة العمليّة (Compress) (2/TERMS/TERMS,/) تمثل ضغط (2/TERMS/TERMS,/) التي تكون منظومة جديدة والذي فيه كل قيمة من (TERMS) تظهر فقط إذا كانت المفردات المعطية في (21/TERMS) ليست فارغة. في الرمز (21/TERMS) يستعمل تقسيم (reduction) العاملين والتي تقلل المنظومة إلى رقم مفرد بواسطة أدخل (+) بين كل زوج من القيم.
DEFUN SUMODDS
 (LAMBDA (TERMS)
 (COND
 (T (NULL TERMS) 0)
 (T (ODD (CAR TERMS)) (PLUS (CAR TERMS) (SUMODDS (CDR TERMS))))
 (T (SUMODDS (CDR TERMS)))))
 (SUMODDS, (23 34 7 9))

(SUMODDS, (23 34 7 9))
= (PLUS 23 (SUMODDS, (34 7 9)))
= (PLUS 23 (SUMODDS, (7 9)))
= (PLUS 23 (PLUS 7 (PLUS 9 (SUMODDS,))))
= (PLUS 23 (PLUS 7 (PLUS 9 0)))
= (PLUS 23 (PLUS 7 9))
= (PLUS 23 16)
= 39

LISP

Scheme 7 - برنامجه لغة

يقوم البرنامج باستخدام مجموعة الأعداد الفردية لـ LISP

ـ CAR 명령 للحصول على القيمة الأولى في القائمة ، بينما تمتلكdefun SUMODDS والميزة نفسها ذاتها. تمثل
ـ CDR ظاهرة معظم المعطيات LAMBDA لـ CAR لـ CDR
ـ دقين طريق تعريف Pricing في هذا البرنامج هناك دليل وسيطة واتصال هو true ، فإذا كان الناتج حقيقياً، فإن CAR
ـ التحليل CDR سوف تحل وفقاً لتعريف البالغه البرمجية، وإذا كان
ـ الناتج ZEROS، فإن COND__false، فإن.
ـحول إلى القائمة التالية.
ـ احتمالات ثلاثة زواج تنفيذ البرنامج: أما IF تكـ ـ
ـ SUMODDS قائمة فارغة فيعيد، أو يقيف تقييم TERMS
ـ القيمة إلى المجموع، أو زائدة فتيم القيمة.
<table>
<thead>
<tr>
<th>COMMANDS</th>
<th>ASSEMBLY CODE</th>
<th>MACHINE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD R0, R1</td>
<td>ADD R0, [R2]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>MOV R2, R0</td>
<td>MOV R2, [R4]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>SUB R3, R1</td>
<td>SUB R3, [R2]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>XOR R4, R5</td>
<td>XOR R4, [R3]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>MUL R6, R7</td>
<td>MUL R6, [R4]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>DIV R8, R9</td>
<td>DIV R8, [R5]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>CMP R10, R11</td>
<td>CMP R10, [R6]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>BRNZ R12, R13</td>
<td>BRNZ R12, [R7]+</td>
<td>01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
يقوم المترجم بتحليل التعبير الحسابي ماراً بثلاثة اطوار. في الطور الأول يتم تحليل العلامات والرموز. وفي الطور الثاني يتم معرفة معاني العلاقات الحسابية والمعاملات والعمليات الحسابية وفقًا للنظام hex وضع تطبيق العمليات الحسابية. ومن ثم يتم تحويل التعبير الحسابي إلى صيغة جديدة وفقًا لأحد الصيغ المستعملة مثل التدوين البولوني، كما يتحول التعبير في الطور الثالث إلى صيغته النهائية.
add(Adam is-parent-of Cain)
add(Adam is-parent-of Abel)
add(Eve is-parent-of Cain)
add(Eve is-parent-of Abel)
add(Cain is-parent-of Enoch)
Which (x. x is-parent Abel)
Adam
Eve
No(more) Answers
which(x. Eve is parent-of x)
Cain
Able
No(more) answers
Add(x is-ancestor-of y if x is-parent-of y)
Add(x is-ancestor-of y if z is-parent-of y and x is-ancestor-of z)
which(x. x is-ancestor-of Enoch)
Cain
Adam
Eve
No(more) answers
which(x. Adam is-ancestor-of x)
Cain
Abel
Enoch
No(more) answers

PROLOG

شكّل -10- برنامج في لغة

هذه اللغة ليست لها عبارات ولكنها مكونة بشكل كامل من بيانات (declarations) بشأن برنامج بهذه اللغة بعض معلومات (Not explicit instructions) لإنجاز العمليات واتحاد فقط العلاقات وتكون الاستنتاجات فيما بينها مبينة على تلك العلاقات، هذا البرنامج مكون بواسطة (micro-prolog) أن أول خصائص بيانات تحديد العلاقة بينين الولد والوالدين فالنظام ممكن أن يجب عن الاستعلام التجريبي لاتتقين بذلك الحقيقة، هناك قاعدتان تحددان السياق منطقيا والنظام استخدمت لتعميد الاستنتاج (Logical Inference) العلاقة بين السلف بدلاً بالوالدين، النظام يمكن أن يطبع

هذه القواعد لإيجاد كل الأسراف أو الإخلاص للفراد.
System Browser

<table>
<thead>
<tr>
<th>Collections-Abstract</th>
<th>Large.Carriage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collections-Uniform</td>
<td>Random</td>
</tr>
<tr>
<td>Collections-Sequency</td>
<td>SmallInteger</td>
</tr>
<tr>
<td>Collections-Text</td>
<td></td>
</tr>
<tr>
<td>Collections-Array</td>
<td></td>
</tr>
</tbody>
</table>

_class

mathematical function testing, truncation and conversion

\[
\text{negated}
\]

\[
\text{abs}
\]

* aNumber

"Answer the sum of the receiver and aNumber."

self subclassResponsibility

1+2=3

Smalltalk

في كل العمليات التي يتم فيها الجمع، يجب أن نلاحظ أن الناتج هو 3. النتيجة من الجمع بين رقم 1 ورقم 2، والنتيجة النهائية هي 3. أيضًا، في حالة الجمع بين رقم 1 ورقم 2، الناتج هو 3. بناءً على ذلك، يجب أن نلاحظ أن الناتج هو 3.

1+2=3

في كل الأحوال، الناتج هو 3.
دراسة وسائل نقل المواد في وزارة الفقاعات الفتاوية

د. وسام فرماذ محمد الجبوري
كلية الهندسة - جامعة الموصل
الخلاصة

قد أصبحت تكنولوجيا الفقاعات المضائة شائعة الاستعمال هذه الأيام كذاكرة للحاسوب الإلكتروني.
ولكن هذه الفقاعات لاتزال تواجه مشكلة رئيسية وهي أن حركتها داخل الأغشية الرقيقة لاتزال متوسطة نسبياً. ولقد تم في هذا البحث دراسة حركة الفقاعات، وحجمها وسرعةها. وقد استعملت سبائك لتحريك الفقاعات من نوع شيفرن غير متناظر، وتم توادع سهل مستمر من الفقاعات المضائة وتنوعت تصرفاتها بدقة تحت المجهر.
لقد وجد أن حركة وحجم وسرعة هذه الفقاعات غير منتظم، وعندما ماتحت سبائك الحركة تتخلف فيها الفقاعات عن اتجاه المجال المضائقي الذي يحركها. حيث تصل سرعات الفقاعات على هذه المناطق إلى الحدود القصوى، وقد تم وضع بعض المقتراحات والتي من شأنها تقليل تخلف الفقاعات وزياادة سرعتها وبالتالي تستطيع اختصار زمن كتابة وقراءة المعلومات من وإلى هذا النوع من الذاكرة.
لقد أصبح استخدام ذاكرة الفقاعات المغناطيسية
(1, 2, 3) جزءاً أساسياً في الحاسبات الإلكترونية من
الأمور الشائعة والرخيصة الثمن. وقد خلقت هذه الذاكرة
إيجابياً عن الذاكرة المغناطيسية التي تستخدم الإشارة والأقراص
والألواح المغناطيسية ذات السرع البطيئة والأجزاء المتحركة
والحجم الكبيرة.

ان الفقاعات المغناطيسية (Magnetic bubbles) تتألف من
اسطوانات مغناطيسية توجد في أغشية رقيقة من الأورثوفرايت
والكارنت. وان سمك أغشية الكارنت المستعملة في الوقت
الحاضر حوالي 1 إلى 4 ميكرون وان نصف قطر الفقاعات
المغناطيسية يساوي تقريباً سمك الغشاء الذي توفر فيه،
ولايات المحاولات مستمرة لتقليل سمك الغشاء وبالتالي نصف
قطر الفقاعات وذلك لزيادة كفاءة خزن المعلومات في هذه
الأشكال.

ان حفظ المعلومات في هذه الذاكرات يتم بواسطة استخدام
الشفرة (لاقة - للاقاعة) وهي التواريخ 1-0 في
الذاكرات الرقمية. ان المسافة الدنيا التي تترك بين فقاعات
وإلا، ستجد أن تنتقل عن أربع مرات بقدر قطر الفقاعات، وذلك لك
الحصول على الشكل المغناطيسي بين الفقاعات (4).

لقد أطلق عليها "الفقاعات المغناطيسية" نتيجةً
أداة تشبه تحت المجهر. ناذرأ، أن النص الساخّ
الجاف للشمس، هو نصف مشاهدة مفتوحة باتجاه واحد، والنصف
الآخر مفتوحة بالاتجاه المعاكس.

عند تسليط مجال مغناطيسي عمودي على سطح النشاط، فإن
المجال المغناطيسي يتجه إلى الخارج، بينما تصبح
المجال المغناطيسي عكس الاتجاه المداري. وهذا إذا
استمرت زيادة المجال الخارجي، فإن المجال المغناطيسي عكس
المجال تصبح على شكل فقاعات، وغالبًا ما يطلق على المجال
المغناطيسي العمودي بـ"مجال الانحياز المغناطيسي" (Magnetic biasfield).
أما إذا أزداد المجال العمودي أكثر
من هذا الحد فان الفقاعات تختفي شائبة" او تنهار وسياس
المجال في هذه الحالة بمجال الانحياز (Collapse field) .

ان الفقاعات المغناطيسية يمكنها الحركة داخل الغشاء
وبموازاة سطح وسرعه عالية نسبياً عندما يسلط عليه قوة
جي مختلفة (Magnetic field gradient) .

50---
استعملت لتحرير الفقاعات المغناطيسية داخل الغشاء، ولكن الشائع منها حالياً هو طريقه استخدام المجال المغناطيسي الدوار (field-access approach). وفي هذه الطريقه يتم تشحذ مجال مغناطيسي دوار (Rotating magnetic field) بموازاة سطح الغشاء وبدوراً بدوراً يولد سلسلة من المواضع التي تجب الفقاعه المغناطيسية إليها.

تتولد المواضع المغناطيسية الجاذبة تحت اشكال هندسية تربس على سطح الغشاء، وتتكون من سحابة مغناطيسية مطاوع تسمى بسبائك الحركة.

ولقد تم تصنيع عدة انواع وأحجام من سبائك الحركة منها chevron و chevron (5) التي تطلق عليها شيفر (5) و chevron (6) الذي هو مجال دراستنا في هذا البحث.

ولكي يتم فهم النتائج بصورة واضحة دعنا نناقش نظريةً حركة الفقاعات على شيفر غير متناظر كما مبين في الشكل (1).

