هيئة التحرير

مدير عام المركز العربي للدراسات الثقافية

د. هلال عبود

نائب مدير التحرير

د. نبيل خليل موسى

نائبه نجم

هيئة التحرير

د. د. ياسين مكي

أمين:

د. د. إسلام أحمد

د. جوزيف عز الدين

د. هشام كمال

مهمة التحرير في المركز العربي للدراسات الثقافية
<table>
<thead>
<tr>
<th>الصفحة</th>
<th>الموضوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>كلمة التحريز</td>
</tr>
<tr>
<td>8</td>
<td>المراجعة بلغةباسكال</td>
</tr>
<tr>
<td>39</td>
<td>الدكتورة سهيلة عبد حسن كلية</td>
</tr>
<tr>
<td></td>
<td>الحاسة الإلكترونية في خدمة حركة التأليف والترويب</td>
</tr>
<tr>
<td></td>
<td>د. سان ماجد عطار باشي</td>
</tr>
<tr>
<td>56</td>
<td>دور قاعدة المعلومات لنظام التدريب</td>
</tr>
<tr>
<td></td>
<td>من: حجازي دولاغ</td>
</tr>
<tr>
<td>90</td>
<td>معالجة المعلومات بالحاسبات الدقيقة كادي</td>
</tr>
<tr>
<td></td>
<td>حل أدنى لإدارة المعلومات في الدول النامية</td>
</tr>
<tr>
<td></td>
<td>عدنان عباس</td>
</tr>
<tr>
<td></td>
<td>مراجعة: كامل عجيشة</td>
</tr>
</tbody>
</table>
نظام المكتبة التلفزيونية ونظم المعلومات

المرzia

عائشة رشيد

قياس نظام باستخدام الجهاز المرافق

علي الدين نوري أحمد

ليلى عبد الكريم محمد

الأبواب الثابتة

- أحداث ومؤتمرات
- كتب جدد
- أخبار
- مصطلحات معرية
كلمة التمريـن

مع هذا العدد تعود مجلة (الحاسبات الإلكترونية) إلى المدرر بعد أن كانت ترددنا جيدا أن لا يطول ، لكن ظرفنا فنية القاهرة حالت دون ذلك ، فوقفت تلك الظروف - لوهلة - أقوى من المحاولات ومن الجهود .

وإذا كانت العادة قد جرت على استجابة - القاري، الكريم - عذرا لهذا الانقطاع ، فإننا في هذه المرة نخطف الاعتذار المكتوب إلى اعتذار فاعل ، في نقلة نوعية للمجلة ، ستبدو ملامحها وسماتها في الأعداد القادمة بدأن الله ، لكى تكون المجلة - فعلًا - المجلة الرائدة في علوم الحاسبات الإلكترونية على امتداد الوطن العربي.

ومن الأعداد القادمة ، سيجد القارئ الكريم انتقلالة هدفته مدرسة لتوسيع محتوى المجلة و مقوماتها بشكل تصبح فيه أكثر انفتاحا على مواضيع تهم قاعدة كبيرة من الناس والعاملين في مجالات الحاسبات الإلكترونية . فالهدف الأساسي هو نقل الخبرة والمعرفة في هذا المجال الرحب إلى أكبر مجموعة من القراء ، كما يكونوا على نسق مع مفردات الحاسبات الإ
الإلكترونية وتطوراتها، ولكن تكون خطواتهم على هذا الطريق
أكثر ثقة وتمكنًا.

ولم نتعود أن نتحمل المستقبل من الآمال أكثر مما ينبغي
ولكن النية قائمة على مواجهة المعاك، وعلى استمرار مدار
المجلة مدارا ممتدًا - قدر مكتمل مدار العمل - وعلى تطوير
المحتوى الأول بأول وموجة إلى الاعتقادات التي رسمتها، فنكنون
بذلك قد ادنا الآمان وأوجنا الضمير.

فب أن مواجهة هذا الطريق ليست مسؤولية هيئة التحرير
لوحدها، وإنما يشاركها في ذلك القراء وكل العاملين في
مجالات الحاسبات الإلكترونية، استذانه، وخبراء، ومستشارين
وابحثين وفنينون على حد سواء.

ذلك أن مسؤولية الفارئ تقدم ملاحظاته البدنية،
وتحجج رأيه في مستوى المجلة، إعدادًا وتنفيذًا ومفمونًا،
واقتراح مابراه مفيدًا، وعليها بعد ذلك أن تأخذ من ملاحظاته
وآراؤه واقتراحاته مابخمن أهداف المجلة ومايبر
خطواتها.

كما أن مسؤولية العاملين في مجال الحاسبات الإلكترونية
أن يرعوا المجلة بأبحاثهم وخبراتهم وتجاربهم، وأن ينقلوا
الي المجلة عن أعمالهم ما يتعلق الآخرين ويقوم ساحة معرفتهم.

أيا كان هذا العمل: بحثا أو تقريرا أو تعريفا أو درجة أو
شرح لنظام أو لبرنامج تطبيقي أو مقالة أو خبرًا علميًا أو
نشاطا لمركز من مراكز الحاسبات في القطر وخارجته, أو
فعالية مفيدة أو عرضا لكتاب أو دراسة تطبيقية 000 الغ
وسأخذ هذا العمل طريقه إلى التقييم، مادة واطروتـًا
لبحث مكانه المناسب فيما بعد.

هذا منطحب إليه فعلاً، وهذا ما نأمله أيضا من القراء
ومن الكواحد الشهيرة في القطر وخارجه.
الي من حقنا - بعد هذا كله - أن نتضرر من أصحاب الخبرة
شيئا بطمثتنا إلى استمرار المجلة واستمرار العطاء؟

هيئة التمرير

- 7 -
لغة البرمجية باس-كلال

اللغة العربية مبتدأ لمبتدأ، هي منظمة الطاقة الذرية...
يتكرر كثيراً ام هذه اللغة في اوساط مستخدمي
الحاسبات الإلكترونية وقد صدرت منشورات كثيرة بـ
مرجع ونافذ لهذه اللغة
فما هي لغة بابل؟
بايكل هـ لغة برمجة للغراض العامة أي علمية وادارية
تم وضعه الأولى لهذه اللغة من قبل العالم
أديان "ETH , ZURICH" WIRTH
لتعليم البرمجة وعمل مترجمات لكافياتها ومرونتها
خلال سنة 1971 ظهر مترجم (COMPILER) لهذه اللغة على
الحاسبات CDC-6600 وقد كتب بنفس اللغة وبلغ عدد
6000 سطر ووصف بانه سهل القراءة والتغيير . وفي نهاية
سنة 1973 اصدر العالمان N.WIRTH و C. HOARE تعريفات
بديهية لهذه اللغة وفي سنة 1974 صدر كتاب من قبل
العالمين N.WIRTH & K. JENSEN
وقد اعتبر معرضاً إلى " STANDARD PASCAL "
وقد توالت الكتابات والتمديرات لهذه اللغة إلى يومنا هذا.
تناول الفقرات التالية شرح موهر عن البيانات والفعاليات وكيفية التعبير عنها بهذه اللغة، علمًا بأن لم انطلق إلى البرامج المساعدة والدوال المعرفة في هذه اللغة ولا إلى العمليات الحاسبية والمنطقية لأن الهدف هو المعرفة على الخطط والمعرفة بهذه اللغة فقط.
ان أي برنامج مكتوب بلغة من لغات الكمبيوتر
الالكترونيه يحتوي على جزئين أساسيين هما وـ
"STATEMENTS" للعمليات التي يجب تنفيذها وتم بواسطة
وعلى البيانات "DATA" اللازمة لتنفيذ هذه العمليات
"DATA DECLARATIONS & DEFINITIONS" وتم بواسطة
لمؤخذ برنامجياً بسيطاً ممتهن فرقة رقمين حقيقيين وـ
مجمعهما، فعن استعمال لغة باسكال تكون الخطوات
کالتالي:

PROGRAM ADD (INPUT, OUTPUT);
VAR FIRST, SECOND, SUM; REAL;
BEGIN (* MAIN PROGRAM *)
READ (FIRST, SECOND);
SUM := FIRST + SECOND;
WRITE (SUM)
END.

BLOCK تحوي البرنامج على المقدمة والجمع
ويستحي بنقطة "ـ " (انظر الشكل رقم (1))، ان المقدمة
تنفيذ تسمية البرنامج ونتهياد الملفات التي يستخدمها
البرنامج لاجمل اخراج وادخال المعلومات من واتي الحاسوب. اما
الجمل فيحتوي على 6 اجزاء، الخمسة الأولى منهما اختيارية.
وهذه الأجزاء حسب تسلسلها بالبرنامج كما يلي:

1. الإعلان عن العلامة ويتم بالكلمة LABEL
2. تعريف الثابت ويتم بالكلمة CONST
3. تعريف النوع ويتم بالكلمة TYPE
4. الإعلان عن المتغير ويتم بالكلمة VAR
5. الإعلان عن البرنامج المساعد أو الدالة ويتم بالكلماتين "FUNCTION" أو "PROCEDURE"
6. قام التعليمات، وهذه تنحصر بين الكلماتين STATEMENTS

ان كل جملة تنحصر بين الرمزين "(" *)) " تعتبر
جملة توضيحية "COMMENTS" ولست تنفيذية.

LABEL 3. العلامة

وهي عبارة عن عدد صحيح موجب (بدون اشارة) لا يزيد
عن أربعة إرقام مثل 300، 2103. أن كل علامة تستخدم في البرنامج يجب أن تكون بالشكل التالي:

```
LABEL 3, 20
```

وسوف أدرجنا استخدامها في بند التعليمات وخاصة التعليمية التفرع:
```
GOTO
```

4. تعريف الشابث

أن تعريف الشابث يعني اختصار اسم الشابث وتعيينه.

```
CONST ALPHA = -5;
BETA = '*' * CONSTANT*'';
```

5. البيانات و أنواعها

5-1. تعريف نوع البيانات

بالإمكاني وصف نوع البيانات عند الإعلان عن المتغير.
اما بشكل مباشر أو بالإشارة إلى تسمية تدل على ذلك النوع.

فمن الممكن تعريف نوع البيانات التي يستخدمها البرنامج بالشكل التالي:

\texttt{TYPE BEET = ARRAY [1..8] OF CHAR ;}

ان البيانات تكون ضمن الأنواع التالية:

1- النوع البسيط

\texttt{SIMPLE TYPE}

2- النوع القياسي

\texttt{STANDARD TYPE}

• وهو على اربعة انواع.
• وتشمل جميع الأعداد الطبيعية \texttt{INTEGER}.
• وتشمل جميع الأعداد الحقيقية \texttt{REAL}.
• وتشمل جميع الرموز المستعملة في الحاسبة وهي الأرقام من 0 إلى 9.
والحروف من A إلى Z إضافة إلى بعض الرموز الخاصة مثل + , $.

الخ.

وهي عبارة عن العددين 0, 1 أو BOOLEAN 4-1

. FALSE, TRUE

القيم المنطقية

INTERVAL TYPE

فترة

وتشتمل أيضاً مجموعة جزئية من نوع عدد من البيانات يعرف بتحديد عناصره.

كحد أعلى وحد أدنى

مثال:

TYPE DAY = 1..31 ;

SCALAR TYPE

العدين

ويسمى أيضاً مجموعته مرتبة من العناصر بترتيب اسمها.

مثال:

TYPE OPERATION = (ADD , SUB , MULT , DIV);
حيث أن تأخذ القيمة 0
و 1=SUB الخ
و أن معرفة من قبل اللغة على انـ

TYPE BOOLEAN = (FALSE, TRUE);

STRUCTURED TYPE

و هي مَؤلةة من تركيب محددة واضحة من حيث النوع
والحجم و تتكون من الاتجاع التاليه:

ARRAY 1

TYPE TAB = ARRAY [1..100] OF INTEGER;

أن المتغير TAB عبارة عن ترتيب ذو 100 خليلا او
تركيب كل خليه تمثل عدد طبيعي وان العبارة
التاليه:

TAB [15] = 20;

تعني التركيب رقم 15 من المتغير بـ 20
FILE

ان كلمة FILE في هذه اللغة تعني مجموعة مبهمة
البيانات المتتابعة والمتعلقة. مثال:

TYPE F1, F2 = FILE OF CHAR;

ان كلا من المتغيرين F2, F1 عبارة عن ملف اي
سلسلة من الرموز ومن التعريف نجد ان ملف
العنوان أو عدد مركباته غير محدد، وهذا ما يميز
هذا النوع من البيانات عن النص.

SET

مثال:

TYPE S1 = SET OF ' A ' ... ' Z ';

ان مجموعة القيم التي يأخذها المتغير S1 هي كل المجموعات
الجزئية التي يمكن ان تتكون من الحروف من A الى Z
ويمكنها المجموعة الخالية فمن الممكن ان تكون:

S := [];
S := [' S ' , ' E ' , ' T '] او
TYPE GAMA = PACKED ARRAY [1..10] OF CHAR;

TYPE DATE = RECORD
 DAY:1..31;
 MONTH:1..12;
 YEAR:1900..2000
 END;

PERSON = RECORD
 FNAME, INAME: GAMA;
 SEX: (MALE, FEMALE);
 BDAY: DATE
 END;

VAR P : PERSON;
نرى أن السجل مُكوَّن من ثلاثة حقول وان الحقل الثالث هو بدورة سجل مُكوَّن من ثلاثة حقول أيضاً بالامكان ان نجد المبادئ التالية في البرنامج

P. FNAME : = ' HASSAN ';
P. LNAME : = ' AHMAD ';
P. SEX : = ' MALE ';
P. BDAY . DAY : = 23 ;
P. BDAY . MONTH : = 5 ;
P. BDAY . YEAR : = 1950 ;

POINTER

ج - المُؤَثَّر

من المتغير الداكن هو الذي يُعلن

المتغير المُؤَثَّر هو الذي يُعلن

عندما في البرنامج باسم معين ومن ثم برجع، له

وسيلة ذلك الأسم، ونسبة مكان له موجود ضمن

ذاكرة الحاسوب طيلة فترة تنفيذ ذلك الجزء

من البرنامج الذي أُعلن فيه المتغير، امتداداً

المتغير المُؤَثَّر هو نفسه، ما لا يُظهر

DYNAMIC VARIABLE
بوضوح في جزء الاعلان عن المتغيرات و لا يمكن الرجوع إليه بواسطة اسم معين وانما بواسطة مؤشر يشير إلى مكان معين في الذاكرة حيث يخزن هذا المتغير لنفترض ان P هو متغير من نوع المؤشر ومرتبطة أو يشير إلى البيانات من نوع T. الاعلان التالي:

VAR P : @T
VAR P : @ T أو

يعني أن P هو مرجع إلى متغير من نوع T وان P أو

P@ يمثل هذا المتغير.

تعني توليد وحجز مكان بالذاكرة لمتغير NEW (P)

نجد من نوع T وحجز عنوانه في P.

تعني الفاصلة المكان المحتوي DISPOSE (P)

بالذاكرة لدمج الحاجة إليه.

تعني أن P لا يشير إلى أي عنصر في لا يخزن أي P = NIL

عنوان.

- الاعلان عن المتغير:

ان المتغيرات الداخلة في اي برمجة مكتوب بهذه
اللغة يتم تعريفها بالصيغة التالية:

```plaintext
VAR NAM1 NAM2 ...... : TYPE;
```

حيث NAM1 و NAM2 هما اسماء المتغيرات وأنواعها من نوع TYPE وهو وصف مجموعة الفئات التي يقع في الممكن إعلانها عند هذه المتغيرات. نعتبر أول برنامج:

```plaintext
(FIRST,SECOND,SUM) 
REAL 
```

ومن نوع الاعداد الحقيقي.

STATEMENTS

التعليمات والأوامر

وهي عبارة عن تفاعلات منطقية تنفذ من قبل النظام والحاسة ومن الممكن ترقيتها بـ LABEL إذا أريد الرجوع لها باستخدام الأمر GOTO.

الشكل رقم (3) يتضمن أنواع التعليمات ومن الممكن تقسيمها إلى نوعين وهما:

أ- التعليمات البسيطة

وهي تتكون من تعليمة واحدة فقط وتتضمن أربعة أنواع من التعليمات وهي:
ASSIGMENT STATEMENT

1- تعليمة تعني

وتعني استبدال قيمة المتغير أو الدالة بقيمة جديدة ممثلة بنتائج العبارة الجبرية

EXPRESSION

مثال:

\[\alpha := \frac{5 + b}{a} ; \]

PROCEDURE STATEMENT

2- تعليمة برنامج مساعد

وهي تنفيذ تنفيذ البرنامج المساعد وذلك بذكر اسم البرنامج متبوعا بالقيم الحقيقية للمتغيرات وتمت إدخال قيم المتغيرات الصورية التي تدرج عند تعريف البرنامج المساعد

BRANCH STATEMENT

3- تعليمة تفرع

وهذه التعليمة تدل على أن الخطوة التالية تنفيذ العبارة المرجوة واتباعها والتي توجد في مكان ما من البرنامج ضمن ذلك

\[\text{BLOCK} \]

مثال:

\[\text{GOTO} \ 50 ; \]
Structured Statements

ويتألف من عدد من التعليمات والتي تنفذ امّا بشكل ترتيب كما في التعليمات المرتبة أو بتحقيق شرط معين كما في التعليمات الشرطية أو تنفيذ بشكل تكراري كما في تعليمة التكرار وانواعها الثلاثة هي كالالتالي:

Compound Statement

والهذا مجموعة من التعليمات محددة بالكلمتين END و BEGIN وتنفذ تتابعياً.

مثال:

BEGIN
Z := X; X := Y; Y := Z
END;

Iteration Statement

ويتضمن ثلاثة انواع من التعليمات وهي:
WHILE STATEMENT 1.2

WHILE < EXP > DO < STATEMENT >

< STATEMENT > تعني عبارة منطقية و< EXP > تعني تعليمة واحدة بسيطة أو تعليمة مركبة.

مثال:

I := 1;
 WHILE I <= 10 DO
 BEGIN
 A
 IF i = 10 THEN
 I := I + 1
 END

REPEAT STATEMENT 2.2

REPEAT < Statement > UNTIL < exp >
مثال:

\[
\begin{align*}
I &:= 1 \\
\text{REPEAT} \\
& \quad \text{tab} \ (i) \ := \ 0 \\
& \quad i \ := \ i + 1 \\
& \quad \text{UNTIL} \ i \geq 10 \\
\end{align*}
\]

ملاحظة تنفيذ الجزء A من البرنامج ما دامه
العبارة المنطقية غير صحيحة.

FOR Statement 3.2

\[
\text{FOR} \ <V> \ := \ <I> \ \text{DO}<\text{Statement}> \ \\
\text{DOWNTO}
\]

حيث أن V تعني القيمة الأولية
و أن I تعني القيمة الأولية و control Variable
لهذا المتغير و B هي القيمة النهائية للمتغير.

مثال:

\[
\begin{align*}
\text{FOR} \ i = 1 \ 10 \ \text{DO} \\
& \quad \text{tab} \ (i) \ := \ 0 \\
& \quad \ldots \ (1)
\end{align*}
\]
يُذكر تنفيذ العبارة 1 حتى تصبح قيمة 1 أكبر من 10 أي تخرج عن الحد المذكور.

CONDITIONAL STATEMENT

- تعمية الشرطية

وتكون على نوعين:

IF STAT. 1-3

```
IF <exp> THEN <Statement>
IF <exp> THEN <Statement> ELSE <Statement>
```

مثال:
```
IF X >= 10 THEN y := 10 ELSE y := 0
```

يكون تنفيذ العبارة رقم 1 مقرراً بتطبيق الشرط $X \geq 10$ ولا يُستنفد العبارة رقم 2.
CASE STAT. 2-3

CASE <exp> OF

<label> : <stat.> ;
<label> : <stat.> ;
...
END

\[\text{Lim} \]

\[\text{Lim=1} \quad \text{Lim=2} \quad \text{Lim=3} \]

CASE LIM OF

1 : RESULT := RESULT + VALUE ; ... (A)
2 : RESULT := RESULT * VALUE ; ... (B)
5 : RESULT := RESULT - VALUE ... (C)
END ;

\[
\begin{align*}
\text{ان التعليمية التي تنفذ هي التي ترفعها بعدة} \\
\text{القيمة الحقيقية للمني للمنيء} LIM=10 \\
\text{فذا كانت} LIM=10 \text{ فأنا تأثير التعليمية غير معرف.}
\end{align*}
\]
عندما يراد كتابة برنامج ما من المستحسن تقسيمه إلى مقاطع: مقدمة كل مقاطع تخصص بعمل ما ثم كتابة برنامج لكل مقاطع على شكل برنامج مساعد أو دالبة. أن هذه العملية توفر للبرنامج الوضوح وسهولة التغيير وتفسادي تكرار كتابة المقاطع التي يحتاجها البرنامج الإملائي عدة مرات، إضافة إلى ذلك فإن اللغة بسكون توفر امكانية اشتراك أكثر من برنامج مساعد بجزء الذاكرة المخصصي للمتغيرات المحلية، وهذا يؤدي إلى اقتصاد في الذاكرة.

يعرف البرنامج المساعد في هذه اللغة بالصيغة التالية:

```
PROCEDURE game( V1 : INTEGER ; VAR V2 : REAL ) ;
```

```
{
  bloc
```

حيث تفيد المقدمه لتسمية البرنامج المساعد استخدام هذه التسمية في تعليمة البرنامج المساعد عند الحاجة إلى تشفير V2، V1 هو متغيرات سوريني Variables والتي تكون على ثلاث انواع Parameters

-28-
PROCEDURE PROCEDURE

FUNCTION FUNCTION

WASHINGTON بـ:V2

VAR VAR

وانـکـهـون مـبـوـلـة بـالـكـلـمـة

 процедـعـرهـ

واـنـکـهـون مـبـوـلـة بـالـكـلـمـة

 процедـعـرة

 او

 وهـبـه لا نـسـبـهـا اـي كـلـمـة كـمـا في V1

 فـبـهـي بـحـوى عـلـى الـأـجزـاء كـما وـفـعـت في الـفـقرـة الثـانـيـة

 فـبـهـي بـحـوى عـلـى الـأـجزـاء كـما وـفـعـت في الـفـقرـة الثـانـيـة

 عند شرح الهـيـئة العـامـة لـالـبرـنـمـاج اـمـا الدـالـة فـتـعـرـف بـنفـس

الطريـقة مع ذكر نوعـها

FUNCTION theta (VI INTEGER) : INTEGER

 { bloc

 INPUT, OUTPUT

 9 - ادخـال و اخرـاج المعلومات

 ان ادخـال و اخرـاج المعلومات من و الى الحـاسبـه بـنـسـم

 بواسطة البرـنـمـاج المـعـاـدة

 و لـفـرض تنـفـيذ هـذـه المـعـلـبة بـبـعـت مـلفين نـاصـبين هـما

 OUTPUT

 و ملف الـ INPUT

 مـلف الـ OUTPUT

 الفـرض من الملف الـ أول هو لـاستـقبـال و خزـن المـعلومات واـرـداـه

 من المـحيـط الى المـعـاـدة ، والـثـاني لـخزـن النـتائـج الـتي تـمـت

 نـتـيـجة لـتـشـغيـل البرـنـمـاج الى المـحيـط الـخارـجي (كـان يـكـون

 منـقـب بـطاـقـات او قرـض مـعـنـاطـيـس

)
وهذان الملفان مرفقان من قبل اللغة على انها

VAR INPUT, OUTPUT : FILE OF CHAR;

النفران ان f هو ملف وان V1, V2 هي متغيرات من نوع INTEGER أو CHAR أو REAL

READ (V1, V2) ; READ (INPUT, V1, V2)
READ(f, V1, V2) ; READ (f, V1) ; READ (f , V2)

ان البرنامج المساعد يستعمل READ مشابهة إلى READLN عندما يرد الانتقال الى بداية السطر الجديد بعد انتهاء القراءة، وكذلك

WRITE (V1, V2) ; WRITE (OUT PUT, V1, V2)
WRITE (f, V1, V2) ; WRITE (f, V2) ; WRITE
وان البرنامج المساعد تعني وضع علامة WRITELN (f) نهاية السطر في الملف f.
الاستنتاجات والملاحظات:

أن المتخصصين في مجال البرمجة باستثناء كثيراً لعدم توفر مزايا معينة في هذه اللغة اعتدوا أن يجدوها في لغات أخرى وهم:

1- Concatenation of Strings تسلسل الرموز
2- إجراءات العمليات الحسابية على متغيرات منطقية
3- تحليل البيانات من نوع إلى آخر اوتوماتيكية

AUTOMATIC TYPE CONVERSIONS

4- الإعلان اللازم عن المتغيرات

5- النسق الديناميكي

"أن هذا النقي ليس سبيه النسيان وإنما هو حق مقصود"

كما عبر عن ذلك العالم WIRTH عندما سأل من قبل المعتنبين في احيان كثيرة يكون وجود مثل هذه التسهيلات في اللغة محدوداً إلى عدم الوضوح ومعوضة تتبع الاخطاء وإلى عدم الوصول إلى النموذج الجيد للبرمجة. أضافة إلى تعويم المنغجين على الاتكالية في الن Kidd النجدية في أماكن الوصول إلى نغ ينفي هذه اللغة بأضافة برنامج مساعدة.

كانت هناك اختيارات كثيرة مطروحة أمام مصممي هذه اللغة لعمل
مترجم مركز نسبياً وفعال واقتصادي لكلاً النوعين من المستخدمين الأول الذي يكتب برنامج قصير ويعمل تراكيب قليلة من هذه اللغة والأخر الذي يكتب برنامج طويل ويتعمل كﻢ مميزات اللغة إن هذه اللغة تتعمل في وقتنا الحاضر لافراق مختلفة نظيرة لإمكانيتها ووضوحها وكفاءتها، فقد اثبتت جدارتها للمترجمات وذلك لكونها تتوفر البرمجة الهيكلية "Structured" إضافة لكونها لغة معتمدة لتعليم البرمجة Programming"
program Prime2 (Input, Output);

(* **

* Given a positive number N, this program is to locate the *
* Nth prime number. *
* J is an odd integer, a candidate for a prime. *
* Prime is an array of the primes already found. *
* M is an index into the array of primes. *
* PrimesFound is the number of primes already located. *
* HasNoFactor is a Boolean flag, used to record the out-
* come of testing J for primeness.

**)

custom

Maxindex = 1000;

Indextype = 1..Maxindex;

var

N, M, PrimesFound : Indextype;
J : Integer;
Prime : array [Indextype] of Integer;
HasNoFactor : Boolean;

begin

(* **

* initialize the table of primes to contain 2 *
* and the first odd prime. *

**)

PrimesFound := 2;
Read (N); (* if N is out of range, a Read error will occur *)
J := Prime[PrimesFound] + 2;
while PrimesFound < N do

begin

HasNoFactor := True; M := 2;
while HasNoFactor and (Sqr(Prime[M] <= J)) do

if J mod Prime[M] = 0 then

HasNoFactor := False
else

M := succ(M);

if HasNoFactor then

begin (** J is prime **)

PrimesFound := PrimesFound + 1;
Prime[PrimesFound] := J;
end;

J := J + 2;
end;

WriteLn ('PRIME[' , N:3 , '] = ' , Prime[N]);

end.
1. S. KUBBA These presentee A L Universite de paris - sud ,Centre D'Orsay.

System de Simulation du langage PASCAL sur miniordinateur

HP-9830.

2. Kathleen Jensen-Niklaus Wirth

springer-Verlay .

3 J.M. CROZET - D. SERAIN

LE Langage PASCAL.

MASSON .

4 Alfred C. Hartmann

Leture Note in Computer Science

Springer - Verlay .

5. Kenneth, L. Bowles

problem Solving using PASCAL

Springer- Verlay .
6. Jim Walsh and John Elder

Introduction to PASCAL

C.A.R. Hoare Series Editor.

7. 01 Informatique No. 125, October 1978

PASCAL, Un langage tres evolue

(pages 59-63)

(pages 53-56).

9. Structured programming and problem solving With PASCAL

Richard B. Kieburtz

Prentice-Hall, INC.

10. 01 Informatique No. 125, Octobre 1978

PASCAL, Un Langage tres evolue

(pages 59-63)
الأسماء الفنية والروائية في مجلة مركز التأليف والتفصيل

هيئة نشر مجلة الأعمال
مجموعة الأعمال في مركز التأليف
مجلة المواصل
1- مقدمة:

مع ازدياد حركة تطوير العلوم، ونقل الكتب العلمية الأجنبية إلى العربية باتت الحاجة قاتمة إلى البحث عن معانى لمصطلحات كثيرة تحتاج إلى تعريب، بل لقد تعريب التعريب باختلاف المعابثة أو باختلاف الموقع الجغرافي، إلى ظهور مصطلحات عربية متعددة لمصطلحات انجليزية واحدة. وإذا كانت هذه الحالة مقبولة في المراحل الأولى من حركة التعريب بنية الوصول إلى المصطلح العبراني الأصل، إلا أن استمرار هذه الحالة بعد استقرار حركة التعريب ستقود جنبا إلى جنب إلى فوضى لا مبرر لها قد تؤدي إلى انتقالات مؤلمة في حركة التعريب.

هذا البحث محاولة أولى للاهتمام الحاسمة الإلكترونية في عملية التعريب عن طريق الاستفادة من إمكاناتها لخزن حساب مصطلحات الأجنبية مع معانيها، وإعداد قائمة قاموس بالمصطلحات العربية والأجنبية مربوئًا حسب الحروف الأبجدية.

وقد ضمت هذه المحاكمة مجموعة من البرامج المكتوبة بلغة فيورتران والتنفيذ بنجاح على حاسة جامعية الموصل (هونبول 66/05)، وقد واجب العمل بعض المعوقات التي تم التغلب عليها- كما سيتم شرح في الفقرات القادمة-.
والأمل الكبير في الاستفادة من هذه المحاولة في نقل نوعية أخرى تخدم حركة التعبير والتأليف.

2. مراحل التنفيذ:

2.1 اعداد البيانات:

تنقيب البيانات على بطاقات حسب الصيغة الآتية:

المصطلح بالإنكليزية المقابل بالعربية

أو

المصطلح بالإنكليزية المقابل بالعربية

ويم تعداد البيانات باستخدام ماكينة التنقيب حيث يطبع حقل الكلمات العربية كما موضح في لوحة المفاتيح المبينة في ملحق رقم (1) والتي تم اعدادها لهذا الغرض.

أما حقل الكلمات الإنكليزية فيشغب كالمعتاد.

-41-
2.2.1 برنامج التصنيف: ينفذ هذا البرنامج لتصنيف البيانات حسب الحروف الأبجدية وحسب الرقمية. يقسم إلى ثلاثة أجزاء يعتمد في تنفيذها على بطاقة:

تسمي البيانات تحمل احدى العبارات الآتية:

LIST أو ARB، ENG

فإذا كانت البطاقة تحمل كلمة ENG فهذا يعني أن تصنيف البيانات سيكون حسب الحروف الإنجليزية (قاموس إنجليزي / عربي) وسينفذ الجزء الأول من البرنامج كما مبين في ملحق رقم (2). أما إذا كانت البطاقة تحمل كلمة ARB فإن البيانات ستتصنف حسب الأبجدية العربية (قاموس عربي / إنجليزي) وسينفذ الجزء الثاني من البرنامج ملحق رقم (3). وإذا كانت الكلمة تستر فائض قائمة بالبيانات كما هي بدون تغيير في تسجيلها ملحق رقم (4). هذا ويمكن تنفيذ الأجزاء الثلاثة في الوقت نفسه عند عدم ادخال العبارات المذكورة آنفاً. أما نتائج التصنيف فيخزن في سجل لغرض استخدامه في البرامج اللاحقة.
برنامج ترميز البيانات العربية عن البيانات الإنجليزية:

يُكون كل قيد من السجل الناتج في الفترة أعلاه من بيانات إنجليزية كليماً بيانات إنجليزية في القيد نفسه إذ لا يوجد أي فاصل بحجب الكتابة عن بعضها لذا يقرر السجل الذي يحمل هذه البيانات على برنامج نرعي لفرق ترميز البيانات بالعربية عن البيانات بالإنجليزية ويثرفي في هذا البرنامج أن يبدأ حقل البيانات الداخلة بعلامة (م) وان يحذف حقل الكتابة العربية بعلامة (ن) ليتوجه من هذه المرحلة سجل مهماً لطبع الناتج النهائي في البرنامج اللائق.

برنامج الطبغ: يشغل هذا البرنامج لطبغ التجريم النهائية لعملية التصنيف باستخدام السجل المذكور أعلاه، ويكون الطبغ: بالحروف الإنجليزية والعربية.

ملحق (2) (3) و (4).

يتم في هذه المرحلة تميز شريط الطبغ المطلوب لطبغ التجريم النهائي إذ أن للحاسي ثلاثة انواع من الأشرطة أولها للحروف العربية فقط والآخر لطبغ
الحروف الإنجليزية فقط والثالث لمزيج الحروف العربية والإنجليزية وهو المطلوب في هذا البرنامج، أما لغة كتابة هذا البرنامج فهي لغة السيطرة على البرنامج (JOB CONTROL LANGUAGE) وباشرة برنامج التحويل (CONVER) لتحويل البيانات من السجل المذكور إلى جهاز الطبع.
بعد شرح مراحل الحصول على التقرير النهائي، هناك بعض الملاحظات حول المشاكل التي اثرت في تنفيذ البرامج وكيفية التغلب عليها:

1- بالنظر لعدم وجود ماكينة تتبع للبيانات العربية، لذلك تم دراسة رموز المشابهة على ماكينة ورموز الخرزم على طريق الطباعة، ومنها تم إعداد خدمة لدعم مجموعة إجراء القياسية.