لقد تم افتراض أن مغناطيسية الفقاعات متجهة إلى الأسفل (من القارئ، باتجاه الصفحة) وأن الغشاء مغنيطاً بالاتجاه الأعلى (من الصفحة باتجاه القاري). أن الفقاعات في هذه الحالة تتجه نحو الاقطاب الموجبة، ويتم ذلك بنطيط مجال.
منطقة متناوبًا. بمثابة ميدان دائري، يتم تحريك
مواقع متناوبًا أو بؤر تحت السيكبات، تكون فيما بعد
المجال المتناوب العمودي، مما يؤدي إلى هذا. يجدر
الاستناد والاستقراء في تلك المواقع.

عندما يدور المجال المتناوب، يتحول عقرب الساعة كماثل
في الاتجاه من A إلى A. يتحرك الراكب (Apex) في
الاتجاه اليمنى للذراع الصغير.

وهل هذا يتكون الفقاعات. يُجيب الإجابة، هو الميدان المتناوب.
يمكن دار المجال المتناوب حيث تنتشر النجوم
الموجودة بين السيكبات. تستقر تحت الإضافة الميدان
المثالي، كما في الحال، إلى ت.

أن جميع الفقاعات تتحرك دورًا كاملًا عندما يدور المجال
المتناوب 360 درجة، كما في الحال، من 1 إلى ج. وطبقًا
لخ. هذا القول النظري، فإن سرعة المجال المتناوب تحدد سرعة
الفقاعات. بل هذا القول صحيح مادام تردد المجال المتناوب
واطلاه. (بحدود 100 كيلومتر في الساعة) والسبب في
ذلك يعود إلى أن سرعة الفقاعات تحددها تحرك جدار الفقاعات
المعقد المتناوبًا.
الجانب النظرى:

ان حجم وحركة الفجاعة الفغشاطيسية في اجبرة الخيينة الإلكترونية ليس منتظماً ويتغير لعدة أسباب أهمها حجم وشكل وتوزيع جسيمات الحركة. وبما ان الفجاعة تبدأ في الخلف عن اتجاه المجال المغناطيسي الدوار كلما زادت سرعتها، وان حجمها يبدأ في التزاول فأنه ربما ستغرق لاتشير في بعض نقاط المسار. ولذلك فسوف يتنقل الرقم 1 إلى مفر ويتكرر هذا الخطأ لآونة في الترددات المتوسطة خلال السرعات العالية ويعودنا يدوي إلى كاريطة حسابية.

ان جدار الفجاعة المغناطيسية يتعرض لقوة احتكاك كبيرة عند تحركه داخل الغشاء المغناطيسي وذلك لأن اتجاه مغناطيسية الفجاعة يجب أن يدور بمقدار 180 درجة عند تحركها. فلنسو اعتبرنا ان تفوت قطر الفجاعة لابتعاث أن قوة الاحتكاك التي تعكس حركة الفجاعة يمكن كتابتها على الشكل التالي (8):

\[F = \frac{2\pi M r h}{s} \left(\frac{V}{U} + \frac{4}{\pi c} \right) \]

\[s \]
حيث قوط الاحتكاك و μ مغنطيسي الإشعاع و $\frac{1}{2}$ نصف قطر
القاعة و h سم انبعاث و V سرعة القاعة و تتحرك جدار
القاعة و c القوي القرب ، فإذا كان نصف قطر القاعة
Δ ثابتًا وتحركت القاعة تحت فرق جد مغنطيسي (H) ثابت
فإن المعادلة (1) تصبح :

$$V = \frac{1}{2} \mu (\Delta H - \frac{H}{c})$$

ولكن عندما يزداد قرن الجد على طرف القاعة، عن حد
معين فإن سرعة القاعة تزداد بشكل مفاجئ وتصل إلى حد يسمى
بذرة السرعة (p)، بحيث لا تتحتم سرعة القاعة على زيادة
فن القد. ولقد اقترح أحد العلماء (9) حساب تزويج سرعـ
القاعة (V) وفق المعادلة التالية :

$$V = \frac{1}{2} \mu A / (h k)^2$$

حيث μ هي النسبة المئوية (Gyromagnetic ratio) و A
هو ثابت الاتصال (Exchange Constant) و k
هو ثابت المحلول غير المتناضـر
(μ) (Uniaxial anisotropy constant).
سرعة الإشعاع (V) التحتية غالباً ما تكون بين 2 إلى 10 متر/ثانية في غشاء الكارتن وفق المعادلة التالية (9):

\[V = 7 \frac{1}{2} \text{A} / \text{h}^2 \]

بالنسبة لذروة السرعة فقد اشتققت علاقة رياضية ثانوية (10):

\[V = 16.5 \frac{1}{2} \text{A} / \text{h}^2 \]

حيث V هي ذروة السرعة للفراقة في هذه المعادلة وهي تساوي ثلثي ذروة السرعة المثلى في المعادلة (3).

ومن خلال أجراء بعض التجارب العملية في مفاعل سرعات الفقاعات المغناطيسية لج. د. ليو، اقترح أن السرعة القصوى للفراقة (VP) يمكن التعبير عنها وفق المعادلة التجريبية التالية (11):

\[V = 0.4 \frac{\pi}{M} \sqrt{\frac{1}{2} \frac{1}{2}} \text{A} / \text{K}^2 \]

حيث V تمثل ذروة السرعة أو السرعة القصوى للفراقة (4).
من هذا العرض النظرى المبسط أصبح واضحاً أن الفقاعات المفاضسية تبقى ساكنة في الغشاء إلى أن تتجاوز القمة المسلط على طرفها (II) التواغر (II). بدءاً
تبدأ الفقاعات بتحرك بسرعة متساوية داخل الغشاء وتناسب هذه السرعة طردياً مع فرن الجد المفاضسي المسلط على طرفها. كما هو موضح في المعادلة (2). وعند زيادة فرن الجد المفاضسي عن حد معين فإن سرعة الفقاعات تزداد بشكل مفاجئ لايعتمد على فرن الجد المفاضسي. كذلك فقد أصبح واضحاً بأن ذروة السرعة للقاعات وبتأتيا حجمها تعتمد على خواص الغشاء المفاضسي (K و A) وبدروها تتاثر بنوعية وحجم وشكل السوائل المفاضسية المربعة على سطح الغشاء ذي تنظم حركة الفقاعات وتكون مساحة ذرن المعلومات في الغشاء.

الحسابات العملية

ان اغشية الكارنت شفاف وممكن للضوء المركزي من المرور خلالها. وقد استعمل ضوء الليزر لمشاهد الفقاعات المفاضسية بواسطة المجهر. فقد شهدت الفقاعات المفاضسية اندكاظ اللون وهو تتحرك تحت خط سيرها بينما كان سطح الغشاء فاتح اللون. أن التركيب الكيميائى لاغشية الكارنت التي درست في هذا البحث هو :
والجال العمودي لانهيار الفقاعات هو 12000 أمبير/متر. لقد صنعت سبيكة الحركة من النيكل (بشبابة 87%) والعديد (بنسبة 13%) ويبهك 0.35 ميكرون ويبهك العازل بينهما ويبهك سطح الفضاء المغناطيسي هو 0.75 ميكرون، على شكل هجين غير متساوي قائم الارتفاع كما مبين في الشكل 1. أن الفجوة بين السبيكتين هو 1.5 ميكرون ومسقط المسافة بينها نهاية أحد افاع السبيكة ونهاية الطلع المشترك في السبيكة المجاورة (دارة كاملة) هو 13 ميكرون.

لقد تم إجراء الحسابات العملية وذلك بتوليد سيل مستمر من الفقاعات في مسار الحركة ومشاهدة تجربتها. القسم الثالث كان اتجاه دوران المجال المغناطيسي على مقرب النبض، وبذلك فإن الفقاعات تتحرك من اليسار إلى اليمين مع الزوايا الكبيرة إلى الصلب المغير للسبيكة نفسها ثم تقترب الفجوة النسبي السبيكة المجاورة.

إن حدود عمل هذه الدائرة موقع في الشكل 2 (1 و 2).

لترددين مختلفين هما 100 و 520 كيلوهرتز. في الجزء 1 من الشكل 2 رسم الحد الأعلى في نشاط الفقاعات أو بعضها عن النظام إلى الأمام في مسار الحركة وبالتالي إنها أو اختلافها.
ان المنطقة التي تختفي فيها الغفاعة هي منتصف المدmodation العالي، وذلك لتوزيع مثالاً من „سلطان عودها“ عادياً في هذه المنطقة، يؤدي إلى اتساع الغفاعة. كذلك يتبين في هذا الجزء من الشكل أن مجال عمل الداكر يقل كلما زاد التردد.
ففي حين تستطيع الغفاعة الحركة في حدود 11800 أمبير/متر في تردد 100 كيلوهرتز فإن هذا الحد ينخفض إلى 10220 أمبير/متر في تردد 520 كيلوهرتز.

يوضح الجزء B من الشكل 2 الحد الأدنى في نشل الغفاعة في أن تحافظ على شكله. فقد شهدت الغفاعة الواحدة وهى تتمدد على أكثر من 10 كيلوهرتز واحد وباتالي لايمكن كتابة الرقم 0. ان حساب الحدود الدنيا وال العليا للمجال المغناطيسي العمودي والدوار الذي يمكن أن تعمل فيه مثل هذا النوع من الداكرات ضروري جدا". ومثل هذه الحدود تسمى حدود عمل (Operating margins) للداكر، و لكل داكر حدود عمل معينة في كل تردد ويفضل أن يكون منتصفها. ونيما ينقص هذه الداكر، فإن منتصف حدود العمل المجال المغناطيسي العمودي هو 9600 أمبير/متر و 3200 أمبير/متر بالنسبة للمجال المغناطيسي الدوار.
حركة الفقاعة المغناطيسية

من خلال مشاهدة حركة الفقاعة المغناطيسية على سبيكة

الحركة نوع شفاف غير المتناظر يتبين بأن حركتها في

منظمة وكذلك فأن حجمها يتغير من مكان إلى آخر في

السبيكة . ومن هذه الدراسة أمكن تحديد المناطق التي

بتضاءل فيها حجم الفقاعة وربما تترافق فيها إلى الانهيار.

كذلك تحديد المناطق التي يكبر فيها حجم الفقاعة ويؤدي بها

إلى الانتشار إلى أكثر من سبيكة واحدة .

لقد تم مشاهدة حركة الفقاعة في ترددين مختلفين هما

100 و 520 كيلو هرتز وتسجيل هذه الحركة كما ببين في الشكل

3. تحت مجال مغناطيسي عمودي مقدارها 9600 أمبير/متفر.

ومجالات مغناطيسي دوار مقدارها 3200 أمبير/متفر. وتعتبر هذه

القيم أفضل منطقة تتحمل فيها هذه الذاكرة بكفاءة عالية.

من الواقع أن توجد مناطق تحت سبيكة الحركة بعض

فهما حجم الفقاعة أقل ما يمكن وهما عندما يكون انجهاء

المجال حوالي 30 درجة و 195 درجة . ومن مراجعة الشكل 2

بحورة دقيقة يتبين بأن هذين الاتجاهين هما :

عندما تقفز بين سبيكتي الحركة وترتب تحت الطرف الأيسر

للذراع الكبير ، وعندما تكون تحت الركبة .
والأسباب في ذلك هو شدة المجال المغناطيسي العمودي في
هاتين المنطقتين نتيجة انخفاض المجال المغناطيسي الموضعي
المتولد، والذي يماكس المجال المغناطيسي العمودي. إن اقل
حجم تصله النقاء هو عند الاتجاه 195 درجة مع تردد 520 كيلو
هيرتز حيث يبلغ قطر النقاء. عند هذا الاتجاه 2.6 ميكرون
وهو قريب جداً من قطر الstarting النقاء.
كذلك فإن النقاء، تتمدد إلى أقصى ما يمكن في منطقتي
الآخرين مما في اتجاهي 120 و 270 درجة. المنتظم
100 كيلو هيرتز واتجاه 125 و 265 درجة في التردد 520 كيلو
هيرتز وهاتان المنطقتان هما منتصف نشاط السبيكة.
من الواضح أنه يتكمن مجال مغناطيسي فعلي في هاتين
المنطقتين يضعف المجال المغناطيسي العمودي، يؤدي بالتالي
إلى تمدد النقاوات. إن أكبر قوة تصله النقاء، عندما تكون
تحت الاتجاه الصغير عند الاتجاه 270 درجة في تردد 100 كيلو
هيرتز، سيكون طول قطرها الأعظم 11 ميكرون وهو ما يسمى
"الشريحة" ثلاثة أضعاف قطر النقاء الاعتيادي في م تشغيل هذه
الإغشية.
كذلك يبدو من الشكل 3 أن طول قطر النقاء الأعظم يقل
كلما زاد التردد، وسبب ذلك يعود إلى تخفيف النقاء عن

-60-
اتجاه المجال المغناطيسي الدوار وسره في منطقة مغناطيسية عمودي اشد كثافة فيما لو سارت متزامنا مع اتجاه المجال المغناطيسي الدوار.

لقد تم رسم مركز الفقاعات على سبيكة الحركة مع اتجاه المجال المغناطيسي الدوار ولترددين مختلفين هما 100 و 520 كيلو هرتز كما في الشكل 4 ونقيق المجال المغناطيسي الدوار العمودي المبين في الشكل 3 من الشكل اعلاه يتضح انها توجد منطقية على سبيكة حركة الفقاعات وتحدث كنها مستقرة وهما مدخل الذراع الكبير ومنتصب الذراع الصغير. وفي دراسة سابقة (12) لوضعت مناطق الاستقرار نفسها عند نهاية الذراعين على الرغام من ان الدراسة تمت على سبيكة شفرين متوازن ذي زاوية مقدارها 120 درجة بين الذراعين.

إن زمن استقرار الفقاعات في الشكل 4 يقل كلما زاد التردد، والسبب في ذلك يعود إلى زيادة تخلف الفقاعات عن اتجاه المجال المغناطيسي كلما زاد التردد، وبذلك يقلل الزمن المتاح للفقاعات لكي تستقر في نهاية الذراعين. كذلك يلاحظ أن تخلف الفقاعات يزيد عندما يكون بين سبيكن من زاوية الاتجاه مفر وليغابية 60 درجة وعندما تسيير من
منتصف الذراع الكبير للذراع الأيسر (زاوية الاتجاه من 150 ونحو 270 درجة). ومن المتوقع أنه عند زيادة
شد المجال المغناطسي عن هذا الحد، أو ربما أكثر قليلاً
فإن الفجوة تنسيق متزايد مع اتجاه المجال وسوس تغيير
المعلومات المخزنة في هذه الداكن.

مسما تقدم نستطيع أن نستخلص خياليتين اساسيتين وهما:
أولاً: إن تخلف الفجوة عن اتجاه المجال المغناطسي يزيد
بزيادة شدة المجال.

ثانياً: إن نقطة المضافة التي تستطيع الفجوة البقاء
فيها تعتمد على القدرة أو مقدار المجال المغناطيسي الدوار.
وإن تمثل هذا الشكل والتصميم سيكما النهاية. ووهذا ما صرح واضحاً
أن منتصف الذراع الخبير في السيكما هو المنطقة التي تتمتع
بأن نقطة الفجوة المضافة بينما ستكون هناك النهاية وإنما ينتظر
اذن نقطة أو منطقة احتماء في منتصف الذراع كيجذب
الفجوة إليها وتقلل من زاوية تخلفها.

حساب سرعة الفجوة المغناطيسية

في الشكل 5 تم رسم السرعة الاتجاه الفجوة مع المسافة
العملية التي تقضي الفجوة تحت سيكما الحركة ووضعية

-62-
التردد 100 و 200 كيلو هرتز لقيم المجال المغناطيسي الدوار والعكسي بنفسه. وقد وضعت في الشكل 3. لقد تم حساب السرعة الانية للفعالية من ناتج قمة العمق الفعلي التي تقطن تمكماً الفعالية تحت شبكة الحركة على الزمن المستمر لقطع تلك المسافة. كذلك فقد تم تقسيم موقع الفعالية على المحور السيني بواسطة الأحرف الأبجدية التي تمثل الموقع الفعلي للفعالية على شبكة الحركة. أما الخطط المنقطة فيمكنان معدل سرعة الفعالية على شبكة الحركة عندما تسفر بصورة متناسبة في الترددين 100 و 200 كيلو هرتز.

من الواضح أنها توجد عدة مناطق تحت شبكة الحركة تعمل فيها شدة الفعالية إلى النزوة لكل الترددين. ونلاحظ تدفق السرعة عندما تزيد على نصف معدل السرعة في ذلك الترددد تصل ذروة السرعة إلى 6 متر/ثانية في تردد 100 كيلو هرتز بينما تتجاوز 30 متر/ثانية في تردد 520 كيلو هرتز. كذلك نلاحظ ان السرعة تنخفض كثيرا بعد هذه الذروات لتصل الى حد السكون كما يبين في النقطة د لتردد 100 كيلو هرتز بينما تنخفض السرعة إلى 3.6 متر/ثانية لتردد 520 كيلو هرتز في تلك النقطة.
520 م، ويكفي الآن أن نقول أن جميع الدارات البصرية للبشر في الحالة الافتراضية تكونت في الفناء. كلاً من مكانة كُل مصباح في الساحة كونه مصباح 520 م. يكون في الساحة 100 مكان مصباح مع طول مسار 23 م، مساحة 614 م². وتكون هناك سبع نماذج من الساحة، كل من هذه النماذج لديه 13 مصباح.

كما يمكن أن نقول أن جميع الدارات البصرية للبشر في الحالة الافتراضية تكونت في الفناء. كلاً من مكانة كُل مصباح في الساحة كونه مصباح 520 م. يكون في الساحة 100 مكان مصباح مع طول مسار 23 م، مساحة 614 م². وتكون هناك سبع نماذج من الساحة، كل من هذه النماذج لديه 13 مصباح.
التغلب عليها في البحث القادم، فأنه من المتوقع الحصول على سرعة أكبر من التي رجعت في هذا البحث.

أما لماذا تتجاوز السرعة العملية قيمة السرعة التي حسبت في المعادلة 3 فيوحود أن سبباً للحركة نفسها تولد "مغناطيساً " دواراً " نتيجة للفعل المتبادل بين سبيكة الحركة والفقاعة التي تحتها. وذا يوضح عدم حصول ذروة سريعة متجمدة عندما تتفجر الفقاعة بين السبيكتين وذلك لعدم وجود سبيكة فوقها.

الاستنتاجات

لقد تم دراسة الجدود العليا والدنا التي تعمل فيها ذاكرة الفقاعات المغناطيسية بكفاءة عالية فوجد أنها حوالي 2500 أمبير/متر من المجال المغناطيسي العمودي في تردد 100 كيلو هرتز وأن هذه الجدود تقل بزيادة التردد. كذلك تم دراسة حجم الفقاعة وحركتها فوجد أنها غير منتظمين إذا أن حجم الفقاعة يتقلص عندما تستقر تحت الطرف الأيسر للذراع الكبير أو تحت الركبة وفي هاتين المنطقةين تتنزف الفقاعة للانبعاث إذا زاد التردد كثيراً. كذلك وجد بأن حجمها يتمدد كثيراً عندما تكون في منتصب أي من
الزراعين، أن حجم الفقاعات يتناقص كلما زاد التردد والسبب هو زيادة تخلف الفقاعات في اتجاه المجال المغناطيسي الدوار، وسيراً في منطقة مجال مغناطيسي عمودي اشتد كثافة فيهما لو سارت متزامنة مع اتجاه المجال المغناطيسي. كذلك يتبين أن زاوي تخلف الفقاعات لا تعتمد على قيمة المجال الدوار واتجاهه بل تعتمد على شكل سكة الحركة، وان منصرف الذراع الصغير هو المنطقة التي ت تعرض في النهاية لانقلاب ذراع، كذلك لو حاول ان تقلل، تستقر كثيراً تحت مدخل الذراع الكبيرة ومنصرف الذراع الصغير، بينما تستغرق بانتظام بين هاتين المنطقةين، وعند حساب سرعة الفقاعات، تجاوز انتشار الزيت الذي حسب سابقاً وقد عزى السبب في ذلك إلى التفاعل المغناطيسي المتبادل بين السبكة والقاعه المغناطيسية نفسها.
References

3. الدكتور وكام فرمان الجبري مجلة الصناعة عدد الثالث، صفحة 30 (1986).

د. مهدي فاضل موسى
مركز حاسوب جامعة الموصل

مهنيل ضلبل عمر
مركز حاسوب جامعة الموصل
الخلاصة

مع استعداد فعاليات الحساب الآليون في مختلف مداه النشاطات الإنسانيّة بقيادة ممالي الأفاذ من هذه أولاً والاكل في التعليم، ننظر مجموع من النظام Computer Aided Learning مساعد التعلم، مورد مساعد (CAL) راهن نمو سريع، يشمل الكثير من العلوم الإنسانيّة، وطبيع، ومع تكامل امتزاج بزمان ممالي هذه الاستكشافات.

هل ان هذه النظام زينت من رم الدراسات والتعليم؟ ولد تلقى الأدب التربويّ المحور في دروس أخرى وكيف سيكون التحول من الأدب التقليدي إلى الأدب الذي يعتمد الحواسيات الإلكترونيّة وكم يكون ذلك كله انقلاباً في مصلحة التعليم؟ لم مجرد عوامل مساعد تعين الأدوس والاطلاب على حد أواستبداء هذا الدراسة محمودة لائحة على الأنظمة الجديدة في تدريس علمية بعثت في محاولة أطراف تكرار استخدام النظام الحديث في تدريس وتوجيه وتحفيز.

-76-
بالالحالي، مجموعة من المفترضات، تمعنا وجبة لوجه استنمام تعددiéات القرن الحادي والعشرين، ومسؤولية الجامعات للاخضاع بزمام الأمور في عصر تحلب فيه الأحداث وتتفجر فيه الموازين.

أولاً: مقدمة

ولدت الحاسبات الإلكترونية أساساً على أيدي علماء الرياضيات والمهندسين لذا فأن العلاقة بين الرياضيات والهندسة من جانب وبين الرياضيات والحاسبات الإسلامية من جانب آخر، علاقة مستمرة الجذور، ذلك أن المقطع الأكبر من علوم الحاسبات انة هو استدامة أن الرياضيات Formal system للرياضيات نظام شكلي يتميز بالبديقة والصرامة، فأن البرمجة باحدى اللغات البرمجية مثل تمتاز ببعض الميزتين أضيفة: الدقة والسرعة (1)

وتدرس الرياضيات له تأثيراته منها: التنظيم، والدقة في التفكير، والتجريد والمنطق، والعجرم، والجمال، والقوة، إلا أن تدرس الرياضيات بع
القدر قبل كل شيء على (البركان) وعلى اكتساب المعرفة الكاملة من مجال، كما أنه يشع، أي حد كبير نوعاً خاصاً من التركيز. ومن هذه الآس تأتي نتائج التاثيرات (2).