جدول رقم (1):

2- تم تهيئه إجدي مكائن التلحيب من النشاط المذكور، إلى الفترة السابقة، وباعتماد على جدول رقم (1) للمشيئة.

البيانات باللغة العربية واصحة لوحة المفاتيح، للمشينة رمزية، مبين في ملحق رقم (1) وبدلاً من استخدامها على مكينة
t东海ح الكلمات العربية.

3- بلاحظ من الجدول رقم (1) رفع حرف الآلف (1) وماضية الجدول بين الحروف (غ) و (ف) وهذا يؤدي إلى مشكلة عند محاولة تصنيف الكلمات العربية أدع تفع الكلمات التي تبدأ بالحروف (غ) و (ف) وهذا غير مقبول في الترتيب الأبجدي، لذا

-46-
تدقيق البيانات العربية بحرف آخر يقع قبل حرف البيضا (ب) في الجدول ثم تدخل البيانات مرحلة التصنيف المذكورة في الفقرة 2.2.1. وبدعها مثبتة، يتبديل الحرف بالالف لغز، طمعه بالصورة الصحيحة فيما بعد.

4-4 تطبيق التفسير النهائي للبرنامج كما مبين في الملحق (2).

(3) (4) اقتضى الأمر دراسة شريط الطابع، وتم التقييم لكل حرف. فلا يوجد أن الحروف العربية كانت بنظام (ASCII) وال bella انكليزية بنظام (USASCII) لذا يجب تميز الحروف بعد مرحلة التصنيف باستخدام البرنامج الفرعي الذي سبق ضربه في 2.2.2.

4- الاستنتاجات وأمانة التطور:

مساء سبق تبين أنه بالاعتماد الاستفادة من النتائج التي تم الحصول عليها بتصنيف البيانات العربية أو انكليزية في المجالات الآتية:
4.1 عند تعريب أي كتاب أو مقال إلى اللغة العربية، من الضروري أن يلحق بها قاموس بالопределات العربية بضمن المصطلح بالإنكليزية وما يقابل بالعربية أو بالمعنى مصطف.
حسب الحروف الأبجدية، ولما كان تصنيفها باليد يستغرق وقتا طويلة خاصة إذا كانت البيانات بأعداد كبيرة، لذا كان تصنيفها على الحاسة الإلكترونية ضرورياً ويساعد على اختصار الزمن في البداية، أولاً للبرنامج، ثم التصنيف بالعربية أو بالإنكليزية حسب الحاجة، كما سبق شرحه في الفقرة 2.2.1.

4.2 يمكن تطوير البرامج للحصول على قاموس علمي أو عام على الحاسة بحيث يمكن الحصول على الكلمة ومعناها باتباع تقنية عميقة وهذا نجح في الباحثين.

4.3 يمكن عزل البرامج في مرحلة الباحثين إلى ثلاثة برامج يقوم الأول بتصنيف كلمات إنكليزية فقط والثاني لكليمات عربية فقط والثالث لإعداد قائمة ببيانات عربية وإنكليزية في وقت واحد.

4.4 تصنيف اسماء الطلبة حسب الحروف الأبجدية الإنكليزية والعربية، وهذا يحتاج مديرية التسجيل ولجنة الامتحانات.
4.5 يمكن استخدام البرامج لتصنيف أسماء الكتب للمكتبات أو إعداد فهرس المجلات.

4.6 وأخيرًا فالبرامج يمكن إضافتها إلى أي نظام تصنيف بيانات باللغتين العربية والإنجليزية.
<table>
<thead>
<tr>
<th>Value</th>
<th>ARABIC</th>
<th>LATIN</th>
<th>Code</th>
<th>Encoded</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>000001</td>
</tr>
<tr>
<td>02</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>000010</td>
</tr>
<tr>
<td>03</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>000011</td>
</tr>
<tr>
<td>04</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>000100</td>
</tr>
<tr>
<td>05</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>000101</td>
</tr>
<tr>
<td>06</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>000110</td>
</tr>
<tr>
<td>07</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>000111</td>
</tr>
<tr>
<td>08</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>001000</td>
</tr>
<tr>
<td>09</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>001001</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>001010</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>001011</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>001100</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>001101</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>001110</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>001111</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>010000</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>010001</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>010010</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>010011</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>010100</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>010101</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>010110</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>010111</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>011000</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>011001</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>011010</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>011011</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>011100</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>011101</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>011110</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>011111</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>100000</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>100001</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>100010</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>100011</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td>100100</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>100101</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>100110</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td>100111</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>101000</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>101001</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td>101010</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>101011</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>101100</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>101101</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>101110</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>101111</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>110000</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>110001</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>110010</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>110011</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>110100</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td>110101</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>110110</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>110111</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>111000</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td>111001</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td>111010</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td>111011</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>111100</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td>111101</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>111110</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>111111</td>
</tr>
<tr>
<td>Arabic</td>
<td>Latin</td>
<td>Card</td>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3</td>
<td>12-6-8</td>
<td>011110</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-1</td>
<td>12-7-8</td>
<td>011111</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11-0</td>
<td>100000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11-1</td>
<td>100001</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11-2</td>
<td>100010</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11-3</td>
<td>100011</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11-4</td>
<td>100100</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-5</td>
<td>100101</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-6</td>
<td>100110</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-7</td>
<td>100111</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-8</td>
<td>101000</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-9</td>
<td>101001</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-10</td>
<td>101010</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-11</td>
<td>101011</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-12</td>
<td>101100</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-13</td>
<td>101101</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-14</td>
<td>101110</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>11-15</td>
<td>101111</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-0</td>
<td>110000</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-1</td>
<td>110001</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-2</td>
<td>110010</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-3</td>
<td>110011</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-4</td>
<td>110100</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-5</td>
<td>110101</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-6</td>
<td>110110</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-7</td>
<td>110111</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-8</td>
<td>111000</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-9</td>
<td>111001</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-10</td>
<td>111010</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-11</td>
<td>111011</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-12</td>
<td>111100</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-13</td>
<td>111101</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-14</td>
<td>111110</td>
<td></td>
</tr>
<tr>
<td>Ṣ</td>
<td>3-4</td>
<td>12-15</td>
<td>111111</td>
<td></td>
</tr>
</tbody>
</table>
الحل:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

الإجابة: 1 2 3 4 5 6
<table>
<thead>
<tr>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC LOAD LINE</td>
<td>AC Load Line</td>
</tr>
<tr>
<td>ATTRACTION</td>
<td>Attraction</td>
</tr>
<tr>
<td>BARRIER POTENTIAL</td>
<td>Barrier Potential</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Channel</td>
</tr>
<tr>
<td>COLLECTOR</td>
<td>Collector</td>
</tr>
<tr>
<td>COMMON GATE</td>
<td>Common Gate</td>
</tr>
<tr>
<td>CYCLE</td>
<td>Cycle</td>
</tr>
<tr>
<td>DETECTOR</td>
<td>Detector</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Display</td>
</tr>
<tr>
<td>EMITTER</td>
<td>Emitter</td>
</tr>
<tr>
<td>ENERGY</td>
<td>Energy</td>
</tr>
<tr>
<td>ENVELOPE</td>
<td>Envelope</td>
</tr>
<tr>
<td>FOUR-LAYER DIODE</td>
<td>Four-Layer Diode</td>
</tr>
<tr>
<td>IMPURITIES</td>
<td>Impurities</td>
</tr>
<tr>
<td>LIFETIMF</td>
<td>Lifetimf</td>
</tr>
<tr>
<td>LAG NETWORK</td>
<td>Lag Network</td>
</tr>
<tr>
<td>LEADING EDGE</td>
<td>Leading Edge</td>
</tr>
<tr>
<td>LIGHT</td>
<td>Light</td>
</tr>
<tr>
<td>LINEAR IC</td>
<td>Linear IC</td>
</tr>
<tr>
<td>MATCH</td>
<td>Match</td>
</tr>
<tr>
<td>MIXER</td>
<td>Mixer</td>
</tr>
<tr>
<td>OPERATING POINT</td>
<td>Operating Point</td>
</tr>
<tr>
<td>PEAK</td>
<td>Peak</td>
</tr>
<tr>
<td>PERIOD</td>
<td>Period</td>
</tr>
<tr>
<td>PLUG</td>
<td>Plug</td>
</tr>
<tr>
<td>REGENERATIVE</td>
<td>Regenerative</td>
</tr>
<tr>
<td>RESONANCE</td>
<td>Resonance</td>
</tr>
<tr>
<td>AC SETTIME</td>
<td>Ac Settime</td>
</tr>
<tr>
<td>SHORTCIRCUIT</td>
<td>Shortcircuit</td>
</tr>
<tr>
<td>SOURCE FOLLOWER</td>
<td>Source Follower</td>
</tr>
<tr>
<td>STABLE</td>
<td>Stable</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>Symbol</td>
</tr>
<tr>
<td>TANK</td>
<td>Tank</td>
</tr>
<tr>
<td>TELEGRAPHY</td>
<td>Telegraphy</td>
</tr>
<tr>
<td>TRIODE</td>
<td>Triode</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>Velocity</td>
</tr>
<tr>
<td>VOLUME</td>
<td>Volume</td>
</tr>
</tbody>
</table>

طحق رقم (2)

قائمة بالأسماء حسب الحروف الأنجليزية
(لا مصطلحيات / عربي)

53
<table>
<thead>
<tr>
<th>Term</th>
<th>Arabic Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELEGRAPHY</td>
<td>ارمال برق</td>
</tr>
<tr>
<td>BARRIER POTENTIAL</td>
<td>باريه الفرامل</td>
</tr>
<tr>
<td>Emitter</td>
<td>ايبير</td>
</tr>
<tr>
<td>COMMON GATE</td>
<td>باب المجموع</td>
</tr>
<tr>
<td>SOURCE FOLLOWER</td>
<td>مصدر متباعح</td>
</tr>
<tr>
<td>REGENERATIVE</td>
<td>برج الدفع</td>
</tr>
<tr>
<td>STABLE</td>
<td>مستقر</td>
</tr>
<tr>
<td>FOUR-LAYER DIODE</td>
<td>دائرة طبقية 4</td>
</tr>
<tr>
<td>COLLECTOR</td>
<td>ذيل الربط</td>
</tr>
<tr>
<td>ATTRACTION</td>
<td>الجذب</td>
</tr>
<tr>
<td>LEADING EDGE</td>
<td>مادة البداية</td>
</tr>
<tr>
<td>VOLUME</td>
<td>حجم</td>
</tr>
<tr>
<td>TANK</td>
<td>بركة</td>
</tr>
<tr>
<td>AC LOAD LINE</td>
<td>خط المقاومة ديناميك</td>
</tr>
<tr>
<td>SHORTCIRCUIT</td>
<td>خط قصير</td>
</tr>
<tr>
<td>LINEAR IC</td>
<td>IC قياسي</td>
</tr>
<tr>
<td>CYCLE</td>
<td>الدورة</td>
</tr>
<tr>
<td>PEAK</td>
<td>الذروة</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>علامة</td>
</tr>
<tr>
<td>RESONANCE</td>
<td>إرسبون</td>
</tr>
<tr>
<td>LIFETIME</td>
<td>عمر الريش</td>
</tr>
<tr>
<td>RESET TIME</td>
<td>مدة الاسترخاء</td>
</tr>
<tr>
<td>VELOCITY</td>
<td>سرعة</td>
</tr>
<tr>
<td>LAG NETWORK</td>
<td>شبكة متأخرة</td>
</tr>
<tr>
<td>IMPURITIES</td>
<td>الترايب</td>
</tr>
<tr>
<td>TRIODE</td>
<td>تريود</td>
</tr>
<tr>
<td>LIGHT</td>
<td>ضوء</td>
</tr>
<tr>
<td>ENERGY</td>
<td>الطاقة</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>عرض</td>
</tr>
<tr>
<td>ENVELOPE</td>
<td>velope</td>
</tr>
<tr>
<td>PERIOD</td>
<td>الفترة</td>
</tr>
<tr>
<td>PLUG</td>
<td>قلم</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>قناة</td>
</tr>
<tr>
<td>DETECTOR</td>
<td>جهاز</td>
</tr>
<tr>
<td>MIXER</td>
<td>خلاط</td>
</tr>
<tr>
<td>OPERATING POINT</td>
<td>نقطة العمل</td>
</tr>
<tr>
<td>HATCH</td>
<td>طبق</td>
</tr>
</tbody>
</table>

طاح رسم (3)
قابلية البيانات سبعة مسب الحروف المرجية
ب (طاح 3/17-175)
<table>
<thead>
<tr>
<th>ظاهرة</th>
<th>مصطلح عربي</th>
</tr>
</thead>
<tbody>
<tr>
<td>ظاهرة</td>
<td>مصطلح عربي</td>
</tr>
<tr>
<td>ظاهرة</td>
<td>مصطلح العربي</td>
</tr>
</tbody>
</table>
مشروع قاعدة المعلومات

بوصلة

هيئة بيئة وتنمية المناخ

المركز العربي للدراسات الفلكية والرياضيات
المقدمة:

نظرًا لأهمية الحاسة الإلكترونية كونها أداة مساعدية للتنفيذ النظام الموجودة في أغلب المؤسسات بشكل سريع ودقيق، مما يساعد على الإسراع في تنفيذ الخطط المناطة بهذه الدوائر، وبالنسبة للإسراع في تنفيذ خطط التنمية العامة للكبيرة، وحيث أن النظام اليدوي يتطلب فترة زمنية كبيرة وشهود كبيرة، وبالنظر لكون المركز القومي للحاصلات الإلكترونية من الدوائر التي ختم خطط كبيرة نحو التقدم لابد له من استخدام الحاسة الإلكترونية في تسهيل بعض الجوانب الإدارية، لذلك قام فريق من معهد التدريب والبحث بدراسة شاملة لنظام التدريب اليدوي ومدى إمكانية معالجتها على الحاسة الإلكترونية لغرض تطوير العمل في قسم التدريب، وقد استخدم طريقة تدريس معارفات للحاسة الإلكترونية في ملف رئيس واحد وربطت ببعض المعلومات والملفات القابلة للتنقل إلى المعلومات بسرعة ويقلل من تكرارها إلى العدد الأدنى، وعليه غرفت وسمعت جميع العلاقات المنطقية بين تركيبات المعلومات المختلفة بطريقة متنوعة لتسهيل عملية تطوير تدريج قاعدة المعلومات في المستقبل عند توفر متطلبات جديدة وعلاقات منطقية جديدة فيما بينها.
تمثل قاعدة المعلومات مجموعة كبيرة من البيانات المخزنة على وحدات الخزينة المعروفة (الخزينة والالوانات المفتوحة). إن اختيارنا لطلب قاعدة المعلومات في تصميم النظام هو لتنوير سيطرة مركزية على البيانات حيث تخزين المعلومات في ملف رئيسي واحد بدلاً من عدد من الملفات التي تكون عملية تدقيق المعلومات فيها الصعب، أما في حالة قاعدة المعلومات يمكن للمدير قاعدة المعلومات أن VALIDATION ROUTINE يعرف برامج تدقيق المعلومات الداخلي للقاعدة المعلومات والتي تنفذ مرة واحدة فقط، كما أن هذا الطلب في خزين المعلومات يقلل من التكرارية والإزدواجية بين البيانات التي تخزن بالطريقة التقليدية وتضيق التعقيدات الأمنية لأن البيانات تكون تحت سيطرة مدير قاعدة المعلومات الذي يخمن بأن عملية الوصول إلى المعلومات المخزنة تكون باستخدام مفاتيح معينة PRIVACY KEYS ومن الممكن إعطاء حقوق UPDATE والتنزيل retrieve وDELETE الخ لمعيقات معينة ولاشخاص معينين فقط.
2. هدف نظام التدريب:

هَذَا النَّسَمَةُ يَلِدُ لمَّعَلاَئ وَاحِدَ مَتَضَمِّنُ كُلِّ المَعْلُومَاتِ
مِن مُوَظِّفِي مَراَكِزِ الْحَاسَبَاتِ وَدِوَارِهِمْ مِبَدِئًا بَاِخْتِبارِ القَابِلَةِ
بِمَنْأَوِهِ الطَّلَبِ. (الحِمَّاءِ، الضَّفْعِ، تَجْهِيلِ المَعْلُومَاتِ)
لِكُلِّ مُوَظِّفِ اِخْتِبَارُ فِي الْمَرْكَزِ الْقَوْمِيِّ أَوْ غَيْبَهُ. ومَعْلُومَاتِنَّ مِن
المَوْظِفِ مَثْلَ اسْمَ المَوْظِفِ، رُقْمُهُ الْخَصِيصِ وَالْتَحْصِيلِ الْعَلْمِيِّ
الْخَبِيرَةِ وَالْعَمْلِ الْحَالِيِّ وَتَارِيخِ الْتَعْمِينِ وَعُنُورُ الوَظِيفَةِ. هَذِهِ
تَرْتِبُهُ تُسِيرُهُ لِلْمَعْلُومَاتِ تَشِيرَةً لِلْمَوْظِفِ فِي الْدُّورَاتِ التَّنَافِسِ
يَقِيمُهَا قَسْمُ التَّدْرِيْبِ فِي الْمَرْكَزِ الْقَوْمِيِّ لِلْحَاسَبَاتِ الْإِلْكَتَّرُوْنِيَّةِ
أَوْ دَائِرَةً آخِرَةً أَوْ دُوَلَةً آخِرَةً (الْأَيْنُادُ، الْإِسْتِغْلاَدَاتُ وَالْزَّمَالَاتُ الْدَّرَاسِيَّةِ)
كَذَلِكَ مَعْلُومَاتِ الْقُوُوانِ عَنِ الدُّورَةِ كَاَسِمَةٌ وَتَارِيخيَّةٌ وَتَقْيِيمُ المُشَارِكِ
فيُهَا وَالْمَلَكِاتِ. أَنْ وَجَدَتْ.