أما تأثير الرياضيات على علوم الحاسبات فيبدو واضحاً عبر البرامجيات (algorithms) والخوارزميات (software) وما تحتاجه من تحليل وتصميم وتطبيق واستخدام، وانتهى

تعدم تواطعنا النظري ابتداءً على فئات الرياضيات (3).

من هذا الناحية الكبيرة، بين الرياضيات وعلوم الحاسبات على نصف敵 من القرن العشرين انتقالات نوعية مبدعة في بناء الحاسبات الإلكترونية وتطويرها وزيادة كفاءتها، وفي انتشارها، ومع مطالعه الحاضر، ظهرت الحاسبات المايكرو (microcomputers) التي تبني في الموازين والمقدمة، وهي يصبح بما كان من الناحية العينية على حاسب متكامل بشن، ومن ثم نشأ حاجز

الخون بين الناس والحاسبات الإلكترونية، ومع انتشار الحاسبات المايكرو في الدول الصناعية، ظهر الحاج إلى الاستفادة من هذه الوسيلة الفاعلة، شانباً شاناً: أي التسجيل السمعي والسمري، وإلى احتلالها كعامل مساعد - في محيط التعليم بمختلف مستوياته، وبدأت
الجامعات ومعاهد التعليم والشركات - هناك - حملة واسعة
لبناء مجموعة من البرامج والبرامج الجاهزة في شتى
المناهج العلمية والإنسانية ، كانت ذات أثر واضح في التفكير
بأسلوب التعليم وتطويرها.
وفي العراق بدات الحواسيب المايكروية بالانتشار ،
ويشهد السوق العراقي حواسيات مستوردة وأخرى مصنعة ، كما-
لاحظ أيضاً اقبالا واسعا على اقتناء الحواسيب المايكروية من
الناس ، ومام هذا الانتشار للحواسيب الإلكترونية في الفترـ
تبرز تسائلات عدة :
- مادر الجامعات في التخطيط للاستفادة من هذا الانتشار ؟
- ومادرها في تعزيز أطر التعليم باستخدام الحواسيفـات
الإلكترونية بشكل عام ، والحواسيب المايكروية بشكل خاص ؟
- وهل سبقى اسرى (الاستهلاك العلمي) لهذه الوسيلة ؟، ام
سنرمى - وفق خطوات مدمجة - الى الانتقال نحو مرحلة
(الإنتاج العلمي) ؟

إن الدور الأساسي الذي تغطيه بها الجامعات هو تربية الطلبة
وعليهم ، وليس - بالضرورة - تهيئتهم لعمال معيـنـة ،
والتدريب عموما ، فهم واسع للمحاولات النظرية او العملية ،
وإشارات ذكية للبحث من المعرفة التي تخدم حركة الجامعـة
وركز المجتمع على حد سواء. وسنتشافINGSAILING (لا يمكن ترجمة الأسماء) والتي ترد حاجات المجتمع وتطلائعاته، وتقدم حلول لذا يمكن متابعة أداء غير مباشر لغير أجيال أخرى عبر أجيال الأقران.

بفرض هذا احصيلا الحديث عن التعليم المساعد بحساسية ودوره في تعزيز التعليم بشكل عام، وبفضل هذا على فروع واحد من فروع التعليم، هو الأسرات في التعليم المساعد في هذا الجانب، ويشمل ذلك مجموعة من التجارب العديدة، بما في ذلك اقتراح التفكير بتجربة عرايت تستفيد من تجارب الآخرين، وتبني الوسائل المألوفة واحتيالات والأساتذة.

ثانيا: التعليم المساعد باستخدام الحاسوب الإلكتروني:

يتم التعليم المساعد، توفير الأدوات المناسبة، لتمكين ملوك المتعلم في جانب من جوانب التعليم، عندما تكون الحاسوب الإلكتروني هذه الوسيلة. فإن ذلك يعني استفادة من هذه الوسيلة، بإمكانه ما من الاتصال لتسهيل العملية التدريسية. ونقل المعلومات بشكل أعمق إلى اهتمام الطلبة، واستمداد مكانتهم الكاملة.
من خلال التفاعل الشيق بين الطالب والحاسبة الإلكترونية، فالتعليم المساعد -إن لم يجعل المدرس بل يساعد على إنجاز مهمة بكفاءة أعلى، والوصول إلى الهدف بشكل أفضل، والتعليم المساعد باستخدام الحاسبات الإلكترونية،

نظام يتكون من شقيين:

1- مجموعة البرامج التي تحوي المادة العلمية، معاينة بأسلوب مدرس يفي طبي المساحة. الاهتمام الرئيسي من الموضوع عبر سلسلة من الأسئلة والاجوبة، نقل بالطالب من مستوى إلى آخر.

ومن جانب آخر، تعاند هذه المجموعة من البرامج برامج أساسية تشمل عمليات الإضافة والطرح والتعديل والاستدعاء والتخزين .. الخ، وتمح المهتمين - مدرسين وطلاب - القدرة على اتخاذ التنفيذ أو إعادة أو الانتقال عبر مقالات النظام، أو الاختيار و نحو ذلك. كما تضم هذه البرامج الأساسية أيضا اللغات البرمجية اللازمة لإنجاز مهمة التعليم المساعد.

2- مجموعة الأجهزة والمعدات التي تستخدمها برامج النظام، وتضم الحاسة الإلكترونية والأجهزة الطريفة والشاشات وأجهزة الرسوم، وكل ما تحتاجه البرامج من أجهزة مخصصة.

أخرى.
والتعليم المساعد باستخدام الحاسوب الألكتروني البسيط مثلي. يمكن إجماليا ما يأتي:

1- التعلم المساعد باستخدام حاسوبات الحاسوب الألكتروني (mainframe computers) ترتبط بها مجموعة متنوعة من الأجهزة والمشتقات المركبة تعمل تحت نظام تشغيل ذات تدفق على مدار الساعة (time-sharing facilities) يسمح بإمكان أي مستفيد التعامل مع الحاسب عبر إحدى الأجهزة مناسبة، بواسطة نظام مساعدة مرحبًا، أو الإضافات المفيدة...

2- التعلم المساعد باستخدام حاسوبات مايكروفاي. ينطوي على اقتصار موانع (floppy disks) على إعداد هرماد (homework) وتحميل التدريبات إلى ذاكرته. ومن ثم الإجابة على مجموعة من الأسئلة والاختبارات. أي أن كل مستفيد يكون مستقلًا بحاجته ومايكروفاي لمشاركته فيه.

3- التعلم المساعد باستخدام شبكات الحاسوب (computer network) عبر عن حاساب أو مجموعة حاسوبات الألكتروني، يُمكن التوصيل مع بعضها بخلع-.اتصالات الهاتف أو مايكروفاي وعلى مسافات متباينة...
ترتب مع كل حاسة مجمعة من الأجهزة الطرفية والمايكروية، ويحق لكل مستفيد الارتباط بحاسة فنية مباشرة، وقد تكون شبكة الحاسات محلية تقع ضمن مدينة واحدة أو وطنية ضمن قطر واحد، أو قومية تجمع عدة اقطار أو عالمية تجمع عدة بلدان، وأن كان ذلك ذا كلفة اقتصادية باهظة قد تمنع من تنفيذها، ويجمع هذا الأسلوب بين الأسلوب الأول والأسلوب الثاني فضلاً عن الثقة التي يوفرها، ويعود هذا الأسلوب إلى مساحة واحدة. وقد تشرف حاسة مركزية واحدة على مجموعة الحاسات الفخمة، أو قد يكون لكل حاسة فخمة القدرة على الاتصال بحاسة فخمة ثانية، وتراسل المعلومات فيما بينهما.

وفق بروتوكولات عالمية محددة.

ويتم اتصال المستفيد بالشبكة باستخدام شاشة مرئية أو (Keyboard) أو حاسة مايكروية من خلال لوحة المفاتيح المرتبطة بكل جهاز، ومن ثم استدعاء البرنامج التعليمي المتشدد.

ولابد، لكل أطلوب من الأسلوبين الأولين من مكتبة برامج التعليم المساعد، قد تخزن على أقران محافزية رئيسية ترتبط بالحاسة الكبيرة أو على أي سؤال مرت به بعدة نسخ لفرش تداولها من قبل المستفيدين، أما في الأسلوب الثالث فأو...
الحاج قائم مكتبة برامجيات مركز

تتم كل برامج التعليم المساعد، وتكون قادر على تلبية مختلف الاحتياجات.

ومن نواحي الألزاب الأساتذة، القدر الناشئ على خزن المعلومات، فشاك مكتب برامج ضخم واحد يتناول برامج المستفيدون، إذ يمكن من خلال الاستخدام معرفة أي برامج أكثر تداولاً وشعبية، كما أن بإمكان المستفيد التخصيص، امكانيات الشبك وملحقاتها من حيث الجزء أو البرمجيات، أما جوانب المحتمل، في اتخاذ الكليات، وان رداً على الخطوط النسائية تؤثر كثيراً على كفاءة البرامج والاستعمال، فإن أي خلل في مكتبة البرامج يثريل ما على العمل، وأن بقاء مثل هذه المكتبة يحتاج إلى جود علمية وفنية كبيرة. وثمة كل الأحوال فإن مع الخدمات التي تقدمها الشبك إلى المستفيدين ليس لها حدود (٤)، من جانب آخر، فإن الألزاب الأساتذة بأساليب الحميات الحاسوبية، يمكن له معامل الحميات الحاسوبية الشبك محدود ومرتبط مع بعضه، كما يمكن لـ هذه الشبك أن يكون لها مصدر أساس للخزن يعتمد على إجراء وتجهيز التي بدأت تدرة الاستخدام الخاص، بالإضافة كما يمكن استخدام الأقراص المرنة مع كل جهاز مايكروب كإجراء خزن مساعد خاص بالمستفيد.
и этот الاختربون، برغم محدودية النسبة، أصل سوي الأدبي، يؤدي الغرض باقل تكاليف صيانة، كما يمكن زيادة قدراته باستمرار (5).

كالثا: الرياضيات في التعليم المساعد:

اوضحا في (المقدمة) العلاقة الوثيقة بين الرياضيات وعلوم الحاسب، فأغلب التطبيقات في مجالات الحاسة الإلكترونية. امتداد للرياضيات وتطبيق لنظريةها ومن هنا فإن استخدام الحاسبات الإلكترونية في التعليم المساعد للرياضيات يبدو وسيلة مفيدة وجدية، كما يبدو شيئاً من قبيل رد الجميل !!! ابتداءاً "، فإن الرياضيات تعد وسيلة وطريقة لحل المسائل، وثمة خطوات ثلاث لابد منها لحل أي مسألة:

أولها: تحويل المسالة إلى معادلة، وثانيهما: اختيار التقنية (الطريقة) لحل هذه المعادلة، وثالثهما: تطبيق هذه التقنية للحصول على الحل، بالمقابل، فإن علوم الحاسبات تعد الوسيلة الآلية لحل المسائل والحصول على النتائج (6). ذلك أن القيام بحل أي مسألة باستخدام الحاسبة الإلكترونية يقتني:
دراسة المسألة وتحليلها - ثم بدأ الخوارزمية الخطوة
- الحل - ثم تنفيذ البرنامج في الحاسب الآلي، ثم
- الحصول على النتائج.

إن دراسة المسألة وتحليلها وبناء الخوارزمية خطوات
رياضية محتملة في الطريقة لخطوات الاحتكاك، التي تتضمن
خطوات برمجية تلزم بعلوم الحاسب.

وإذا كانت إحدى غايات تدريس الرياضيات في تنمية
القدرات الذاتية لدى الطالب ومنحة مدارس في المجتمع والجهة,
فإن استخدام الحاسب الآلي في تدريس الرياضيات يمنح
الطالب وسيلة جديدة لتنمية هذه القدرات والمهارات من خلال
الاختبارات التي توفرها برامج التعليم المساعد، ومن أجل
طريق معالجة المسألة أيضًا، وعند مجموعة من الاحتمالات التي
يواجهها الطالب وهو يمارس التجربة والخطأ وصولًا إلى الحل.

التعليم المساعد الرياضيات باستخدام الحاسب الآلي

الإلكترون ميتر إذن، الإعداد الآتي:
- حل المسألة الرياضية
- تعريف الطالب بالمعجم الرياضي للمسألة - عند تعليمي
- اكتساب المعرفة في المفهوم الرياضي
- تطبيق المفاهيم الرياضية (عملياً) باستخدام الحاسوبية الاكترونية ، و (نظرياً) لإجراء المقارنة بين الاثنين.

المؤهل الآن هو : ماهو تعلم البرمجة (programming) لأحدى لغات الحاسوب الاكترونية في التعليم المساعد في الرياضيات؟

لا بد أن نفرق - قبل كل شيء - بين تعلم البرمجة باستخدام الحاسوبية الاكترونية ، وبين التعلم للتفكير بحـل المسائل الرياضية. الا أننا يجب أن نقتني بأن ازدياد قدرة الطالب في كتابة البرامج لحل المسائل الرياضية سيساـبـد بالتأكيد - من نزعة الطالب إلى الرياضيات وتفوقه ملكاتهـذهين بهذا الاتجاه ، ان تدريس البرمجة لحل المسائل الرياضية ضروري للإسباب الآتية:

- أن البرمجة توفر مساحة وتوضيحا لسرعة الرياضياتات التحليلية.
- والبرمجة تشجع الطالب على دراسة الرياضيات واستكشـاف معانـيـها.
- والبرمجة تعطي للطالب بعـيرة نافذة لبعـق المفاهـيم الرياضية.
ويجب أن يدرك الطالب أن البرمجة رغم أنها تحلل المسائل وتسهيل الإجابة بمبادئ حل المسائل (7).

إن البرمجة على سبيل المثال، تتبع الطالب لدى يدرس الجبر ويتعامل مع الحرف (س). في عدد مفاهيم كيف يفسر بين (س) كعدد أو (س) كممثل في تعبير أو (س) كم دالة معينة، وضمن البرمجة؛ أي حد كبير التمييز بين هذه الحالات وقد استخدمت عند نشأت البرمجة لاغراض التعليم المساعد في الرياضيات مثل: FORTRAN و PASCAL و BASIC و APL و PROLOG وغيرها.

لا أن لهذه البرمجة تحصل بأهمام ممتازة في تدريس الرياضيات في الوقت الحاضر على الرغم من أنها وجدت في أمريكا عام 1968 وخصصت انذاك لاغراض التعليم. ويشير مستقبل هذا البرمجة إلى استحل محل البرمجة كأداة وانفع خلوا، نحو تعلّم كل الطلاب عبر LOGO ملفات تدريسية في الموضوعات مثل الأقلام، الأطعمة، الأشكال، الأغصان، الأضراس، الألغاز، وغيرها. وتعمل أيضًا مفاهيم التعلم الذكي، artificial intelligence (الذكاء الصناعي) وturtle graphs (الرسومات العكسية).}

اتباع أعداد محدود جداً من الأعداد، عدد محدود من الأشكال التي تجسد مفاهيم مباهج في الرياضيات وتتيح تجربة أجريت على مجموعات من التقليد.
تتراوح اعمارهم عشر سنوات لرسم دائرة باستخدام لغة (LOGO)
إلى أن هؤلاء التلاميذ تعلموا بسهولة كيف يتم رسم الدائرة من خلال سلسلة لغة (LOGO) وذلك بتحويل السلسلة (امامًا-
خطوة وتحركة، والدوران خطوة واحدة والتقدم (امامًا-
خطوة والدوران خطوة وهكذا، وبعد البدء بإجراء التجربة،
وجد التلاميذ أنفسهم قادرين على معرفة كم خطوة يجبونهما-
لإكمال الدائرة، وكم حجم هو حجم الخطوة الواحدة (7 و 8)
وعلى الرغم من أن لغة (LOGO) هي اللغة الأكثر شيوعًا-
في هذا المجال في الوقت الحاضر إلا أن ذلك لا يعني - إطلاقا -
استعمال لغة أخرى لتنفيذ برامج التعليم المساعد، ويعتمد-
اختيار لغة ما لهذه الغاية على إمكانات الحاسمة المتوفيرة-
(الجهاز والبرامج) وعلى اللغات المتوفرة، وعلى فرضية-
العمل المكلف بالمهمة، وخبرات في اللغات البرمجية،
وليس ثمة شك في أن اللغة BASIC إمكانات جيدة يمكن أن-
تستخدم برامج التعليم المساعد بكفاءة تشارك كفاءة لغة-
LOGO في الوقت الحاضر،
رابعاً: تجارب في التعليم المساعد في الرياضيات

1- تجربة من فرنسا

تعد هذه التجربة (6) على الطريقة الاستدلالية (deductive method) في حل المسائل الرياضية.

ابتداءاً بدراسة المسألة وتحليلها، ثم بناءاً على الخوارزمية، فإن البرنامج محقق في الحصول على النتيجة.

وسطى المدرس أولاً، تقديم المخزون الرياضي أو الدالة الرياضية، شارحاً ذلك بشكل دقيق مدعوم بالانشطة، بعد انتهاء المدرس من شرحه، على الطلبة شرح المسألة بدقة، ومن ثم البحث عن حل المسألة، من خلال خوارزمية، وعبر محاولة عدد من التجارب واختبارات. بعد قيام الطلبة بكتابة الخوارزمية وقتمومن من قبل المدرس، يقتمل المدرس بتعريف كل ما يتعلق بهذا المفهوم من ماهيات، وآداب، وانجاز، عندئذ، تكون الخوارزمية جاهزة تحويلها إلى برنامج، ومن ثم تنفيذ الحصول على النتائج.

وفي هذه التجربة، جانب نظري يقدمه المدرس من خلال شرح المفهوم الرياضي وكيف ما يتعلق به من
امور، وجانب عملي يعتمد على كتابة الغوازر، وتخصيص البرنامج والتخصيص بمركبات البرنامج كي تمتد مساحة تطبيقات التعليمية على مجموعات أخرى متوقرة.

طبقت هذه التجربة على مجموعة من الطلبة بعمر
(13) سنة، وقد استخدمت لغتان برمجيتان لهذا الغرض، الأولى ذات جمل تستعمل اللغة الفرنسية وتدعى (L.S.E) واللغة الثانية هي لغة (BASIC)، وقد لوحظ أن لغة (L.S.E) كانت أكثر فهماً من قبلك الطلبة من لغة (BASIC) لاعتماد الأولى على اللغة الفرنسية. وقد لوحظ أن استعمال الحاسة سيطر بالتأكيد من العلاقة التقليدية بين المدرس والطالب باتجاه تعزيز تفاعل الطالب مع المادة. كما أظهرت التجربة أن التعليم المساعد باستخدام الحواسيب يضع الطالب استخدام اختبارين، أولهما: قيام الطالب بالبحث عن الحل وسط مجموعة من الحلول وثانيهما: قيام الحاسة بالتنقل الطالب نحو الحل الصحيح خطوة خطوة. وفSynopsis كلما الحالات تمكن الحاسة وجهة نظر المدرس نفسه.
اعتمدت هذه التجربة (5) على استعمال الحاسبات المايكروبي في التعليم المساعد. وقام فريق من مدرس ومدرسين وخبراء في الروم الماهر في توفير مجموعة من برامج التعليم المساعد. وقد أثبت استعمال الحاسبات المايكروبي عند نواحي في هذا المجال هي:

مرونة استعمال الأدوات ودون التكرار الشديد. إذ أن الحاسبات المايكروبي تتميز بحجم صغير وقابل للانتقال من مكان إلى آخر. دون الحاجة إلى توفير موارد خاص، بعكس الحاسبات الضخمة التي تحتاج إلى اجزاء طفيفة من المعدات عالية التكلفة. ولهذا يمكن استخدام الحاسبات المايكروبي في المنازل والولايات المدارس، وتحويلها عند الحاجة إلى أي مكان آخر من دون أن يؤدي ذلك إلى زيادة في تكاليف العمل.

في استعمال الحاسب المايكروبي، إذ أن إيجابيات الحاسبات المايكروبي محدودة ودائمًا محدودة استعمال بعض الحاسبات المايكروبي.
تمتاز بمقدّرته إبعادتها ومعورتها احيانًا، لذا فإن
استعمال الحواسيب المايكروية يحدّد من كمية الإيعازات
التي تحتاج وقتًا من الطالب كي يتعلمها.

- استخدام الاقراص المرنة، يتيح للطالب غن برمجته من
جهة، كما يتيح له في الوقت نفسه اختيار القرمي الذي
يحوى البرنامج الذي يريد. إن استخدام الاقراص المرنة
سينجز الطالب من إعادة ادخال برمجته لدى كل استعمال،
كما سينقذه – الى حد ما – من استعمال اجهزة الطباعة
لطباعة برامجه الا عند الحاجة لذلك. وعلى الرغم من
أن الاقراص المرنة ذات طاقة استيعابية محدودة إلا أن
رخص ثمنها يضفي والاستعمال.

- الحواسيب المايكروية لاحتياج إلى صيانة واسعة النطاق
كما هو عليه الحال في الحواسيب الفخمة. هذا من جانب
ومن جانب آخر، فليس هناك شبهة خطورة من توقف عمليّة
المنظومة بأكملها، لأن غياب حاسة مايكروية لا يؤثر على
بقية الحواسيب المايكروية.
نتضمن التجربة برامج تعليمية في الكيمياء، وعلوم الحياة والفيزياء، وعلم النفس والاقتصاد، وآداب، فضلاً عن الرياضيات، وتجري الاستفادة من هذه البرامج عبر مجموعات من الاختبارات تدريسية على شاشة الحاسب، وتدعم الطلاب في إدخال رقم معين يشير إلى موضوع معين، فتظهر بعد ذلك مجموعة من الأسئلة، ثم الاجابة عليها بأول بأول. تقوم الحاسب أثناء الاجابة بحساب درجة الطالب وتحديد مستوى تجربة المايكرسب. ذات قابلية خزنة واسعة، تستعمل فيها اقتراح ونجشر، ولا تسمح للطالب الا باستعمال هذه الاقتراح القراء فقط حفاظاً على المعلومات المخزنة في هذه الاقتراح القراء، والتي تضم برامج التعليم المساعد بأشكال مختلفة.