لَقُدَّ ذَكَرَتْ فِوَآئِدَ وَمِيزَاتُ أَنْظِمَةِ قَوَاعِدِ المَعْلُومَاتِ فِي إِجْلَئِد
سابِقَةً. وَلْغَرِّفِ التَّذِكِيرِ يَمَكِنُ تَلْخِيصِ مِيزَاتِ التَّصِيَّرِ بِهذِهِ الْطَّرِيْقَةِ
كَمَا بَلَّى;

1.2 - الاسترجاع السريع للقبود المخزونة وَمِنْ خَلِلِ مَفَاتِحِ
معينة كِأَعَلاَءٌ، اسْمَ مُوَظِّفٍ مَنْيِنَ أو رَقْمُهُ الْخَصِيصِ
وَالحُصُولٍ عَلَى كُلِّ الْقِبُودِ المَتَلَكُّثة بِهِ مِنْ دُورَاتِ شَارِكٍ
بِهَا فِي الْمَرْكَزِ أَوْ خَارِجَهُ. وَتَقْيِيمُهَا فِي كُلِّ دُوَرَةً
وعشان الوظيفة، عمله الحالي، خبراته، مهمته
في سنة معينة..... الخ.

2.2 التصميم حسب قاعدة المعلومات يتصف بالبسطة والوضوح والمرونة بحيث يمكن سهولة إعادة تصميم
اي علاقة (SET) بين القيود المخزنة أو معلومات
القيد دون ان يؤثر على القيود الأخرى.

2.3 بواسطة مشروع نظام التدريب الممكن دعم تلبية
كافة احتياجات الدائرة من متابعة الطلاب المتدربين
في المركز القومي للحاسبات من مختلف مراكز
الحاسبات في القطر أو متابعة الطلاب المتدربين في
دوائر أخرى (أي يمكن تطبيق النظام في جميع مراكز
الحاسبات في القطر التي تستخدم حاسية ويندوز بل
و система قاعدة المعلومات I.D.S.I. I.D.S.II)
وذلك بتوفير
المعلومات عن الموظفين أو الطلاب وكافة التغييرات
(التحديثات) التي تطرأ عليهم مع توفير كافة
المعلومات عن المحاصرين العرب والاجانب.

2.4 باستخدام قاعدة المعلومات
بسيطة طبع المعلومات التي تحتاجها الجهات العليا...
تتكون هذه البرامج الجاهزة من 29 برامج مختصرة موضع في الجدول (1) أن الفترة الوسطية لملفات البرنامج تحتاج إلى سعة خزينة قدما 80 كيلو بايت على القمني (CBASICO-2) المفتوحي وديناء إلى ذلك أن المبرمجي للغة (CRUN) يحتاج إلى سعة خزينة قدما 18 كيلو بايت على القرص المفتوحي، لذلك يتطلب توفير على الأقل 120 كيلو بايت على القرص المفتوحي كمساحة خزينة.
نظام التشغيل:

الغرض جعل البرامج الجاهزة (UDMS) لها خاصية انتقالية.
فإن نظام التشغيل (CP/M) يجب أن يكون أكثر شيوعاً للاستخدام والذي يتوفر لأكثر من 250 حاسة دقيقة مختلفة (3)، ويستمر كافح نظام تشغيل لعدة سنوات قادمة مما يوفر عمراً جيداً للبرامج المطورة في هذا البحث.

لغة البرمجة:

بعد أن تم تحديد متطلبات الأجهزة ونظام التشغيل فإن الخطوة التالية هي تحديد لغة البرمجة العليا وتمام أن البرامج الأساسية ستكون قابلة للتنفيذ على عدة أجهزة فإن اللغة المستعملة يتوجب عليها أن تكون شائعة الاستعمال وتكلفة أقل ودوات مستوى عالي. ويؤخذ بنظر الاعتبار استخدامها في توصيف البرامج الجاهزة. لهذه الأسباب وقلة اللغة تم كتابة البرامج الجاهزة بلغة (C-) ، حيث إن هذا البرنامج من لغة بسيطة هو أقل تفاعلاً من بقية الأنواع ولكنها سهلة التعلم. لمن سيعمل مع البرامج الأساسية هذه. وهناك عامل آخر لاختيار هذه اللغة هو سهولة استخدام ومعالجة الملفات المخزنة على الأقراص المغناطيسية والتي تكون من نوع عثوائي.
الأجهزة الفنية :-
إذا كانت الانتباهية تعني أن البرامج الأساسية يمكن توفيره بسهولة إلى المستفيدين ولها القابلية لتنفيذها على أجهزة مختلفة من الحواسيب الدقيقة وسهو جيد ممكن، ولذا فإن الجهاز يجب أن يكون قابلا على المواصفات الحالية لتنفيذ البرامج الجاهزة
1 - (48) كيلو بايت (RAM) من ذاكرة القراءة والكتابة مستندة على الحاسة الدقيقة من نوع (280).
2 - (500) كيلو بايت طاقة ذاكرة على أقراس مغناطيسية
3 - محطة طرفية تستخدم أقراس (ASCII).
4 - طابعة طريقة قياسية.
وتوفر هذه المرايا في اغلب الحواسيب الدقيقة الشائعة الاستعمال (11) وهذه المواصفات تحدد نوعية وجود المخططات الناتجة. ومن السهل تقبل هذه المواصفات إذا ما أخذنا بنظر الاعتبار انتقالية النظام. ويمكن تحويل بسهولة بعض الحواسيب التي لا تستند على الحاسة الدقيقة من نوع (280) إلى حواسيب تستند عليها، لكن لهذا أهمية خاصة من ناحية نظام التشغيل المعروف باسم (CP/M) والذي يستخدم بشكل واسع.
ويعتمد على الحاسة الدقيقة من نوع (280).
البرامج الأساسية:

بالمقارنة مع أمان البرامج الأساسية للحاسبات الكبيرة، فأن البرنامج الأساسي للحاسبات الدقيقة لا يكون إلا عن بُعد. ولكن في حالة منطقية المستوطنات البشرية، فإن هناك نقصا كبيرا في البرنامج الأساسية اللازمة لهذه الاستعمالات على الحاسبة الدقيقة (1). ولذا فإن التطوير في البرنامج الأساسي للمعالجة الجغرافية مختلطة كثيرة مقارنة مع التطور الحاصل في الآلات نفسها. وهذا النقص والاختلاف يعتبر من أهم العوائق التي تحدد نقل تقنية الحاسبات الدقيقة لأفراط تخطيط المستوطنات البشرية. ويساعد مركز المستوطنات البشرية للجامعة المتحدة على تخطيط هذه العقبة بتوفير هذه البرنامج الجاهزة (UDB5) للحكومات الإعضاء بسعر الكلفة المناسب.

أ原则 التصميم:

تم التركيز على خاصيتي في التصميم وحمايته القابلية للتوسع والقابلية للانتقال من نظام إلى آخر، حيث استوجب كون البرنامج الجاهز عالمية والسبب المذكورين سابقا الالتزام بباني خاصتين، كما توجب جلب البرامج الجاهزة ذات انتقالية متالية، ويمكن تحويرها أو تفكيكها وقادرية على أن تعزز الطبيعة المكانية لبيانات التخطيط.
الصيانة الأساسية هي الآن تركز على التخطيط بدلاً من إدارة
معالجة البيانات،
من الضروري استخدام عدد من الأساليب الدقيقة من قبل مؤسسة
معينة سوف تساعدها على القيام بواجبها بدون وقت ضائع الذي
قد يحدث نتيجة الاعطال في الآلة، مثال على ذلك كان هناك
عدد من الإجراءات الضرورية مربوطة مع حاسة مركزية كبيرة وتمت ذلك
هذه الحاسة او الآلة الملحة بها عن العمل فأن كافية
الكميات سوف توقف، أما في حالة استخدام عدد من الحواسيب
الدقيقة فأن بالإمكان تحويل العمل من حاسة عاطلة إلى أخرى
صالحة للعمل.

الصيانة:

أن تكاليف صيانة الحواسيب الدقيقة عادة تكون قليلة جداً
متأثرة بتكاليف الصيانة للحواسيب الكبيرة. فإن الاتجاه
إلى الحواسيب الدقيقة قليل وتكاليفها أيضاً قليلة، وفي الغالب
الإجابة يمكن تنفيذ المستفيد على القيام بعمليات الصيانة
التي لا تتطلب أكثر من إدخال قطعة الكترونية أو لوحة الكترونية
معينة بصورة بسيطة. وقد لوحظ في بعض الأحيان من الممكن
شرائ حاسة دقيقة بتأليف صيانة حاسة كبيرة لمدة شهر فقط.

-94-
العربية في تعليم مخطط المستوطنات البشرية في الاستخدام، وعن قابلية الحاسوب الدقيقة في تطبيقات التخطيط، هذه هي أهم الأساليب التي دعت إلى تطوير برامج إستراتيجية جاهزة التي تدعم برامج إدارة المعلومات الحضارية (Urban Data Management Software UDMS).

وهي بذلك عوامل أخرى تجعل من الحواسيب الدقيقة بديلًا جيدًا في استيعاب البيانات المعالجة الجغرافية في البلدان النامية مثل متطلبات المحيط، الصيانة، مواصفات البرامج الأساسية لمنظمة الأمم المتحدة للتنمية الحديثة.

- متطلبات المحيط للمحاسبات الدقيقة

- ان أحد أهم مميزات الحواسيب الدقيقة هو أنها لا تحتاج إلى متطلبات عالية وطالية التكلفة كما هو الحال بالنسبة للحاسبات الكبيرة، وإن وعية المحيط المفتوح هي مواصفات النفوذ الدائم والمتوازنة مقارنة مع التسهيلات التي توفرها الحاسبات المركزية الكبيرة، لذلك يمتلك المستخدم سلطة مباشرة وتلك تكون كاملة على المنظومة الكلية للمحاسبةبالإضافة إلى ذلك فإن المستفيد لا يضع لمستويات الإدارة والمنسقة والتي تكون مطلوبة في الحاسبات الكبيرة، إن...
وتعداد السكان سوف لا يساعد فقط واقعي السياسة والمخططين في اطلاعهم واتنا إضافة إلى ذلك يقلل من الضباب في الخدمات المقدمة عن قليما.

ان استخدام المنظومات ذات التكاليف القليل-- لإدارة المعلومات لها أهمية خاصة في الدول النامية وذلك لتبسيـل انساب المعلومات المتطلبة بصورة جديدة في الحالات التي لا يمكن فيها توفير استثمار مادي ومعدات معقدة. ان التطبيقات الحديثة في مكتبة معالجة المعلومات قد جعلت بشكل كبير ملازمة مكتبة الحاسبة الدقيقة للتطبيقات في الدول النامية. وحيث أن المعرفة بهذه التطورات والتطبيقات في إدارة المعلومات الكلي والجزئي محدودة الانتشار.

ان مركز الأمم المتحدة للمسوطنات البشرية قد دعم تطوير مجموعة برامج أساسية استخدامها على الحواسيب النسبية وذلك لسببين، الأول هو تكييف نقل تقنية الحاسبة الدقيقة إلى البلدان النامية. والثاني هو أهمية خاصة حيث أن هذه التقنية تعتبر واحدة من التقنيات الأكثر ملاءمة لتنفيذ التطبيقات في مؤسسات إدارة المعلومات المحلية والدولية. والسبب الثاني قد يكون أكثر أهمية وذلك للاستخدام البرامجي.
ملخص البحث :

إن الانتشار المادي للدول النامية لتوفير بيئة طبيعية لمعالجة كميات كبيرة من البيانات المكانية الناتجة من التطور، يعتبر من العوائق المهمة في استخدام البيانات بصورة كفيلة في هذه المناطق عند مقارنتها بالنافذة المتاحة على المدى القصير. وإن الاستثمار في استخدام حواسيب كيبرة أو عميقة غالباً ما يتطلب مكانيات مادية لا تستطيع معظم هذه الدول توفيرها، ولكن من الممكن حل هذه المشكلة باستعمال الحواسيب الدقيقة. أن البحث الحالي يعرق خطة أساسية وتصميمية لنظام نموذجي لمعالجة المعلومات الجغرافية ثم باستخدام الحواسيب الدقيقة والذي تم تطويره من قبل مركز منظمة الأمم المتحدة للمستوطنات البشرية لنقلها إلى الدول النامية.

المقدمة :

أن النمو الحاصل في المكتننة ذات الكلف القليل قد سمح في استعمال أنظمة معلومات بتكاليف قليلة لدعم فعاليات التنظيف في المستوطنات البشرية. إن توفير معلومات الفحص من الأراضي والموارد والtrakib البيئية والخدمات الاجتماعية.
مطالعة المعلومات المحاسبية الدقيقة
كَأَدَنَّ خَلِّ بِمُحْمَكُن لِلذِّلِّةِ المَعَالَماتِ في الدَّولَةِ السَّامِمَة

تَأليف
د. نصير بن عمر بن عبد الله بن محمود
د. جميل بن عبد الله بن عبد الله بن محمد

ترجمة: عصام عباس
واجيعت: كمال عبد
مركز الدراسات في المصادر chrono-البترولية
لا يمكنني قراءة النص العربي من الصورة المقدمة. إذا كنت بحاجة إلى مساعدة في شيء آخر، فأرجو أن تخبرني بذلك.
<table>
<thead>
<tr>
<th>اسم المرز</th>
<th>الرسالة الدورية لتحضيرات الامتحانات الدورية</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>الدورة التدريبية النهائية للعام الدراسي الدورة</td>
</tr>
<tr>
<td></td>
<td>اسم المرز</td>
</tr>
<tr>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>

تقرير يظهر الدورات التي شارك بها كل موظف وتقييمها والمنة التي اخذ فيها الدورة.
باستخدام نظام التدريب ستتمكن أي دائرة تنفيذ
بعملية تدريب الكادر احتساب وإعدادا أو مصروفاته
السنة المدفوعة لقاء اشتراك كل موظف في الدورة إضافة
الكفاءة الاستثنائية تمكن الحقول عليها بسهولة .
وأخيرا فإن تطبيق نظام التدريب باستخدام الحاسبة
الإلكترونية ذو ميزات كبيرة تفوق الطرق التقليدية من حيث
الدقة والكفاءة دون توفير الكادر والذي يعتبر أكثر ملاءمة
ومرنة باستخدام قاعدة المعلومات التي تؤدي إلى ترتيب
المعلومات على جزء الفئة بتصميم وارتباط معين بحيث
يؤدي إلى الاختصار في الوقت المطلوب للوصول إلى
المعلومات واسترجاعها واستغلال جزء الفئة بنقص طاقة
ممكنة وهذا بدوره سوف يؤدي إلى استثمار اقتصادي أكبر

المراجع :

8.1- JAMES MARTIN, COMPUTER DATA-BASE ORGANIZATION ,
IBM System Research Institute, 1977 by Prentice-
Hall, Inc. Englewood cliffs, N.J.

8.2- CII Honeywell Bull, DM-IV Data Manager Including
6.16- إحصائية من عدد المتدربين في معهد التدريب والبحث خلال خمس سنوات مبينا كل دورة لكل مشارك.

6.17- قائمة باسماء المحاضرين وكليه كل منهم ومعـدد الدورات التي قدمها والدورات التي شارك فيها في اعتباره (مشاركًا) مع نمط تقييمه في هذه الدورات.