3- تجربة من اليابان:

تستخدم هذه التجربة (9) الحسابات المايكرسب المرتبطة باقتراح خزن تلفزيوني (videodisk) التي توفر وسيلة تعليمية جيدة، وتتعامل الاقتراح التلفزيوني مع البيانات المتقدمة، إذ يتناسب كل وجه من وجهي المستوى.
التفريضي لـ (54000) لقطة لكل لقطة وقمة متصلة

يفتاد منه استرجاع محتويات اللقطة .

و تتضمن هذه التجربة التي أطلق عليها نظرة (THE) كمختصر لـ (Terada Hirose Education System) ما يأتي :

- المحاضرة : اختيار الموضوع ، ومن ثم يقوم النظام بشرح الأهداف والتمارين والأشكال والإمثلة اللازمة التي تتطلب الأرضية اللازمة في ذلك الموضوع.

- التدريب : مجموعة من الإمثلة التي تنتظر إجوبة من الطلاب بحيث ينتقل الطالب من مستوى إلى مستوى آخر (آعمت مادة) بحسب إجاباته على إمثلة المستوى السابق وفي الوقت نفسه يقوم النظام (THE) بحساب درجات الطالب وفقًا لإجاباته.

- التوقف أو الاستمرار : يحق للطالب في هذه المرحلة التوقف ويقوم النظام عندئذ بإحالة درجته والاحتفاظ بها ، لحين عودة الطالب ثانية إلى استعمال هذا النظام التعليمي . كما عند رغبة الطالب بالاستمرار ، فيتم أيضا تسجيل الدرجة ، ثم العودة إلى المرحلة الأولى . (المحاضرة)

للبدء بالجزء الثاني من الموضوع ... وهكذا .

-95-
كتبت برامج النظام بلغة Pascal بشكل منفصل، وقد استفاد اختراعه نجاحاً ملحوظاً، وهي هذه النظام. يبقى الطالب (بلا مدرس) يواجه أو يشرح له، إذ يواجه الحاسب أولاً لكن النظام، يوفر للطالب في المرحلة الأولى كل مايلزم لكي يجلبه قادراً على البدء بالمرحلة الثانية، وهي مرحلة الأسئلة والأجوبة. وقد ظهرت نسخ محدثة للتجربيّة اليابانية بـ (10). الخصوص.

خامسا: اشترات وملاحظات:

لم يعد التعليم المساعد باستخدام الحاسب الإلكتروني في أي مجال من مجالات المعرفة، وبدلاً من تركيب قد تنفع أو لا تنفع، بل يبدو من خلال نماذج التجارب التالي قدمنا - أن التقنيات الحديثة المتمثلة بالحاسبات الإلكترونية قد أخذت تغرب بجذورها هذه المجالات وتحقيق تفريزات نوعية تخدم حرك التعليم وتعزيزها.

واغلب التجارب في بناء أنظمة التعليم المساعد تأتي من الجامعات والمعاهد البحثية باعتبارها المراكز العلمية الرائدة التي تقود حركة المجتمع العلمي...
وتخطط لها، ولنها تحوي مجموعة متميزة من الاختصاصات التي ترتفع مثل هذه الخدمات وتنظيمها، ومادة الأمثلة كذلك، فإننا نفكر بشكل جاد في الاستفادة من امكانيات الحاسوبات الإلكترونية لتطوير العملية التعليمية، فتحقق الجامعة بذلك هدفين: اولهما، تطوير العملية العلمية، وثانيهما: فتح افاق الطلبة والمدرسين باتجاه الحاسوبات الإلكترونية وكيفية التعامل معها.

لابد أن تبدأ، للبدء بالتجربة، من تكوين فريق يتامل من تدريسين (بالاختصاص المطلوب) ودكتورين (محلي أو أنظمته ومحركين) يتولى تحديد الاختصاص اللازم لاغراض التعليم، والمساعد كالرياضيات مثلًا، انشئ مخطط العمل، واختبأرد الأساليب المناسبة وفق معابير محددة واضحة تأخذ بعين الاعتبار كل العوامل والظروف والاحتياجات التي تلزمنا، ضبيتها وطريقة تفكيرنا.

عن مثل هذا العمل الموسع، أن مع التعبير، سنخرج التدريسي من عزلة الاختصاص إلى استثمار اختصاصه في مصبات أخرى تخدم اختصاصه من جانب، وتخدم حركة المجتمع من جانب آخر، وهذه هي سمة الأستاذ الجامعي: القندرة الموسعية على التفكير والإبداع والاستثمار.
إن العملية التعليمية هي تقديم مادة علمية مقدمة من قبل المدرس، ممارسة تربوية، وإعداد هذا التداخل بين الاثنين، فإن مدرس التعليم المساعد في منظورنا يجب أن يكون دور المدرس من المحاضر، لأن إقناع الجانب الإلكتروني، مما أفرتيت من مقدمة لا يستتبع أن تربي، وبالتالي يجب أن ننظر إلى التعليم المساعد كوسيلة مساعدة. تساعد المدرس والطالب على حد سواء... تساعد المدرس في التطور من التقويم في الاطار مادحة، واعدة بكررها كل عام دون إضافات أو تنفيذ، كما تساعد الطلاب في فهم واعق المماسة العلمية، ورؤية واضحة لابتعادها لأنه يرى في الرياضيات على سبيل المثال، أكبر من نظرياتها المجردة، واقعية مرورها على شاشة الحاسب، أو حساباً واضحاً لمثال مذموم. وله أن نظام التعليم المساعد لا يبقى على صين واحد، بل هي في تطور دائم (إضافة وتنقيح والحديث وتجديد)، فإن هذه العملية الدائمة منشأ من مشترطات علمية ذات الأهمية كبيرة على جميع الأطراف، لأن نظام التعليم المساعد سيتضمن بالتأكيد نظاماً آخر (بدوراً أو آلياً) لجميع الإحصائيات والمؤشرات اللازمة لمدّى نجاح التعلم ومسّددة
فائدتها . تنعكس باستمرار على نظام التعليم المساعد بشكل أو بآخر سواءً وراء نظام التعليم أن إغلب التجارب في هذا المجال استفادت من تجربة الشبكات المايكروية لأسابيع عديدة في فترة سابقة عرضاً لذا فأننا نجد أن اللهج بالتجربة مع الشبكات المايكروية أكثر جدوى وأكثر فاعلية . خصوصاً وأن انواعاً من هذه الشبكات المايكروية تتناسب ملائماً . إلا أننا يجب أن نرفع هذة آخر نتائج بعد المرحلة الأولى . وهو بناء شبكة خصائص مباكةزية يمكن أن تتسع للإتصالات بشبكات أخرى وطنية أو محلية.

ولكن لا بد أن نتوجه الفعل مشروعاً من العمق فأن الانتفادة من تجارب الآخرين أمر بالغ الضرورة كما أن الاستفادة من المراجع الجاهزة لها مردود الفاعل أيضاً.

- أن نتاج التجربة في مجال الرياضيات مثلاً سيساعد على التفكير بتوسيع خصائص التعليم المساعد لكي تغم مجاليات أخرى كالكيمياء والفيزياء والتاريخ والجغرافية وغيرها.
- يوجب قبل اعتماد نظام التعليم المساعد - التجربة هذه النظام على مجموعة أو عدة مجاليين من الطلبة على مختلطين
ن يستطيع معرفة مدى نجاح النظام، ونقاط الضعف وأي خلل يقلل من فاعلية النظام.

أن اختيار اللغة البرمجية للكتاب. برامج النظام يعتمد أساسًا على اللغة البرمجية المتوفرة، ومدى مطاعم الممتلكات النظام، وعلى الخبرة المتوفرة لدى القائمين.

بكتابة البرنامج، وقد تأتي (BASIC) في البداية، وعلى الرغم من ذلك (9000) تأخذ شرطاً في التعليم الصغير، غير أن ذلك لا يعني عدم قدر اللغة الأخرى على القيام بإجراها.

والتجارب التي ذكرناها ليست بالضرورة (أفضل). التجارب بهذا الخصوص سرائه محاولات وتجارب متعمقة في البلدان المذكورة، وغيرها، تستفيد من أخطاء التجارب السابقة، لتطوير تجاربنا بشكل أفضل.

وتشير إلى أنه قد تم تشكيك هويات متخصصة لاستخدام الحاسبات في التعليم على مستوى القطر، بقع على عاتقها دراهم وعثمان، وبدأ توزيعها وتوزيعها وتنفيذها ونظام ومعايير علمية في الجامعات والمدارس.
(1) Johnson, D. C.

(2) Khinchin, A. Y.

(3) Ralston, A.

(4) Aston, M. H.

(5) Alpert, E.
(6) Fana, C. et al.

Using Computer Science in Order to teach Mathematics,
COMPUTER IN EDUCATION North-Holland Publishing Co.,
IFIP, 1981.

(7) Feurzeig, W. et al.

Programming Languages as a Conceptual Framework for
Teaching Mathematics Report No. 1809, Holt, Rinehart and

(8) LOGO Software Ltd.,

(9) Terada, F. et al.

Instruction Techniques in Using Videodisc System: The
Courseware in the System. COMPUTERS IN EDUCATION North-

(10) Terada, et al.

Towards a self-paced Learning Support System COMPUTERS
تفسيط الطريقة في استغلال المعنى للغة العربية

د. ستان مهند محمد عطار باشي
كلية الهندسة - جامعة المواصل

سحر عبد العزيز الطالب
مركز حاسبة جامعة المواصل

عن يجوب المقصد في مؤتمر بيوندا العالم الثاني
 التطبيق وتطبيقات الحساب الآلي كتحويلة
1- المقدمة

لقد توقفت الحسابات الإلكترونية في مجالات الحياة المختلفة والدراسات المتصلة بالأعمال التطبيقية والنظرية من أجل تسيير العمليات الانتاجية. بصورة أفقية وتمد للبحث للحصول على النتائج المطلوبة، ولم تحتضن اللغة العربية والدراسات المتعددة من هذه الأساليب إلا الأشياء القليلة التي لم يتجاوز أعداد الحروف والكلمات والمقاطع في اجزاء معينة من الجمل والنصوص، ويرجع ذلك إلى استعداد أصحاب اللغة في تصميم وصناعة الأجزاء اللازمة.

يتضمن هذا البحث الدراسة التقليدية للأحرف العربية وصياغة اقتراحات كل حرف من حروف وكيفية التعامل بما داخل الحرف.

وقد اختيرت أحد الدراسات المتعلقة بعلم أسماء اللغة لتوسيع كيفية الاستفادة من هذه الدراسة لاستناد مراحل التشويك والإغراق والاعتدال وغيرها من الحالات المعمول في عملية السمع الصحيح للمفردات،
2- طريقة تنفيذ الدراسة على الحاسة

2.1 ادخال البيانات

يتوفر في الوقت الحاضر عدد كبير من أجهزة الإدخال وال 输出 باللغة العربية من مصادر متعددة كأجهزة التشغيل واجهزة الطبع الخطي والنصوص العربية للحاسبات. تم ادخال النصوص المطلوبة باللغة العربية بشكل عام كما في الحالات الاعتيادية باستخدام أجهزة تشغيل بحروف عربية، يلي كل سطر منها سطرًا آخر يشير إلى حركة كل حرف في الجملة، حيث يرمز كل حركة من الحركات برمز معين (كما مبين في جدول رقم (1-)، أما النص فهو مقسم إلى مقاطع يفصل كل مقاطع منها عن الآخر برمز معين (علامة * في المثال المنفرد (ملحق رقم 2-).