6.18- قائمة تتضمن أسماء المشاركين في الدورات موزعين حسب التحويل العلمي.

6.19- قائمة تتضمن الدورات التي شارك فيها الطلاب طلاب خارج الخطر مع ذكر مدة واسمها.

6.20- قائمة بالدورات التي تتضمن عدد من المحاضرين مع تبيان عدد المشاركين فيها والمحاضرين الذين قاموا بتقديمها.

7. الاستنتاجات:

أن بالإمكان تطبيق نظام التدريب في أي مركز خاصية لمتابعة تدريب الكادر وتطويره في أي مجال ومقارنة نتائجه بعنوان وظيفته وعمله الحالي.
6.7 قائمة بأسماء المشاركين لدورة معينة مع تفكيكهم النهائي لذلك الدورة.
6.8 قائمة بأسماء المرشحين الذين لا يتخطى عليهم شروط الدخول مع ذكر السبب.
6.9 قائمة بأسماء المرشحين الذين تنطبق شروط الدخول عليهم موزعين حسب الدورة.
6.10 تقرير ببين الدورات التي اجتازها مشارك معين موزعا حسب الدائرة ولسنة معينة أو مجموعها لمدة سنوات.
6.11 قائمة بأسماء الفائزين في الدورة.
6.12 قائمة بأسماء المنضمين من الدورة.
6.13 تقرير ببين الدورات التي أقيمت في المركز القومي للبحوثات في تاريخ ويوم معين.
6.14 تقرير ببين مجموع المشتركين لدورة معينة لجميع الدورات.
6.15 قائمة بأسماء الخريجين الذين أصح لهم خبرة معينة وهو مميزون للدخول إلى الدورات القادمة (موزعا حسب الخبرة.).
التقارير المستفردة من النظام:

أما أهم التقارير التي يمكن استخراجها باستخدام النظام فهي:

6.1- قائمة بأسماء مراكز الحاسبات مع تبيان نوع حاسبة كل مركز لسنة معينة.
6.2- قائمة بأسماء المتدربين موزعين حسب مركز الحاسبة.
6.3- قائمة بأسماء الطلاب المتخرجين والفاضلين في امتحان القابلية الذي يقام في المركز القومي للحاسبات أو في أي مركز آخر.
6.4- قائمة تبين الطلاب موزعين حسب دواوينهم مع تبيان الخبرة كل خصى والمدة التي قضاها في كل نوع خبرة في مجال الحاسبات وغيرها.
6.5- قائمة تبين أسماء المتدربين من كل دورة مع ذكر سنوات وظيفتهم مقارنة بالعمل الحالي الذي يقومون به.
6.6- تقرير (حسب الطلاب) باستخدام لغة الاستفسار أو لتبين الدورات التي اجتازها المشتركون والمطلوبة للمشاركة في دورة معينة.
5.2.7- برنامج خزن وتحديث المعلومات عن مشاركة
الموظف في اختبار القابلية ونتائج الاختبار مع
طبع تقرير بذلك.

ثالثاً: برامج الاسترجاع:
وهي برامج احصائية وبرامج آنية لاستخراج التقارير
المطلوبة.

لقد أدخلت المعلومات إلى النظام باستخدام بعض
الاستمارات التي وضعت على موظفي المركز القومي للباحثات
الإلكترونية بصورة تجريبية وللحصول على معلومات عن الدورات
تم الرجوع إلى السجلات اليدوية المتوفرة في معهد التدريب وقد
اقترح استمارة الترشيح للدورات التي تظهر في الملحق رقم.

-2-

-82-
5.2.1- برنامج تجميع المعلومات العامة عن الدوائر أو
تحديثها إذا كانت مخزنة في قاعدة المعلومات
، وطبع تقرير بالمعلومات المخزنة أو
المحدثة.

5.2.2- برنامج خزن المعلومات العامة الصحيحة عن
الموظفين، يقوم البرنامج أيضاً بتحديث
المعلومات عن الموظف أو تغيير العلاقة بين
قيد الموظف وقيد الدائرة في حالة نقل الموظف
، مع طبع تقرير بالمعلومات المخزنة
والمحدثة.

5.2.3- برنامج خزن وتحديث المعلومات عن كافة الدورات
التي تقام داخل القطر أو خارجه.

5.2.4- برنامج خزن وتحديث مشاركة الموظف في الدورات
وتفحيمهم مع طبع تقرير بذلك.

5.2.5- برنامج خزن وتحديث المعلومات عن المحاضر
والمحاضرات التي قاموا بتقديمها.

5.2.6- برنامج خزن وتحديث المعلومات عن اختصاصـار
القابلة.

-81-
5. البرامج المستخدمة في النظام:

اما البرامج التي استخدمت في هذا النظام فقد فصلت على
الوجه التالي:

VALIDATION PROGRAMS

اولا: برامج التدقيق

تقوم هذه البرامج بتدقيق كافة المعلومات قبل تحميلها
في القاعدة مع طباعة تقارير بالمعلومات الصحيحة والخطا
أجل تصحيحها، كما تتضمن برامج تدقيق التغيرات على
المعلومات المخزنة في القاعدة ومن هذه البرامج:

5.1.1 - برنامج تدقيق المعلومات الشابطة من الدوائر
والدورات وانواع اختبار القابلية

5.1.2 - برنامج تدقيق التغيرات من الموظفين

5.1.3 - برنامج تدقيق التغيرات من الدوائر واختبار
القابلية

LOAD & UPDATE PROGRAMS

كانتا: برامج الخزن والتحديث

وهي برامج لخزن المعلومات الصحيحة الشابطة والمتغيرة
داخل النظام وهي في نفس الوقت برامج تحديث للمعلومات
الشابطة والمتغيرة وتتميز عمل البرنامج بين خزن أو تحديث
بواطة رقم معين للقيد وهو S إذا كان خزن أو M للتحديث.

وتشمل هذه البرامج:
1- رمز الاختبار: يدل على نوع الاختبار إذا كان للمبرمجين أو للمستقبلين أو تقييم المعلومات أو غيره.

2- اسم الاختبار: يذكر اسم الاختبار.

TEST

اسم القيّد: الاختبار

يحتوي على معلومات عن الاختبار في تاريخ معين.

1- تاريخ الاختبار

2- عدد الطلاب (المشاركون) في الاختبار.

RESULT

اسم القيّد: النتيجة

يذكر في هذا القيّد درجة الامتحان لكل نوع من انواع الاختبار مرتبة بقيّد المشارك، أي أنه يظهر تقييم الموظف أو المشارك في اختبار قابلية معين.
4- رمز الجهة : رمز يشير إلى الجهة أو الشركة التي تعمل فيها المحاضر سواء كانت داخل الدولة أو خارجها.

5- مستوى المحاضر : رمز يدل على المستوى العلمي للمحاضرة حسب جدول المستوى العلمي.

---ikki---

CONFERENCE

اسم القيد : التقدم

استخدم هذا القيد لتخزين المعلومات عن الدورة التي تشمل عدد من المحاضرات المختلفة مثل دورات تحليل الأنظمة والتكنولوجيا تقدم من قبل عدد من المحاضرين. ويحتوي هذا القيد على:

-1- تسلسل اليوم: يذكر رمز اليوم إذا اقيمت عدد من المحاضرات فيه.

-2- عدد الساعات للمحاضرة الواحدة.

-3- اسم المحاضرة.

-4- رمز المحاضرة.

APTITUDE

اسم القيد : أختبار القابلية

يحتوي على المعلومات الخاصة باختبار القابلية الوظيفية يجري في المركز القومي للحاسبات الإلكترونية أو في مركز حاسبة آخر.
YEAR

اسم القياد: السنة

يذكر في هذا القياد رقم السنة فقط، وهو مفتاح يمكنه
بواسته استخراج تقارير مختلفة لسنة معينة أو الوصول على
مجاميع معينة عدد من السنين.

DAY

اسم القياد: اليوم

يذكر في هذا القياد تاريخ اليوم الذي اقيمت فيه الدورة
ورمزه نسبة إلى بقية أيام الأسبوع. ويمكنه بواسته الوصول
على تقارير ليوم معين لسنة معينة.

LECTURER

اسم القياد: المحاضر

يحتوي هذا القياد على معلومات عن المحاضر وهي:

1- رمز المحاضر: وهو رمزاً عامًا يعطي للمحاضر إذا
كان أجنبياً أو نفي الرمز.

المخزون في قيد المشارك إذا كان
موظفًا في أحدى دوائر الدولة.

2- اسم المحاضر: يذكر الاسم الثلاثي باللغة
العربية.

3- الجنسية: رمز يدل على جنسية المحاضر حسب
جدول الجنسية.
2. رمز الفاعلة التي اقيمت فيها المحاضرة
3. مجموع عدد الساعات الفعلية للدورة
4. مجموع عدد الساعات العملية - إن وجدت -
5. عدد المشاركين في الدورة
6. عدد الفاعلين من المشاركين في الدورة
7. وقت الدورة: رمز يشير فيما إذا كانت الدورة صباحية أو مسائية

PRE-REQUISITE: المتطلبات

يرجى قراءة هذه القيد بقيد الدورة وذكر في قيد المتطلبات

رمز الدورة المعروض اجتيازها قبل الدورة المطلوبة.

متطلبات دورة COBOL-74 هي دورتي تعريفية بالحاسبات وتعريفية بالبرمجة، كما يذكر في هذا القيد أيضا:

أهمية الدورة: وهو رمز يشير إلى أهمية هذه الدورة بالنسبة لقيد الدورة الرئيسي المرتبطة به فمثلا:

إذا كان قيد الدورة II فسيكون رمز الدورة في قيد المتطلبات 74 ورمز الخريجة بالمرتبة في الدورة II هي 1 ومعناها الزامية للدورة 74 قبل الدورة II.

-76-
ويحتوي قيد المحاضرة على:

9. على عدد للمشاركين: يذكّر في هذا الحقل رقم
يبدل على وعلى عدد للمشاركين في
هذه الدورة.

10. إدنى عدد للمشاركين: يذكّر هنا أقل أو أدنى
عدد يمكن أن يكون في هذه الدورة
لاقامة المحاضرة.

Lecture المحاضرة

اسم القيد: المحاضرة

هو قيد تابع: LECTURE

لمحة مبينة وهو يمثل تلك الدورة.

في تاريخ معين، كان فيد الدورة كوبول -68 في قيد المحاضرة

سيتم إدارة جلسة و68 هي تاريخ معين وسيكون هناك عدد من هذه

القيود السابقة (قيد المحاضرة) كل منها في تاريخ معين.

وتتابع إلى قيد الدورة كوبول -68.
اسم القيـد: القيـد الرئيسي للدورة

يعتبر المدخل إلى القسم الثاني من ملف قاعدة المعلومات
للتدريب حيث يمكن بواسطة استرجاع جميع الدورات المتخصصة
 بصورة تشاركية إضافة إلى احتواءه على بعض المجاميع مشـكلة
مجمع الدورات في قاعدة المعلومات.

اسم القيـد: الدورة

يتضمن هذا القيـد:

1. رمز الدورة: مأخوذ من جدول الدورات.
2. اسم الدورة: باللغة العربية.
3. مستوى الدورة: إذا كانت تعريفي أو أساسية أو
 متقدمة.
4. عدد الساعة: وهي عدد الساعات المقررة للدورة.
5. مدة الدورة: حسب الأيام الفعلية للدورة.
6. نوع الدورة: رمز يدل فيما إذا كانت الدورة
 تعريفي أو متقدمة أو تعطى
 للمبرمجين أو للأنظمة آخـ.
7. الكلفـة: يذكر في هذا الحقل كلفة الدورة
 للشخص الواحد بالدينار.
azzo al-waqid: al-abdura

يتضمن كل قيد من هذا النوع خبرة واحدة للمشارك، وبها أن
العلاقة بين المشاركة والخبرة هي علاقة 1 - ن فسيكون لكل مشارك
عددًا من القبود ممثلاً كل قيد له خبرة معينة.

ويحتوي هذا القيد على:

1. رمز الخبرة والوظيفة: يدل على رمز الخبرة
 لوظيفة معينة.

2. وصف الخبرة: وهو وصف للخفرة لرمز الوظيفة المذكور.

3. مدة الخبرة: تذكر بالشهور.

OTHER-COURSE

azzo al-waqid: al-dourat al-a'rx

ويشمل الرسالات والإفادات خارج القطر، ويحتوي كل قيد
على:

1. اسم الدورة.

2. مكان الدورة: وهو القطر الذي أقيمت فيه الدورة.

3. تاريخ الدورة: تذكر السنة فقط.

4. مدة الدورة: تذكر بالأيام.

-72-
3. الجنسية التي ينتمى إليها الموظف:

بتحوي هذا الحقل على رمز للجنسية حسب جدول معين.

يتضمن جميع الجنسيات وما يقابلها من رموز.

4. التحصيل العلمي:

وهو عبارة عن رمز يدل على المستوى العلمي الحالي للموظف.

5. الاختصاص:

رمز يدل على الاختصاص العلمي لأعلى شهادة للموظف.

6. الدولة:

رمز يدل على الدولة التي حصل فيها الموظف على شهادة وتوعد من الجدول المستخدم في حقل الجنسية.

7. السنة التخرج:

يدل هذا الحقل على السنة التي حصل فيها الموظف على أعلى شهادة علمية.

8. تاريخ التعيين:

يتضمن تاريخ تعيين الموظف في الدائرة.

-71-
لأ لجميع الموظفين العاملين في الدائرة:
2- رمز يدل فيما إذا كانت الدائرة مركزًا للحاسة أم لا.
3- اسم الوزارة التي تتبع لها الدائرة.
4- اسم الشركة المصنعة للحاسة ومعلومات أخرى عن الحاسة الموجودة في الدائرة.

اسم القيمة: الوظيفة

يحتوي هذا القيمة على عنوان الوظيفة وما يقابلها من رمز مأخوذًا من جدول الوظيفة.

STUDENT

اسم القيمة: المشارك أو الموظف

يحتوي هذا القيمة على كافة المعلومات التي تعيش الموظف في الدائرة ويحتوي على المعلومات التالية:
1. اسم الطالب (المشارك).
2. رمز المشارك:

وهو رقم خاص لكل موظف للدلالة عليه وهو متعلقًا بأعمالها ضمن الدائرة. ولا يمكن تكراره ضمن الدائرة ومن ف蠹ة المعلومات لاحتوائه على رقم التدقيق.

CHECK-DIGIT
أما القيود التي سوف تخزن في ملف قاعدة المعلومات كمسا تظهر في تصميم نظام قاعدة المعلومات (ملحق رقم -1) فهي:

HEAD-ORGANIZATION

اسم القيود: القيود الرئيس للدائرة

يعتبر هذا القيود أول قيد يخزن في الملف وتستخدم لتخزين مفتاح ذو عنوان معين (DIRECT KEY) ويسترجع باعتبار نفسه القيمة للمفتاح، ومن هذا القيود يمكن الحصول على جميع القيود التابعة لها من نوع "قيد الدائرة" بطريقة متتابعة SEQUENTIALLY كما يتضمن بعض المجاميع مثل مجموع مراكز الحاسبات في القطر ومجموع الطلاب أو الموظفين المخزونين في قاعدة المعلومات.

ORGANIZATION

اسم القيود: الدائرة

يحتوي هذا القيود على رمز واسم الدائرة باللغة العربية والرمز الذي يقابلة باللغة الإنجليزية إضافة إلى:
يمكن أن نميز هذا التركيب الشبكي لتمثيل العلاقة بين القيود.

- يمكن أن يكون لطالب واحد من المشاركات.
- يمكن أن تحتوي المحاضرة على أي عدد من الطلاب لكل منهم مشاركة مميزة.
- المشاركين المميزين يجب أن يتبعوا:
 - طالب واحد فقط.
 - محاضرة واحدة فقط.

-67-
فالدائرة تتضمن أي عدد من الموظفين (MEMBERS)، ولكن كل موظف ينتمي إلى دائرة واحدة فقط. أما ترتيب الأعضاء ضمن المجموعة فقد يرج تعديلها أو تتوزع حسب الرقم الشخصي للموظف.

المؤسسات

المركز القومي للعمليات الإلكترونية

الموظف (01)

الموظف (02)

الموظف (03)

الموظف (01)

3.3 العلاقة:

وهو التركيب الأكثر شيوعا لتمثيل الارتباط بين البيانات في الواقع حيث ترتبط عدة قيود من معدة قيود من معدة.
وهذا يعني أن الموظف الواحد ينتمي إلى دائرة واحدة فقط
وهذا يعني أن محو الأمتار بين الفيالين مرتبطة بعلامة منطقة

3.2 علاقة 1 - n

[Diagram]

وهذا يعني أن فيديدا واحدا من (من) يقابلهم فدي و واحد أو
ن من الفيدي (من) مرتبطا مع الفيدي الرئيس (من) OWNER.
من هذا النوع من العلاقة تستخدم تسمية التركيب الشجري
كما هو في المثال الحالي، حيث تسمى TREE STRUCTURE
تتميز بثنائية من الفيدي (هيئو، دائرة) مرتبطة بعلامة
منطقة

-65-
وهناك عدة طرق لتمثيل الارتباط بين أنواع القيود في قاعدة المعلومات قبل اختلاس المثال التالي.