2.2 القواعد التي أجريت الدراسة عليها

تم اختيار أحد الاحكام المتعلقة بعلم أaos اللغة وهي احكام النون الساكنة والتنوين حيث يمكن تعميم الدراسة على الاحكام الأخرى فيما بعد مثلًا احكام الميم الساكنة وغيرها من الاحكام أما احكام النون الساكنة والتنوين فهي مبينة في (ملحق رقم 1-).
2.3 إستراتيجية الإجراء والتقارير الناتجة

2.3.1 برنامج نسخ النص الذي تجري عليه الدراسة على
شكل أسطر يتمعن كل سطر من مسافة "أ" سطرًا آخر يمثل حركة
كل حرف من حروف النص كما جرى ترميزهما في
(جدول رقم -1-).

2.3.2 برنامج لطباعة حالات الاطار

إنه يقرأ النص المبين في (ملحق رقم -2-)
ويتم اسم مقاطع يفصل بينها علامة (*) حيث يخزن
المقطع الواحد في مخزن مؤقت، يناظره مخزن آخر
لرموز الحركات المقابلة للحروف اثنين اكمل...
عمل البحث عن حالات الاطار وكما يلي:
1) قراءة محتويات المخزن الأول حزماً بعد آخـر
2) البحث عن الحروف نون.
3) في حالة، كون الهدف حزماً آخر غير النون ينبغي التصرف
البرنامج إلى المخزن المناظر له ويسحب عن
التنوين وهي الأرقام 7 و 8 و 9 التي تعني تنوين
الكسر، تنوين الفتح، أو تنوين الضم ولامي...
التوالي.
ج) في حالة العثور على تون في المخزن الأول يقارن البرنامج
موقع التون نفسه في المخزن الثاني لايجاد جالة النّون
إذا كانت ساكنة أم لا.
د) إذا احتوى المخزن الثاني على الرقم (صفر 0) مناظر
لموقع التون في المخزن الأول فبعد يعني ان هنّاك تون
ساكنة تم العثور عليها في هذا المقطع.
هـ) بعد ايجاد التون الساكنة أو التونين في المقطع يتم
الانطباط بموقعها لدراسة الحرف الذي يلي ايا منها
وـ) إذا كان الحرف الذي يليها هو أحد الخنفوف (1 - هـ - غ
جـ - خ) فهذا يعني أن هناك حالة اظهار في المقطع.
ز) يسمح البرنامج في دراس المقطع إلى تجاوزه لايجاد حالات
أخرى من الاظهار في نفس المقطع.
ح) يتم كتابة المقطع الذي تظهر فيه اظهار عدد من الامور
مساو للتكرار لهذه الحالات في المقطع الواحد.
ط) يمكن ملاحظه تلك من النتائج التي تم الحصول عليها لهذا
البرنامج في (ملحق رقم 3).
ي) يحرك البرنامج هذا المقطع بعد الانتهاء من دراسة حالات
الاظهار فيه ويؤتقل إلى مقطع آخر يليه حيث تعاد نفسي
الخطوات السابقة مقطعا بعد آخر لحين الانتهاء من النهـ.
2.3.3 برنامج نطبخ حالات الإدمام

عند طريق ابجاد حالات الإدمام في النوى المعقولة مشابهة تمامًا لما ذكر في حالات الإطارات المذكورة في 2.3.2
غير أن الاختلاف الوحيد هو بعد ابجاد موقع النشوب الساكنة أو التنوين حيث يتم البحث عن المحترف المسبب للإدمام وسبي (ي نم - رم - وم - نوم)
وبعد ابجاد هذه الحروف على النشوب الساكنة أو التنوين مباشر، يتم طبع المقطع الذي يظهر فيه حالات الإدمام مكررًا "حسب تكرار هذه الحالات في المقطع الدواعي الواحد والعمل نفسه في المقاطع الأخرى إلى أن ينتهي النص (ملحق رقم 4)"، ونلاحظ تكرار بعض الجمل وذلك لاحترام الحكم على هذا الحكم وفي أكثر من موقع واحد، وفي حالة استخدام الأجزاء الثرية أو الجمل الدقيقة فيمكن وضع إشارات في موقع ظهور الحكم المقصود للدلالة على وضع الصحيح من الجمل،...

2.3.4 برنامج نطبخ حالات الإقلاب

وهو مشابه لما ذكر في حالات الإطارات والإدمام السابق، شرحنا أعلاه (في 2.3.2-2.3.3)، سوى أن الحرف الذي يلي...
النون الساكنة أو التنوين هو خرف الباء (ب) فقساً
فإن وجود في المقطع يكتب المقطع عددًا من المرات مساوٍ لحالات تكرار الأقلاب فيه، ثم يُؤخذ المقطع الآخر وهكذا
إلى نهاية النص (ملحق رقم 5-).

2.3.5 برنامج لطبع حالات الإخفاء

وفيما يتم البحث عن أحد الحروف (س - د - ي - ل - ح - ش - ق - د - ط - ز - ن - ت - غ - ظ) تلي النون الساكنة أو التنوين في المقطع الواحد، وفي حالة
إيجادهما يطبع المقطع عدد من المرات مساوٍ لحالات الإخفاء فيها، ويعد نفس العمل في المقتطع الأخرى إلى
ان ينتهي الذي المحمول بالدراسة (ملحق رقم 6-).

3-مناقشة وانتهاج

1) استخدمت أجهزة التصوير في تهيئة البيانات بـ
محاولة الاستعانة بإحدى الهرمات الطرفية للحاسي في
ذوات الحروف العربية ولكن المحاولة فشلت لأن هذه
الأجهزة تعتمد بأظهار شكل أو هيئة الحروف باضافة
تعريفات للحروف وبهذة الأضفاف يصعب ايجاد تناولها.
بين الحروف وحركاتها، وما أن التناظير ضروري في هذه الدراسة، فقد استخدمت أجزء التشبيه لتصنيف البيانات.

2) تم اختيار سورة من القرآن الكريم لأجراء الدراسة وذلك لأن احكام النون جمعاً، وكذلك تكرارها ظهر بوضوح من النتائج المرفقة. كما يمكن تطبيق ذلك في أي كلم عربي يتبع هذه القواعد كالنثر المقفى والمقاطع اللغوية الأخرى.

3) يمكن تعليم الدراسة لباشية لاحكام النون الساكنة والتنوين، وانها لاحكام أخرى كالنهم الساكنة... السخ من دراسات قواعد علم العلوم.

4) يمكن إدخال المقاطع اللغوية المطلوبة دراستها، في حاسة دقيقة: "التوفر"، "المنشور"، "السخ"، "الشمي". تساعد (إضافة إلى ذلك المقطع) الإشارات الى موضوع الحروف المقسمة.

5) يمكن الاستفادة من هذه الفكرة في تعليم اسم النظم الصحيح للغة العربية، وكذلك تعليم هذه القواعد فمن يتعلم اللغة العربية، بطريقة سليمة، أخيراً العرب.

6) كنتيجة للاختلالات في السماح والكلمات في أماكنها وحركتها، يمكن دراسة قواعد اللغة نفسها وأيجاد مقاطع الجمل من فعل وفاعل وغيرها وهو ما يفيد في الترجمة من.
واللغة العربية فخلاً عن بقية الدراسات الموتيسسة، والإحصائية والتي لا يتم إلا معرفة تفاصيل الجملة والكلمة، وكذلك الحرف الواحد وموقعه والحركات التفصيلية من رفع وخفض وتحديد وتدوير وغيرها.

جدول رقم (1)

<table>
<thead>
<tr>
<th>رقم</th>
<th>رمز الحركة</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>المكون</td>
</tr>
<tr>
<td>1</td>
<td>الكرة</td>
</tr>
<tr>
<td>2</td>
<td>الفتحة</td>
</tr>
<tr>
<td>3</td>
<td>الغمة</td>
</tr>
<tr>
<td>4</td>
<td>غدة - كرة</td>
</tr>
<tr>
<td>5</td>
<td>فتحة</td>
</tr>
<tr>
<td>6</td>
<td>ضعا</td>
</tr>
<tr>
<td>7</td>
<td>تدوين - كر</td>
</tr>
<tr>
<td>8</td>
<td>فتح</td>
</tr>
<tr>
<td>9</td>
<td>فم</td>
</tr>
<tr>
<td>+</td>
<td>الحرف متمور</td>
</tr>
<tr>
<td>-</td>
<td>حرف لا يلفظ</td>
</tr>
<tr>
<td>&</td>
<td>همزة وصل</td>
</tr>
</tbody>
</table>
مصادر عامّة:

1- د. حسام عبد الشعيمي "الدراسات اللّجية والصوتيّة" عند ابن جني "من مشورات ودار الشقاقٌ والإعلام" الجمهورية العراقية 1980.

2- د. عبد القادر البغدادي "القراءات القرآنية تاريخها وتعريف دار العلم بيروت" لبنان 1980.

3- د. عبد الحسين محمد وآخرون "تاريخ العرب" جامعة بغداد.

4- د. سليم عطار باشة وناجح عبد العزيز "الحاسب الإلكتروني في خدمه حركة التحرير والتأليف" مجلة الحاسب الإلكتروني عدد 11/1984.

CII HONEYWELL DUL, Series 60 Level 66 / 6000 FORTRAN - 5
Manual 66 A2-ND02
ملحق رقم (1)

أحكام النون الساكنة والتنوين

1. الأظهار
 إذا جاء بعدها : د هـ ع ج خ

2. الادفـام
 إذا جاء بعد (ن) أحد الحروف : ي ز ل و

3. الاقـلاع
 إذا جاء بعد (ن) حرف : ب

4. الاخفـاء
 إذا جاء بعد (ن) أحد الحروف : ص د ث ك ج ش ق س ط ز ف ت غ ض

جدول التكافؤات للحروف العربية

<table>
<thead>
<tr>
<th>ر</th>
<th>غ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
الأبواب الثابتة
<table>
<thead>
<tr>
<th>فترة الانعقاد</th>
<th>الجهة المنظمة</th>
<th>المكان</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987/2/20-17</td>
<td>IFIP</td>
<td>سيدني/استراليا</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>هولندا</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>الدانمرك</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>سوفيا/بلغاريا</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>كندا</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>ميونيخ/ألمانيا</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>هند/الهند</td>
</tr>
<tr>
<td></td>
<td>IFIP</td>
<td>طوكيو/اليابان</td>
</tr>
</tbody>
</table>
ملخصات بحوث

خصمت هذه الازاوية، للتعريف بالبحوث المنجزة على مستوى الدراسات العليا (دبلوم وماجستير ودكتوراه) والتي لبست مسألي قريب أو بعيد باحثي مجالات علوم الحاسبة، لكي يستطيع الباحثون الآخرون الاستفادة من هذه النتائج في بحوثهم وانجازاتهم والاتصال باحباب البحث، للإطلاع على أصول بحوثهم. وللنشر في هذه الازاوية، يرجى من المعنيين الالتزام بالصيغة الآتية:

العنوان البحث: باللغة العربية ولغة البحث (إن كانت غير اللغة العربية).

نوع البحوث: أطروحة دبلوم عالي، ماجستير، دكتوراه، واختصاصها.

لغة البحوث: اللغة التي استعملت في الاطروحة.

سنة انجاز البحث: تذكر السنة فقط.

الباحثين: اسم الباحث وعنوان المراسلات (إن امكن).

المشرفون: يذكر اسم أو اسماء المشرفين وعضاويتهم العلمية والوظيفة (إن أمكن).