نلاحظ وجود عدة أنواع من العلاقات بين أي نوع من القيود، نستطيع تصنيفها كالتالي:

3-1 مالة 1-1
في المجموعة الواحدة

饰演 جميع الأعضاء بالقيم :

الرئيسي (OWNER)
والثاني عضواً (MEMBER)
للجمعية.

وقد يكون هناك أكثر من واحد لكل OWNER
وأو

MEMBER

OWNER

MEMBER

OWNER

MEMBER
في الدوائر بصورة سريعة (آنية) باستخدام أطلوب POLYGLOT المحافرة المباشرة "QUERY أو لغة
التي تستخرج بواسطة التقارير المطلوبة بصورة مباشرة على المحطة الطرفيّة فحيث أن البياناتات
مؤذّرة على القرى المغناطيسية توجد برامج تعمل على
هذه البيانات وتسمى البرامج المباشرة
وتتضمن الخصائص BATCH APPLICATION PROGRAMS
والاسترجاع، والتحديث، كذلك توجد مجموعة من
المستخدمين للنظام من خلال المحطات الطرفيّة
وتتركز العملية على الاسترجاع والتحديث TERMINALS
بأنواعه:

2.4.1- تحديث في نهاية كل دورة وعدده يكون بعد
الدورات التي يقيها قسم التدريبي أو
الدائرة سنويًا.

2.4.2- تحديث دوري على المعلومات المسجلة من
الطلبة والمرحلة من قبل دواوينهم إلى مركز
الحاسبة.

-61-
3. الهياكل الأساسية في قاعدة المعلومات:

هناك عنصران أساسيان لتمثيل مخطط أي تركيب في قواعد المعلومات وهما المستطيل والسم.
فالمستطيل يمثل وجود مجموعة من الأشياء المشابهة (ENTITY) وسميمها قيد (RECORD) ورتبطها قيد (SET) مختلفين بعلاقة منطقية بواسطة اسم تسميتها مجموعة ().}

من الضروري هنا التمييز بين أنواع القيم وعدد هما في قواعد المعلومات ناحية وجد لتمثيل العلاقة بين نوعين أو أكثر من القيم.
لقد تم تصميم البرامج الجاهزة هذه بحيث تنفيذها على دقة ذاكرة 48 كيلو بايت أو أكثر من نوع (RAM). حتى وان كان حجم البرنامج يحتاج إلى 120 كيلو بايت وذلك لان البرنامج قد صمم بحيث ان كل برنامج يقوم بعمل معين وفي حالة الانشغال من برنامج معين يحل محله البرنامج الآخر المطلوب. ان طريقة اخلال برنامج آخر تم باحتواء البرنامج الأول على اسم البرنامج التالي وهذه تتم بسرعة كبيرة لان معظم البرنامج تحتاج الى اقل من 4 كيلو بايت. ان هذا التصميم التركيبي يساعد على سهولة توصيف البرامج الجاهزة وتطبيقها على محاولة المعلومات الخاصة وباقل جهد ممكن، ومن المتوقع ان تزداد السعة الخزنية للبرامج الجاهزة مستقبلا بحيث تنثل أكثر من قرص مضغط ب اسمدة وتمتي وظائف التي تؤدي في البرامج الجاهزة هذه هي كل مثارة سالمونسون (10) في مجالات التحليل.

وفي الوقت الحاضر فإن البرامج الجاهزة سوف يكون تركيزها على وظيفي الإظهار المكاني (Spatial Display) وفما يلي من الموقع الشخصي ويتكون البرنامج الجاهزة من عدة تراكيب لتنفيذ الوظائف المبينة في جدول رقم (2) وهو نفسی
الحقيقة عبارة عن برنامج جاهزة يمكنها أن تقول المستفيد
خلال أي من الوظائف.

ومن الأشياء التي لها أهمية خاصة في البرنامج
الجاهزة هذه مجموعة ملفات قاعدة المعلومات التي تتكون من
CP/M والبرامج الموجودة في البرنامج الجاهزة.

تصميم قاعدة المعلومات:

صممت البرامج الجاهزة هذه بحيث تستعمل مجموعة من ملفات
قواعد المعلومات ذات صيغ قياسية ومن الخروج التقيد بها و
ليتم تنفيذ البرامج بشكل صحيح. والبرامج الجاهزة في الأساس
عبارة عن نظام للمعالجة الإدارية مستند على معالجات
المعلومات مع القابلية على معالجة بيانات الشبكة والبيانات
المستحقة (الجدول رقم 3).

ومع ذلك عند تصميم قواعد المعلومات عدم توفر إجابات
مطورة لادخال المعلومات هذا لا يعتمد إدخال عناصر قواعد
المعلومات على تنفيذ معينة للادخال، مثال على ذلك جمهور
الرموز الإحصائيات.

-100-
태두 لمعلومات المظلمة:

على العموم يفضل استخدام الهياكل المظلمة في الحسابات التي تكون فيها خذ المعلومات وتقييمها ذات أهمية خاصة.
وهناك عدة طرق واساس لتوصيف الهياكل المظلمة، بالיות
الأخرى المجهزة (UDMS) فان حدود المظلم تكون على شكل
سلسة من الخطوط وتسجل حدود المظلم المحلي على أساس سلسة
من زوج من الأرقام لكل رأس من رؤوس المظلم في نظام الاحداثي
السياني والحادي.

والفرضيات التي يتم على أسسها معالجة المظلمات هي:

1- يتم ترميز المظلم بتسلسل "اكس لعقرب الساعة".
2- أن يكون شكل المظلم مظلما.
3- أن نقطة بداية تسلسل ترميز المظلم تكون في الرأس
الجزء في القص اليمين.

ان هذه الفرضيات ضرورية لأعداد الخرائط وقد فصل
ماكزورين (7) الوطيفة المستخدمة في البرامج الأساسية
لاعداد الخرائط والذين في عمليات ينشئون برمجة المشاكل
المكانية والمؤشر البرامج الأساسية لأعداد الخرائط.
هذا الخرائط تكون على شكل مربع أو مستطيل حيث تتبع هذه باستعمال

-101-
الطابعة السطرية مع ذلك أن طريقة استيراد النتائج تعتمد على
عمل مكدونالد (7) فأن تراكيب قاعدة المعلومات تعتمد على
المناقشة المقدمة من قبل باكستر (2).

تتضمن اشكال الملف في ملفين، أحدهما يدعى ملف دليـل
الأحداثيات والأخر يدعى ملف تعريف المنطقة (جدول 3) يحتوي
ملف دليل الاحداثيات على معلومات تخص العدد الكلي (N)
لزوج
من الاحداثيات في الملف واكبر قيمة ممكنة للمنطقة
(POint label Number)
، وإضافة إلى ذلك فأن هــ&...
البداية في الرأس العلوي في جهة اليمين، بعد الإنسحاب المنظور
الاعتبار فرضية اعتبار الخريطة مستطيلة الشكل، فإن منطقة
الخطأ عادة تكون غير واردة، لذلك فإن البرامج الجاهزة تفترض
ان آخر منطقة في ملف تعريف المنطقة هي منطقة الخطأ.

يحتوي ملف البيانات المتغير على معلومات عن الاقتصاد
اجتماعي ومعلومات ديموغرافية واستعمال الأرص وبيانات أخرى
تعد كل مفصل أو منطقته.

يحتوي العدد الأول على العدد الكلي للمنطقة والعديد
الكلي للمناطق وهناك علامات لوصف كل متغير موجود في مجموعة
القيود التالية، وencingاً أن قيمة البيانات تكون موجودة في
بقية قيود الملف.

قاعدة معلومات الشبكة:

تشكل الشبكات من خطوط ربط (Links) تتكمل في الاقتصاد
لذلك فإن خطوط الربط يمكن مشيئتها بخطوط مقسطنة
لتكوين المفصل حيث عن المفصل خزن خوط الربط على أساس خطوط
مقسطة بعد تسجيل موضع كل نقطة على أساس نقطة، ان طريقة
الخزن توضح نوعية الشبكة ويلي استخدامها تفترض البرامج
الجاهزة (CNS)، لأن الشبكة هي من نوع شبكة انطلاقية،
والتي عادة تستخدم بكثرة في تخطيط المستوطنات البشرية.

-103-
ان هناك استعمالات تطبيقها هذه البرامج الجاهزة على قاعدة معلومات الشبكة وهما إعداد أقصر الممرات خلال الشبكة وإيجاد المحل المشاهي للهياكل الثنائية من خلال استعمالات برامج الموقع/ التخصيص.

ومن العلفات الثلاثة لقاعدة معلومات الشبكات فان المستفيد يقوم بإعداد اثنتين منها وتقوم البرامج الجاهزة بإعداد اللف الثالث، يحتوي اللف الأول على دليل الإحداثيات القطب ويشتمل نفس صيغة ملف دليل الإحداثيات المذكورة سابقا.

واللف الثاني هو ملف تعريب خطوطربط وهو مشابه للملف السابق تعريف المنطقة المذكورة سابقا، ولكنه لا يستعمل نفس الصيغة، والاختلاف بينهما ناتج من اعتبار الحركة باتجاه واحد أو اتجاهين على طول الخط المستقطع، أما اللف الثالث يحتوي على ابعاد الشبكة بعد أن يتم إعداد اللفين الأول والثاني، فأن البرامج الجاهزة بدورة تقوم بإعداد اللف الثالث وتقوم بخزنه على القرص المغناطيسي بالصيغة المطلوبة لاستخدامه مع خوارزمي الممر الأقصر.

قاعدة معلومات النقاط:

تستخدم قاعدة معلومات النقاط لخزن مواقع الهياكل المقصودة مثل المدارس والمستشفيات والتي يمكن تمثيلها...
بمواقع نقطية، ويعتبر ملف واحد ضروري لقاعدة المعلومات هذه. يدعى ملف أحداثي النقطة، ويكون من عدد (N) من النقاط. ويبقى كل قيد نقطة معينة باستخدام فحص رقم النقطة واحداً بواحداً. وفي الوقت الحاضر، يستخدم هذا الملف على تحديد الموقع، أو تخصيصه على أشكال متنوعة، وفي إعداد الخرائط للاستخدام العملي. وتستعمل هذه البيانات من قبل برامج البحث المكاني.

المتاخمة النهائية:

تم في هذا البحث مناقشة تصميم برامج أساسية لمعالجة الجغرافية باستخدام حاسة دقيقة وتوجد هناك معلومات أكثر دقة وتفصيلًا حول البرامج الجاهزة (UDMS) في الكتاب، به (12)، لاتزال أكثر عددًا، تسمم هذه البرامج الجاهزة بنظر الاعتبار مشاكل نقل التكنولوجيا، حيث أن كل حالة الجمعية المستخدمة في منظومة المعالجة الجغرافية تقدر باقل من (10000) دولار، بين سالمونيس، مع باختصار، تخفيض، مشكلتين عيون نقل التكنولوجيا، لذا أهمية خاصة، الأولى هي الإجابة لتعريف المنتجين والمستفيدين في التطور المبكر، ينقل التكنولوجيا إلى المستفيدين.
وجعلهم متغشرين للأساليب والتقنية اللازمة لهذه المعالجات،
والثاني هو تأمين إعداد البرامج الأساسية اللازمة لتنفيذ
الإجراء لنقل تكنولوجيا الحاسوب والتقنية الممزقة.
هذه مهمة كبيرة في نقل تكنولوجيا الحواسيب الدقيقة.
لقد تم تطوير البرامج الجاهزة (UDMS) لتكنولوجيا أدآة
تعليمية وتدريبية للاستفادة منها في محيط عمل مناسب واثنت.
هذه نجاحا في تعلم وتدريب المخططين من الكادر الوسطي في منه.
تقللي المحل أو المنطقة أو القوم في المبادئ والأساليب
والتقنية لإدارة البيانات الدقيقة. ويمكن أن يعني جزء كبير
من هذا النجاح إلى خواص الحواسيب الدقيقة (9)، ولكن من
ناحية أخرى لست هناك أنظمة مستقلة بشكل فعلي لنقطات
التكنولوجيا. وهناك معلومات بأن نظام سيقام قريبا في
سرية لانكا.
بالرغم من كون هذا النظام حديثا ليبقى عمره أكثر من سنة
فإن الأعمال التي أقيمت حوله قد ولدت اهتماما كبيرا في
الولايات المتحدة وأيضا لأن ذلك فمن المتوقع أن يقاس هذا
النظام بشكل فعال في مكان ما في العالم في سنة 1982.
ومازال هناك عدة عوائق بشرية في نقل التكنولوجيا
وإما كان الأكثرها مظهر في العوائق التجارية، تمثل
-106-
البرازيل استيراد الحاسابات الدقيقة لحماية صناعة الحاسابات
الناشئة فيها ، وما زاد المسألة تعقيدا هو قلة اهتمام
الشركات الأمريكية بالأسواق العالمية مما اثر على وشكل كبير نقل
الاكتنيولوجيا إلى بلدان العالم ،
وأما ان المنظومات المختلفة تسندها شركات مختلفة في
بلدان مختلفة . حيث ان قلة من هذه البلدان مرشحة للسقى
مستوى الاسناد الموجود في أمريكا .
وهل هناك عقبة شائعة اخرى هي الاحترام الى اليد العاملة
المثبتة ضد الحاسابات في العالم بشكل عام ن ولكن في حالة
الحاسابات الدقيقة هناك بعد آخر للمشكلة هو ان معظمة هذه
المنظومات قد استخدمت تجاريا للألعاب والتمثيلية ولانذا فان
المعنى يعتمد عليه نقول فكرة كون هذه الآجهزة المفيدة قادرة
على حل مشاكل حقيقية . ويمكن حل هذه المشكلة عن طريق امداد
 العلاقة دراسة عملية وتحت إشراف الأمم المتحدة والبلد المضيف.
وعلى كل حال فين من المتوقع أن تكون هناك انجازات قليلة في
المستقبل القريب الى ان بدأ هذا النظام بالانتشار ودخول
مجال العمل العام وعند ذلك ستكون الحاجة إلى الاستدامة في
مجال البرامج الأساسية كبير . وتعتبر قلة انشطة المعالجة
البتروفيكية لن يكون العائق الدقيق من أهم المشاكل .

-107-
التي تعيق انتشارها. وهناك مشكلة أخرى وهي انعدام البرامج الأساسية اللازمة جزئيا أو كليا مما يوعي دائرة المشاكل التي تعيق تطوير هذا النوع من الأنظمة. وقد ساهم هذا التفعيل في تكوين فكرة كون هذه الأجهزة غير قادرة على القيام بهذا النوع من المعالجة بشكل مرضى.

ومن المؤكد أن تساهم البرامج الجاهزة (UDMS) بتغيير ايجابي للمفهوم العام عن قابلية الخصائص الدقيقة وكمية استمرارية التقدم سوف تجل المنظومات الدقيقة دقيقة ملموسة في المستقبل القريب (8). ويسعى إن ترى إذا كان مجال المعالجة الجغرافية سوف يكون مشابهًا لاستخدام مثل هذه المكتنة ويشمل يسمح نقلها إلى تطبيقات في القطاعات الساحرة من العالم.
شكراً وتقديراً:

يتوجب علينا التقدم بالشكر لمنظمة الأمم المتحدة للمساكن البشريّة على مساعداتها التي لولاها لما أصررت هذه البرامج الجاهزة النور، ومن الجدير بالشكر بأن الآراء والوجهات النظر التي طرحت في هذا البحث تكمل رأي المؤلفين، ووجهة نظرهم ولأعلاقتنا للأمم المتحدة بها، كما نتوجه بالشكر إلى مختبر هنتر لتحسين المبادئ والتحليلات المكانية في مدينة نيويورك.
<table>
<thead>
<tr>
<th>الوصف البرامجي</th>
<th>اسم البرامج</th>
</tr>
</thead>
<tbody>
<tr>
<td>يقدم قائمة تسمح باختبار الوظائف التي ستتلقى.</td>
<td>MAIN - 1</td>
</tr>
<tr>
<td>يقدم قائمة بوظائف التحليل المكانية.</td>
<td>MAINB - 2</td>
</tr>
<tr>
<td>يحدد إذا كانت المطلبات قد عملت بصورة صحيحة.</td>
<td>CHECK - 3</td>
</tr>
<tr>
<td>ينظم تركيب جدول إدارة الملفات.</td>
<td>CORD - 4</td>
</tr>
<tr>
<td>يعين المسافات بين نقاط الربط في شبكة ويخلق ملفا لهذه المسافات.</td>
<td>NETDIST - 5</td>
</tr>
<tr>
<td>يعدل الاعدادات لتلتائم رسم الخرائط بترتب مقاطع الخطوط لagraي رسما الخرائط.</td>
<td>SCALE - 6</td>
</tr>
<tr>
<td>يخلق خارطة حدود المطلع.</td>
<td>SORT - 7</td>
</tr>
<tr>
<td>يحول بيانات الطرق أو الشبكة إلى خارطة حدود.</td>
<td>BDRY - 8</td>
</tr>
<tr>
<td></td>
<td>OVERLAY - 9</td>
</tr>
<tr>
<td>اسم البرنامج</td>
<td>الوصف</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>MAP - 10</td>
<td>يحدد قيمة متغيرات لمقاطعات الخطوط المرتبة.</td>
</tr>
<tr>
<td>MAPOUT - 11</td>
<td>يطبع خارطة وصفية على طابعة نترارية أو محطة طرفية.</td>
</tr>
<tr>
<td>CIRCLE - 12</td>
<td>يبحث عن نقطة في دائرة.</td>
</tr>
<tr>
<td>PSEARCH - 13</td>
<td>يقوم بأجراء بحث عن نقطة داخل المخططات.</td>
</tr>
<tr>
<td>INTERSIN - 14</td>
<td>يقوم بكشف نقاط المخططات.</td>
</tr>
<tr>
<td>GRID - 15</td>
<td>يتحول شبكة إلى مخطط.</td>
</tr>
<tr>
<td>CLOCK - 16</td>
<td>يتحول نقرة المخططات من عكس عقارب الساعة إلى مع عقارب الساعة.</td>
</tr>
<tr>
<td>VARSTAT - 17</td>
<td>يحسب ويطبع الإحصائيات الوصفية.</td>
</tr>
<tr>
<td>REGEOMET - 18</td>
<td>يحسب مركز النقل والمساحة والمحيط.</td>
</tr>
</tbody>
</table>
وصف البرنامج

يقوم بإجراء تحليل الانحدار الخطى البسيط.

يجهز رسمًا ينتج عنه تحليل الانحدار الخطى البسيط.

يقوم بتحليل نموذج بسيط للجاذبية.

يحل مشاكل المحل المشار إليه لنقطات الخدمات المنفردة يحل مشاكل المحل المشار إليه لنقطات الخدمات المتعددة.

يحل مشكلة المحل المشار إليه لنقطات الخدمات المتعددة على الشبكة.

تستخرج أقصر طريق خلال شبكة بخزتها على القرى المفتوحة ويوفر المعلومات التوضيحية.

تحتاجها برامج

-112-
الجدول رقم 2

الوظائف المنفذة بواسطة تركيب البرنامج الجاهز (UDMS)

1- خلق قاعدة المعلومات:
 1- نص دليل الأحداثيات وخلال المناطق الرائفة
 2- نص تعريف المبسطات
 3- خلق ملف المسافات بين نقاط ربط الشبكة

2- رسم الخرائط:
 1- خريطة حدود المطلع
 2- تشكيك خارطة الحدود مع بيانات النقاط / شبكات
 3- الخرائط الموضوعية للبيانات المتغيرة

3- التحويلات وعمليات البحث المكاني:
 1- البحث عن نقطة في المطلع
 2- البحث عن نقطة في دائرة
 3- تحويل نقطة إلى مطلع

-113-
الجدول رقم 3

ملفات قاعدة المعلومات المستخدمة من قبل البرامج الجاهزة (UDMS)

1- قاعدة معلومات المطلع:

ملف جدول الإحداثيات
ملف تعريف المنطقة
ملف البيانات المتغيره

2- قاعدة معلومات الشبكة:

ملف تحليل إحداثيات القطب
ملف تعريف الربط
ملف مسافات الشبكة

3- قاعدة معلومات النقاط:

ملف إحداثيات النقاط
الملفات ذات الاستعمال الخاص في نظام (UDMS) *

ملف انسجامية التداخل أو التفاعل بين المناطق للاستعمال في تحليلات نموذج الجاذبية البسيط.

ملف محددات القطب للاستخدام الامثل للشبكة.

ملف الاقطاب الأصلية للاستخدام الامثل للشبكة.

ملف الاقطاب الجرذنية لاقصر طريق من خلال الشبكة.
نظرول الصحيفة النازحية
ونظام المعلومات المرئية

المؤلف:

حوار:

إدارة الفصلية
ان من روافع ما توصلت الى التقنية الحديثة هو تفاعل نظام الاتصالات مع الحاسوب إلى المكتبة العملية. واحد من النتائج وفؤاد هذا التفاعل هو توصيل المعلومات إلى المستهلك من خلال البث (أو المشترك) عن طريق نظم عرض المعلومات (TELETEXT) ونظام المعلومات المرئية (VIEWDATA).

فالنظام يسمح بتوصيل المعلومات المخزنة في المركز الرئيسي إلى جهاز التلفزة البيئي والمعلومات المخصصة:

1- اختيارية من قبل المشترك كما في نظام المعلومات المرئية.
2- فير محترف كما في نظام المكتبة التلفزيونية (TEXTS)

بإضافة النظام الذي عرض مواقع أو تصوير (GRAPhICS) هذه المواضيع علامة للكتابة على جهاز التلفزة البيئي العلوي بشكل تنسيقي ومحزز بالأشكال البيئية التلقائية. ترسيل وكفاءة عالية وسهل رقمي من مركز حاسم الرئيسي للتحريض.

إن المعلومات المرة إلى وحدات رئيسية تدعى (صناديق). إن الويحات النظرية التي تعرّض المعلومات فقد تكون دنياً أو ذكية الأخرى قد تقوم ببعض المعالجة للمعلومات وتتطور.
إلى حاسب طرفي ليؤهلهما إدخال البرامج وإرسالها إلى المركز الرئيسي لمعالجتها، ان هذه المحطة الطرفية قد تكن تلفزيون ميني مطور والبرامج يمكن إرسالها من البيت أو المكتب. شكلاً (١) لقد ظهر نظام الصحيفة التلفزيونية (نتيجة الجهود المبذولة في نظام آخر لمساعدة الصم الذين لا يستطيعون سماع ما يقال في برامج التلفزيون ولمساعدتهم فأن هذا النظام يرسل الكلام مكتوبًا ومصورًا وخاصة في البرامج الحية مثل الأخبار، وهذا يدعى نظام الترجمة للصم (Captioning for the Deaf). أما نظام المعلومات المرئية فقد ظهر نتيجة الجهود المبذولة في نظام التلفون المرئي.

إن استخدامات وفوائد هذين النظامين كثيرة ومتميزة، فيمكن استغلالهما مثلًا في التعليم المبكر أو كقاعدة أو بنك المعلومات المختلفة والمتنوعة التي يمكن توصيلها أو إرسالها إلى كل سبب ومكتب لخدم أكبر عدد من المستفيدين، فيما إذن يعتبران وسيلة تدريسية وتعليمية، كما يمكن استخدامة كوسيلة إعلامية أيضًا. فنظام المعلومات المرئية يمكن أن يقدم نفس أخبار الجريدة اليومية بما تحوية من مواضيع ثقافية وفنية وترفيهية ولكن الفرق سهولة إبسالة بعملية
للجمهر من خلال التلفزيون إلى انتهاء القطر إضافة إلى أسلوب عرضهما المشوق، وسطح هذه الفوائد باسباب أكبر من خلال عرض الموضوع.
تعريف:

نظام الصحفة التلفزيونية

نظام خدمي لارسل البيانات الرقمية التي ترسل مرافقه للذبابة التلفزيونية الاعتيادية القائمة بها عرض مفاتيح من مواضيع مختارة في المركز الرئيسي أو اشكال بدائية توضيحية على شاشة جهاز التلفزة المضافة إليه بعده التطور البسيط ...

وهذا النظام يعتمد على الإعادة الذرية في ارسال المفاتيح.

نظام المعلومات المرئية

نظام خدمي متفاعل مع (المستخدم) لاستخراج المعلومات (DATA RETRIEVAL) يستخدم شبكة الهاتف في الإرسال ولله قابلية عرض المواضيع أو الاتصال البديائية على شاشة جهاز التلفزة المطور . هذا النظام يعرض المفاتيح BOX فقط

وعند الطلب من قبل المشترك يتفاعل المشترك مع النظام من خلال لوحة المفاتيح البديوية التي بحوزته (شكل 2).

-120-
ان الاختلاف الرئيسي بين النظامين هو تفاعل المستخدم مع النظام وتوجه المعلومات المرفقة التي يفرضها هذا الاختلاف.
في نظام المعلومات المرفي ترسل الإشارة الرقمية معملة مع الموجات التلفزيونية كمؤشرات مضادة بدون التأثير على الاست-Mail التلفزيوني الاعتيادي حيث يكون هذا النظام عادة غير متفاعل أي أن المستخدم لا يستطيع السيطرة على ما يرسل. ان الصفحات هنا ترسل وتعاد دوريا ويستطيع المستخدم ان يلتقط.
الصفحة المرادة ويُكنّ لها في الذاكرة الخاصة في الجهاز التلفزيوني.

أما نظام المعلومات المرئية فيستخدم شبكة الهاتف في الإرسال، وللوصول إلى الصفحة المطلوبة يتم استخدام الألوبي (الشيكل الشجري) بعدة صفحة الفهرس التي تتضمن المواضع الرئيسية التي تحتوي النظام. يختار المشترك أحد المواضع باستخدام لوحة المفاتيح (وتنتمى من النوع العداي البسيط).

وبواضعة العنوان الذي وجدته في صفحة الفهرس لهذا الموضوع، وكل صفحة تعود أو تشير إلى صفحات أخرى في الموضوع الذي ينطلق إلى المعلومات المرادة.

التحرير في نظام الصيغة التلفزيونية:

يتكون المحرر من حاسب يتعامل به بعض التهابات الطرنية مثل شاشة العرض التي تحتوي على لوحة مفاتيح (VDO) والتنقلية تستعمل لادخال المعلومات المرادة وتطبيق أي خطأ يحصل عند إدخالها بعد رؤيتها على الشاشة ثم إرسالها إلى الحاسب بعد أن تحرر بالشكل المناسب، لكي تُخزن في خزن الأرشيف للاستفادة منها في المستقبل، وهذا الأخير هو عبارة عن قري مغناطيسى.
وقد يكون بأي شكل من انماط المتعددة يجب الحاجة، تستعمل لوحة المفاتيح أيضا لسحب الصفحات من الذاكرة أو للخزن أو لاظهارها كائمة على شاشة لغرض تحديثها أو تغييرها. عندما يراد ارسال المعلومات، تنقل من الذاكرة إلى مجفر البيانات لتحصيلها على (SERIAL FORMAT) ابتداء التحميل على الاشارة التلفزيونية.

الخزن الريفي في هذا النظام البدائي يستعمل للخزن، المفتهاج المستفيد منها فعليا بالإضافة إلى نسخ من النشرات الدورية المرسلة. هذا النظام يضمن تحضير المفاتيح مسبقا، فكسل (4) بوضع نظام أعدد بعض الشيء وتشغل صفحات الموضوع من خلال النهاية الطرفية للتحرير الاعتباري إلى الحاسوب حتى تخزن في الأقراص المغناطيسية مهيئة للإرسال، يمكن تحرير وادخال المواضيع للحاسوب عن بعد أيضا باستعمال شاشة طرفية ومعقد كاشف (MODEM) باستعمال شبكة الهاتف. عند ارسال الصفحات تسحب المفاتيح من الأقراص المغناطيسية وتخزن في ذاكرة الحاسب صفحة واحدة في كل مرة ثم تنقل الصفحة سطرا بعد سطر للجي. مجفر البيانات، يستخدم نهاية طرفية للتحرير من النوع الذكي يسهل عملية التحرير، إذ يسع معالجة كافة عمليات
التحرير دون الرجوع إلى الحاسب الرئيسي ، والمعالجة
الوحيدة التي يقوم بها الحاسب هو نقل المعلومات من والعلي الاتصال الفنتاسي والمجفر . إن إشارة البيانات
(VIDEO INSERTER) تغذي المولد الصوتي (DATA SIGNAL)
مخرجات المرحلة التلفزيونية لذا يمكن وضع أجهزة النظام في
أي موقع مناسب ومنها يمكن توصيل مغذيات البيانات
(SYNCHRONIZING FEEDS) ومغذيات المرآم (DATA FEEDS)
من واللى أجهزة البحث التلفزيوني . . .
قبل التعرض لكيفية إرسال البيانات مع الاستماع التلفزيوني، يجب على الاستماع التلفزيوني الاعتيادي معرفة الاتجاهات ومحور الاتجاهات الصورة الاعتيادية
في كل ثانية وكل صورة تحتوي على (625) خطًا، وعند الانتهاء من الاعتياد، يبدأ من اليسار إلى اليمين ثم يعود الشعاع إلى اليسار بسرعة لمزيدًا في نهاية الخط في الصورة الواحدة يعود الشعاع إلى النقطة اليسرى العليا. في أعلى الصورة في فترة الرجوع هذه تكون الشاشة معتمة.

أي نهاية الاعتياد قبل رجوع الشعاع إلى الأعلى يوجد عدد من الخطوط غير مستعملة ولا يوجد فيها شيئًا. كما يوجد مثلهما في بداية الاعتياد في أعلى الصورة وعندما يعتمد على النظام، هذه الفترة تسمى زمن طمس المجال (FIELD BLANKING TIME). في النظام البريطاني تبث المعلومات خلال فترة الخطوط في الصورة المستعملة المذكورة أعلاه في فترة زمن طمس المجال. هذا

-125-
النظام يوفر 12 خطًا غير مستعمل في كل مجال أو إطار، والوقت الحاضر المستعمل منها اثنين فقط، كل خط يحتوي على أشارات ثنائية تمثل بيانات مجفرة بطريقة نظيفة عدائم العودة إلى الصرف (N.R.Z) وبمعدل بيانات بسيطًا حوالي 6.9375 MBIT/sec. هذه البيانات تمثل أشارات التزامن الضروري في الاستلام، وعناوين لتعريف الأسطر المرسلة (CONTROL WORDS) والرموز المجفرة.

إذا استعمال نظام عدم العودة إلى الصرف يتيح الوصول على سرعة بيانات عالية جدا، تعطي زمن وصول قصري (SHORT ACCESS TIME) زمن الوصول هناك هو الفترة بين اكتساب المشاهد لصفحة معينة وآخر استلام لهذه الصفحة. يجب أن يكون هذا الوقت مقبولاً وقصيراً.

استعمل في هذا النظام طرق مختلفة للحماية من أخطاء الإرسال (DISTORTION) والتشويه (NOISE) ب مختلف توزيع البيانات المرسلة. في حالة العناوين وكلمات الضبط نستعمل جذورًا هامتك (HAMMING CODE) التي تستطيع تعديلين الإخطاء الاحداثية والكشف عن الإخطاء الثنائية. في النظام البريطاني ظهرت الحاجة لتمثيل 128 رمزاً، لاستعمال 128 بيت فعليًا، الحالة هي ممتنة من الأخطاء باستعمال التشفير.
الضبط يستعمل جفتة هامينك (HAMMING CODE) التي تستطيع تن صحية الخطأ الإحالي والكتف عن الخطأ الثنائي، في النظام النرويجي ظهرت الحاجة لتمثيل 122 رمزًا فاستعمل 128 بایت غطيت الحالة وهي محمية من الخطأ باستخدام التشفير ODE PARITY. وهذه الطرقية أقل كفاءة ولكنها تستخدم وتعقيداً من طريقة هامينك، أن الإرسال المعاد دورياً الذي ذكر سابقاً يفيد أيضاً في تصحيح خطأ الإرسال عندما يعود الإرسال إلى صفحة.
ب – أما في نظام المعلومات المرئية

فإن البيانات ترسل على الخطوط الهاتفية بعد أن يحجز المشترك خطًا تلفونياً بينته وبين المركز الرئيسي بواسطة التلفون ثم يحول الخط إلى الشاشة. ترسل البيانات على الخط الهاتفي بشكل أرسال أمتعة (ASYNCHRONOUS) ويحتوي على بيانات بداية ونهائية وتكون البيانات مرسلة بتردد تحميل قسيم المجال الصوتي (AUDIO CARRIER FREQ) وبطريقة التحميل الذبذبي (FSK) التي تعطي تردد معين إلى الحال في مفر وتردد آخر إلى الحال (واعد). ويستعمل على طرف الخط الهاتفي جهاز معدل – كابش (MODEM) والذي يقوم بهذه العمليات (شكل 1).