-123-
ملخص البحث:
لا يوجد عن صفحتين من صفحات المجلة ويراجى فيه وضع الاسم وخلعه من الأدبيات والطباعية.

ترسل ملخصات المجلات إلى العناوين الآتي:
المركز القومي للبحوث والدراسات
مجلة البحوث الإلكترونية
ص. 3261 الحسين
بغداد، العراق

ملاحظة: يرجى ملخص البحث بإدارة إنجاز البحث المذكور.
عم البحث:

 السيطرة على سرعة المحرك الأثري - ثلاثي الأطوار باستخدام وحدة المعالجة الدقيقة

Speed Control of a Three-Phase Induction Motor Using Microprocessor

الباحث:

 سعد أحمد صالح المحاز

المشرف:

 الدكتور سنان ممدوح عطار باني (مشرف اسم) - قسم الهندسة الكهربائية / جامعة الموصل

نوع البحث:

 رسالة ماجستير في الهندسة الكهربائية

سنة الإنجاز:

 1984

لغة البحث:

 الانجليزية

ملخص البحث:

 ان هدف هذا الرسالة هو دراسة امكانية استخدام الحاسة الدقيقة للسيطرة على سرعة المحركات الأثريه (ثلاثية الأطوار) . إذ يتميز هذا النوع من المحركات برخص ثمنها وسهولة صناعتها وعدم حاجتها الى صيانة لفترات طويلة.
ان عملية السيطرة على برود المحركات الحشية هي من الأمور الخطيرة وخصوصاً في السيناريوهات التي تحتاج إلى صناديق السرعة حتى في الأداء المثير كما في معامل السرعة والمصاعد الكيميائية وغيرها.

يتم تنظيم السيطرة من مقوم rectifier بتضمين نوافذ المصدر (a.c) إلى نوافذ (d.c) ومن ثم تغير هذه النوافذ إلى ضمان (c) من دائرات رصد وتردد يمكن التحكم بها بواسطة السيطرة على منير السرعة التياري (current source inverter) المحرك الحشية.

لقد استخدمت الحاسب الدقيق نوع TK-85 لحساب السرعة الدقيقة (actual speed) للمحرك عن طريق عد النبضات الواردة إلى من مرمز السرعة (shaft encoder) ومقارنتها مع قيمة السرعة المطلوبة. ويتم إجراء تعديل على سرعة المحرك بتفعيلتردد المغير عند وجود نزح بين قيمة تفسير السرعة المطلوبة. وتقوم الحاسب الدقيق من جد آخر بتвизير الفولتية الخارج من دائرة المعدل وذلك بتغيير زاوية القذف (delay firing angle) من أجل الحفاظ على نسبة ثابت بين الفولتية والتردد (V/f) للموجة المطلوبة المضبوطة للمحرك.
تم بناء النظام مع الدوائر الإلكترونية الملحقة به كما تم تشغيله عند اعمال مختلفة وكانت النتائج المختبرية مطابقة لما هو متوقع.

لقد اثبتت هذه الطرق المتوفرة في السيطرة على سرعة المحرك الحي باستخدام الحاسة الدقيقة بيانها تمكـنـ من الحصول على محرك حي متغير السرعة ذي نسبة عكـاـأ صفقية في السرعة وعلى مستوى واسع وسعـي مع تحسين في تيـاـار بدء التشغيل.
المبحث: تشاور البحث دراسة نظام جباية الاشتراكات

أعلاه: محمد جاسم رضا

المرفق: مهني المختار / المؤسسة العامة للثقافات والفن

البحث: رسالة دبلوم عالي في نظم المعلومات

تاريخ البحث: 1986

لغة البحث: العربية

ملخص البحث

تشاور البحث دراسة نظام جباية الاشتراكات

في المؤسسة العامة للثقافات والفن، والممكن بطريقة الملفات المكتوبة، وتحديد مشاكل ومعوقات كل منها. وتصميم النظام باستخدام قواعد المعلومات (Data base) ومقررا للمعلومات الشكسي وأطراف

البحث (Batch Processing) لحل مشاكل النظام المطورين الخا:

والاشتراكي (أو المختلط) والتي تشير من الجلد المستفيد.

128-
وقد تضمن البحث دراسة عمل المؤسسة وتحليل البيانات وتصميم مدخلات ومخرجات النظام المقترح وعملية توثيق النظام بمجموع مراحله ومواصفات البرامج، كما تضمن عملية احتساب كلفة تشغيل النظام والخطط الزمنية وقد كتبت برامج النظام باستخدام أسلوب (Language, DML Data Manipulation) باستخدام نواحيها في مركزين.

احاسة الفمان الاجتماعي للعمال.

وقد قسمت الدراسة إلى أربعة فصول، تتناول الفصول الأولى نبذة مختصرة عن طبيعة عمل مؤسسة التفاعل والفمان الاجتماعي للعمال ودراسة نظامي جهاة الاتصالات الهوائي والمكتبة (باستخدام نظام اللفافات) ومساواهما.

اما الفصل الثاني فقد تناول تحليل البيانات وتصميم النظام المقترح باستخدام قواعد المعلومات (تصميم المدخلات والمخرجات والقاعدة وملف الحركات) وعملية بناء قاعدة المعلومات وعملية توثيق النظام بمجموع مراحله.

اما الفصل الثالث فقد تناول عملية احتساب كلفة تشغيل النظام والمخطط الزمني وتحديد المسارات الجري لفعاليات النظام.

اما الفصل الرابع فقد تضمن النتائج التي توصلتنا إليها إضافة إلى المقتراحات لتطوير النظام، ثم المراجع والملاحظات.
ام البحث:
تصميم نظام لدارة الخادمات باستخدام حاسـب شخصي

الباحث:
خالد خضير عيسى الجهني

الاشتراكي:
عدنان عبد الامير حسن وأبي جهير شمـان

مصدر التدريب والبحث للحاسبات والإلكتروني:

شروع البحث:
رسالة دبلوم عالي في نظم المعلومات

سنة الإنجاز:
1986

البحث:
العربية

ملخص البحث:
يهدف البحث إلى تصميم نظام ممكن للحاسـب وتنظيم قاعدة حساب الخادمات (الخادم) واستخراج أسماؤها لتقليل الاعتماد على العمل اليدوي وسرع في اجـراء العمليات. وكذلك يهدف البحث إلى استخراج تقارير مختلطة عن حالات الخدمة والغرف بحيث تسهل عمل إدار الخادمات في اتخاذ القرارات.
قسم البحث إلى خمسة فصول رئيسة فعلاً - فهي

الإجابات المستخدمة في النظام الحالي والمشكلات الكبيرة

بعرضها النظام المعمم (المقترح) والبرامج المنجزة

والتقارير المستخرجة. وهذه الفصول هي:

الفصل الأول

يهدف هذا الفصل إلى إعطاء فكرة عامة عن

النظام ومكوناته وآلياته وكذلك تم التطرق إلى مفهوم تحليل

النظام واستنتاجاته وخطوات تحليله وذلك لتحكيم فكرة عن النظام

وتحليله قبل التطرق إلى النظام الذي نحن بمثابة دراسة

وتحليله.

الفصل الثاني

تناول هذا الفصل دراسة وتحليل النظام اليدوي

الحالي في الحجز وتنظيم قائمة حساب الضيف وتحديد المشاكل

التي يعاني منها النظام اليدوي الحالي مع مخطط تحسين

لسير العمليات.

الفصل الثالث

تناول هذا الفصل النظام المدرج وتحديد

أهدافه ومعالجاته ووصف الملفات والقيود المستخدمة. وتفنن

كذلك المخططات الإبرامية لبرامج النظام ونتائج لمخرجات

النظام.
الفصل الرابع

تناول هذا الفصل دليل المستفيد وشرح التفصيلي للمراحل بحيث يساعد المستفيد على فهم البرنامج وكيفية ادخال البيانات بصورة صحيحة للحصول على نتائج ومخرجات صحيحة.

الفصل الخامس

يتضمن هذا الفصل الاستنتاجات التي تم الوصول إليها من خلال البحث والوصيات اللازمة لتطوير النظام.
مصطلحات معمريّة

المصطلح الإنجليزى

المصطلح العربي المعتمد ومطلوب

1049. direct display

عرض مباشر

المعرض المرئي المباشر لبيانات

من الذاكرة الرئيسية للحاسب

1050. direct instruction

تعليمات مباشرة

ال أمر الذي يقوم بالعنونة المباشرة

للمعامل الذي سيتم إجراء العمليات

المطلوبة عليه

1051. direction of sort

اتجاه الفرز

وهو اما تصاعدي أو تنزلي

1052. directive

تعليمات تكتب كجزء من البرنامج

المصدر لتوجيه البرنامج المترجم

لإجراة عمليات معيّنة
1053. directory
depot

1054. disaster dump
vidage en "catasiroche"
troïg M-lough l-b-us
yukta n-ttej li-xo eal
a-ar.mag laeim t-farke

1055. disc
disque

1056. disc array
pile de disque

1057. disc catridge
chargeur

1058. disc operating system
systeme d'exploitation a' disques

1059. disc pack
chargeur
1060. disc-resident
implante' en permanence sur
disques

1061. disc storage unit
unite' de disques
وحدة أقراص
جهاز للتعامل مع الأقراص المضغطة

1062. disc support shaft
arbre porte-disque
جذع حامل الأقراص
تمثيل مقطع

1063. discrete representation
representation discrete
تمثيل متقطع

1064. discrimination instruction
instruction de decision
تعليمات تؤدي إلى اختيارات
أحد التفرعات في البرنامج

1065. disjunction
reunion logique "OU" inclusif
عامل الاختيار الشمسي

1066. disk
disque
شكر وتقدير

شارك في تقييم المواد التي نشرت في العددين الخامس عشر والسادس عشر من مجلة (الحاسبات الإلكترونية) مجموعة من الاختصاصيين بتكليف من هيئة التحرير وعولا لاختيارات المواضيع القوية ذات المستوى العلمي الجيد.

وينتهي المناسبة تود هيئة تحرير المجلة أن تعبر عن شكرها وتقديرها لجهودهم ومساهماتهم الطيبة في تقييم المواد المرسلة للمجلة، أملين لهم الموفقية والنجاح في مهامهم.

المقيcingون

الجهاز

1- د.هلال عبد البياتي

المركز القومي للحاسبات الإلكترونية

قسم علم الحاسبات / كلية العلوم / جامعة بغداد

2- د.لمياء حافظ خالد

مركز الحاسبات الإلكترونية / الجامعة التكنولوجية

3- د. خالد جرجيس عبو

4- د. عبد المجيد عبد الروؤل قسم الفيزياء / كلية العلوم / جامعة بغداد

-136-
5- د. خالد الخطيب
الجامعة التكنولوجية

6- السيد كمال فرج
شركة الصناعات الإلكترونية

7- د. ابراهيم الخاوي
مركز بحوث الطاقة الشمسية
مجلس البحث العلمي

8- السيد عامر أحمد طوان
معهد التدريب والبحث
للحاسبات والأجهزة الإلكترونية

9- د. مني ناصر
قسم الفيزياء / كلية العلوم
جامعة بغداد

10- د. احمد ابراهيم الشيخ
كلية الهندسة / جامعة بغداد

11- السيدة هند فتح الله
هيئة استخدام الحاسـات في التعليم والتعلم

12- د. عبد الكريم رجب
هيئة استخدام الحاسـات في التعليم والتعلم

13- د. سلام ناصيف
قسم طوم الحاسبات / كلية العلوم / جامعة بغداد