الأشكال التوضيحية (GRAPHICS):

إن الغاية الأساسية هنا هي أرسال أشكال بسيطة للتوضيح إضافة قيمة جمالية للصفحة، وليس المراد صورة واضحة وطبيق الأصل. يوجد طريقتان لأرسال الأشكال الأولى هي الطريقة الفسيفسائية والثانية هي الطريقة الهندسية.
(GEOMETRIC APPROACH)

لاحظ أن النظامان الإنجليزي والدرسي

يعتمدون الطريقة الفسيفسائية، وتشكل المرسوم بهذه الطريقة يتكوين من عناصر وكل عنصر يتألف من ستة عناصر فرعية

Matrix (مرتبط بمصفوفة) ذات تمديدات ثلاثة

Subelements (شكل 2) من هذه العناصر الفرعية يمكن تكوين (14)

احتمال شكل. ان العناصر في صفه الاشكال تمثل بعضها

على المواضع التي تحتلها الروموز في صفحة المواضع.

هذه المخطط بالذات هي التي تميز هذه الطريقة فحصت. رمز

الأشكال تخزن ادن نفس ذاكرة الوصول العشوائي (RAM) التي تخزن فيها جزء رموز صفحة المواضع وتكوين الأشكال

وذلك بقراءة ال (ROM) التابعة للأشكال بدلا من ال (RAM).

والتي تتبعه للمواضع، وقد استخدمت محدث نظام

الكاميرا التلفزيونية لتنويعها على اشكال او صور وهكذا:

الكاميرا تحول الصورة الى بيانات ترسلها إلى الحاسة التي

بدورها تقوم بتركيب الحجارة المناسبة لترسلها الى الأجهزة

الإلكترونية لبعض تكوين الصورة الصلبة، وللتأكيد فقط بأن

الرسائل تكون هذه أيضا ... أما في النظام الكاميرا

فتعمل الطريقة الهندسية في تكوين الاشكال وهكذا تعمد على

لغة حاسوب ذات مستوى عالي لتعريف الصورة باجتماع ما يسمى

129
(PICTURE DISCRITION INSTRUCTION)

بالإضافة لاستخدام برنامج محرك لهذا الغرض هذا يعني أن النظام يستخدم الإعادات لرسم الشكل الهندسي بدائية مشابهة المستقيم والقوس وغيرها، وفي مواضع معينة في الصورة ومحددة بالأعادات (شكل 8) يستخدم بالطريقة الهندسية هذه سمة الإعادات الرئيسية وبيانات مرافقة تكمل لوصف جميع الصور بشكل تقريباً أربعة من هذه الإعادات تقوم بوصف الشكل هيكليه، وتسلوب هندسي مجموعة الإعادات هي كما يلي: (شكل 9)
LINE, ARC, AREA, POLYGON, BIT, POINT, AND, CONTROL

إن مجموعة الإعادات هذه قابلة للدروس وتسير واضحة صفات أخرى للنظام مثل دوران الصورة أو تغيير أجزاء من الصورة الى مواقع أخرى أو مع إجزاء من الصورة.

من المؤكد أن التطورات المستقبلية ستسمح بالاتصال بين اثنين من المشتركين من خلال الحاسب الرئيسي و بواسطة الإعادات ذات كفاءة ومستوي عال، وهي مستعملة الآن في كندا ضمن عدد التجارب لأنظمة إرسال الصورة، وكمثال لاستعمال هذه الصفة فقد يكون هناك اثنين من المشتركين اخذه مهندس معتمد، والآخر زبون يرغب الحصول على خريطة لدار من المهندس، يستطيع المختص اقتراح إرسالها للزبون بواسطة النظام.
وظر على شاكلة تم تنفيذ الربيع إجراء التغييرات التي تنسس على الشائعة وباشرة لوجة المفاتيح تم إرسالها بنفس الطريقة إلى المهندس، هذا طبعًا مثال بسيط من استخدامات كثيرة يمكن التفكير بها لهذا النظام...

أهمية واستخدام النظام

إن من أهم الاستخدامات هو التعليم المرجع باستخدام الكمبيوتر وعلى كافة المستويات والذي لا ينتم إلى أحد منها أهميته كأداة التعليم الحديثة، وبواسطة هذا النظام يمكن إرساله إلى كل طالب وكل جهاز تلفزوري في انحسار القطر، فلم يستخدم نظام المعلومات المرشد مثل (وهستو) نظام متفاعل كما ذكرت في يمكن تهيئة برامج تعليمية لكافة المستويات وما على الطالب إلا أن يختار الموضوع المثير دراسته فقد تبدأ الدراسة مثلاً بشرح للموضوع يظهر مكتوبًا على الشائعة ومرسل من المركز الرئيسي، أو تكتفي بمجموعة مسألة في الموضوع لشرح الأمور الرئيسية في ذهن الطالب وهو يجب عليها أن تكون أو لا أو أختيار الجواب الصحيح من مجموعة اجوبة يبرز بواسطة لوجة المفاتيح المبيضة التي بحوزته...
وبهذا تكون قد وفرنا فرصة تعليم وتطوير لكل شخص في أي وقت ومكان، وفي البيت أو المدرسة. أن نظام المعلومات المرشح يمكن أن يستخدم أيضا كخزان أو بنك للمعلومات والمعالجة البيانات عن بعد (TELEPROCESSING). وهذا ظهرًا يعتمد على حجم البرامج وحجم فاعلة البيانات في المركز الرئيسي. فالنظام البريطاني مثلًا أحتوى في سنة 1974 على أكثر من الف موضوع من الموضوعات المختلفة والمتنوعة في محورتها ومنطقه كما تقول الأدبية. فنظام معلومات للقضاء على الوحدات مثل أو عن اليوغا بالإضافة إلى الأخبار اليومية ونشرة الأخبار الجوية ومعلومات اقتصادية وعن السياحة والأسفار، كما تحتوي أيضا على مفاجات مثل التكاثر وبث الأخبار والألعاب المرتقبة.

أن نظام المعلومات المرشح يستخدم شبكة الهاتف في الاتصال فمن الممكن إذن الاتصال والاتصال مع أنظمة مماثلة في بلدان أخرى والاستفادة من بنوك المعلومات التي تحوّزيهم عن طريق المحطة الأرضية. أما نظام الصحافة التلفزيونية فهو مساعدة استخداما وتحقيقا ومن الممكن أن يخدم أغراض ثقافية وعلمية. ومن الممكن إرسال مجلة أو جريدة بنفس المحتويات الاعتيادية من مقاولات ومواقع ثقافية وصفحات للتسلية وغيرها.
بدون بذل أي عناصر في الطبع أو التوزيع، فالتحرير يتضمن بواسطة شاشة طرفية ولوحة مفاتيح في المركز الرئيسي ويتمفحها البارحة على شاشة التلفزيون.

من الاستخدامات الأخرى لهذا النظام هو ترجمة الأفلام وباكتشاف من لغة وبدون أن تطبع الترجمة على الفلم نفسه إذ يمكن الرسول شرائح مكتوبة ومركبة على الصورة التلفزيونية الاعتيادية وفي الموقع المناسب في الصورة، فقد ذكرنا سابقاً أن إشارة البيانات تغذي المحلول المصري في مخرجات المرسلة التلفزيونية. لذا فإن شرائح الترجمة ترسل مع الفلم أو الأخبار (شكل 8). هذا أيضاً يساعد فهما السمع في تصوير الأخبار. بما يمكن كتابة ما يقال في الأخبار بنفسي الطريقة وفي نفس وقت إذاعة الأخبار. إن ظهور شرائح الترجمة اختياري بالنسبة للمشاهد إذ يستطيع الإطلاع'
REFERENCES

The following collection papers (ref. 1-4) appeared in IEEE Transactions on Consumer Electronics volume CE-25 no. 3 July 1979

1- An introduction to TELETEXT & VIEWDATA with comments on compatibility by Walter Cicora, Cary Sgrignoli.
2- UK TELETEXT - Evolution & potential by N.E. Tanton
3- TEIDON: New Approach To Videotex System Design
 By H.G. Down, C.D. O'Brien, & J. Storey
4- TELETEXT Signal GENERATION Equipment & Systems
 By Peter L. Mothersole

5 - مدخل إلى خدمة التلفزيون
 تأليف: ه. ل. ماندروود
 ترجمة: نادر طراحی -
شأن دقيق (٤٣)
Welcome to New York

The people I most admire are the ones who can take life as it comes.

لقد اصبحت أنظمة الحاسبات الإلكترونية حاليًا أكثر تطورًا وتعقيدًا. فكم أعتبار أنظمة الحاسبة على أنها تتكون من ثلاث طبقات كما يلاحظ في الشكل (1) في الآتي تكون البرامج التطبيقية التي تعامل معها المستخدمون، وتلتئم الطبقة الأولى برامج النظام الأساسية ثم عليها المعالجات (PROCESSORS) أو اجهزة الادخال والاخرج التي يمكن تقسيمها إلى برامج بيمينا (FIRMWARE) وهي برامج متزوجة على ذاكرة القراءة فقط ولا يمكن التشغيل فيها أو تبديلها في نفس الطبقة. في اسفل الطبقة يكون الاتصال ما بين الطبقة الأولى والثانية بواسطة نظام التشغيل (OPERATING SYSTEM) ويستخدم بصورة خاصة في اللغات ذات المستوى العالي، وتكون الاتصالات الأخرى بواسطة المعالج PROCESSOR.

ومعظّم مشاكل التراكيب يمكن اعتبارها على أنها مشاكل مواجهة ما بين برامج النظام الأساسية ومعدات TRADE OFF وذلك للحصول على أحسن كفاءة فاعلية عند التقنية في المرحلة
الفنية، فعندما يراد قياس نظام ما لغرض تقييم فلاحته من أساليب معينة لمسح الأنظمة والمستفيدين والمصنعين، فإن التقنيات في قياس الأنظمة يمكن تصنيفها إلى صنفين:

رئيسيين:

الأول: هو في استخدام مراقب البرامج الأساسية (SOFTWARE - MONITOR) المتخصصة في قياس البرامج.

والصف الثاني هو استخدام الجهاز المراقب (HARDWARE - MONITOR) المعتمد بصورة خاصة عادة من اجهزة تشتمل على معايير (COUNTERS) ومقياسات (PROBES)، ولكل تقنية معايير ومساوي. فمن معايير مراقب البرامج الأساسية في الامكانية الحصول على بيانات تفصيلية حول برامج سيطرة النظام أو برامج المستفيدين، أما معاييرها فهي تؤثر بصورة مباشرة على النظام المراقب قياسه وذلك بسبب استخدامها لمصادر النظام.

من ناحية أخرى فإن فائدة الجهاز البرامج أنه لا يقلل من أو يتدخل في النظام العقلي ولا يحتاج إلى برامج أساسية مهمة لنظام، إلا أن من معايير الكبيرة هو صعوبة الحصول على بيانات متعلقة بالبرامج.
شكل (1) - هيكل نظام الحاسة

مبادئ قياس النظام:

بدلاً من التغيير المستمر لمجموعة من حالات النظام على سطوك، تعرف هذه حالة فينها مجموعة متفاوتة. تتضمن بها تراكيب الجهاز، كأن تكون حالة نعم النظام أو إعادة نعمه أو نية فعالية معينة في وحدة المعالجة المركزية، أو حد ذات انتشار قنوات الإدخال والإخراج.
ويشمل قياس النظام، قياس سلوكه من ملاحظة ردود الفعل والاستجابات والأفعال لمجموعة جزئية مختارة تعطي الغاية من النظام خلال فترة معينة.

إن المجموعة الجزئية المختارة تستخلص من مؤشرات حالات النظام التي تمثل حالات النظام المختارة، مثالًا على ذلك هو SUPERVISOR في إمكانية حالة سير المعالج في حالة المشرف بواسطة نتائج النظام التي تظهر حالة المشرف، حيث يقوم البرنامج المشرف بتزويد المختص الفني برسائل عن سير تنفيذ البرامج، وعادة المختص الفني يرد على هذه الرسائل بكلمة CANCEL أو إلغاء RETRY وما شابه ذلك.

أن التغير في الحالة الترکیبیة للنظام أو محتوى الدخیل أو الحدث يمكن أن يكشف مباشرة من مؤشرات الحدث أو بمجرور غير مباشرة من مجموعة تغيرات حالة النظام (حيث يمكن أن يحدث أكثر من حدث للنظام، والذي يتغير حالته في فترة زمنية، يمكن تصور هذا النظام كمنفصل أو متصل، أي متصل إذا كانت عناصرها تتفاعل أو تتجاوب مع بعضها البعض فقط). إن الزمن المتعاقب للإحداث الذي يوجد في تغيرات الحالة المتضمنة في المجموعة الجزئية المختارة للقياس، يمثل ظرف حالات النظام المختارة، وهذا يعني أنه
عند حدوث الحدث فإن قياس النظام يكون على أساس تتابع الحدث والزمن (E,T) وان تتابع (T) يشير إلى تتابع زمن الحدث. وهذا هو الأساس في القياس الحالي. إن أساس قياس الدوال الأساسية هو في تتابع زمن الحدث كما يلي:

1. اكتشاف مؤشر حالة النظام.
2. استخراج الحسابات.
3. القياس والتسجيل.
4. معالجة البيانات.

SYDAS

هو نوع من الجهاز المناظب الذي له القدرة على معاينة مؤشرات حالة النظام التي تظهر بواسطة الوجبات ذات المماثلة العالية المتعلقة بالسلاك الحاسوبية التي تقتبى فعالية النظام.

بدون أن يؤثر على الأجهزة أو البرامج الأساسية.

مكونات النظام

يتكون النظام من مركبات الأجهزة الأولية الحالية SYDAS والوصفة بالشكل (2).
PROBES
LEVEL CONVERTER
TIMER
COUNTERS
ASSOCIATIVE MEMORY
ASSOCIATIVE COUNTERS
BUFFER MEMORY
MAIN CONTROL
MAGNETIC TAPE
MINicomputer

ان استخدام الذاكرة الارتباطية والعدادات الارتباطية
تجل امكانية استدعاء النظام بطرق أكثر مرونة، وتخفيف من
حجم البيانات وذلك باستخراج البيانات المتعلقة بـ...وع...
القياس في طريقة التخزين هذه يتم التعامل فيها مع
البيانات بدلاً من حفظها في هـ...
ف-handicrafts

ان دوال القياس هي مؤشرات حالة النظام، وتظهر مؤشرات حالة النظام بواسطة مسارات ذات معاني عالية متصلة بشبكة إلكترونية الاتصالية المتنوعة ومن مؤشرات حالة النظام منها ما بلي...
عنوان الذاكرة، مؤشرات عامل الوصول، مؤشرات شقيرة تشغيل، مؤشرات فعالية قنوات الدخول والخروج، مؤشرات حالة وحدة المعالجة المركزية، مؤشرات السيطرة.

إن هذه المؤشرات المارة خلال العقبات والتي هي مؤشرات ذات مستوى واطل تحول وتفحم إلى مؤشرات ذات مستوى منطقية بواسطة محول المستويات ويعمل على تخلي صلة إلى المبرمج الرئيسي، أن تحديد كفاءة الوصول على مؤشرات حالة النظام يعتمد على أنسحب البيانات المطلوبة الموضحة بواسطة مفاتيح الممر السيطرة حيث أن المسيطر الرئيسي هو الذي يحدث كفاءة التحكم مع مؤشرات حالة النظام. وهناك أربعة طرق للقياس:

الطريقة (1):

وفيها يقاس التردد الحامل أو الزمان خلال الجهد، حيث ترسل مؤشرات حالة النظام التي اختيرت من قبل المسيطر إلى العدادات. لذلك في تقاليد الزمن أو التردد وتعرض البيانات المقدمة على جهاز التمثيل العرقي المدمج:DNUMINAL DISPLAY) وكذلك تترجم دورياً إلى الحاسوب.

الإلكترونية الصغيرة في كل ثانية أو كل عشرة ثواني.
الطريقة (2)

عند حصول أحداث النظام، يتم اختيار مؤشرات حالة النظام من قبل المستر، وان مقدار المؤشر الزمني لذلك الحدث يسجل على الشريط المغنطيسي من خلال ذاكرة الشنزين (BUFFFEM MEMORY)

الطريقة (3)

تنقل المعلومات المطابقة للأحداث الآنية في ذاكرة الارتباطية، قبل التعامل بها، إن المعلومات المطلوبة للعماءة مؤشرات حالة النظام ترسل من نظام الحاسبة بواسطة وتطابق مع المعلومات المخزنة في ذاكرة الارتباطية.

وعندما تتطابق المعلومات المطلوبة مع المعلومات المخزنة، يمكن إيجاد الحدث منها، ويتم رصد الحدث بواسطة الشريحة المخزنة.

الطريقة (3):
- عدد ارتباطي بدلالة حدوث الحدث.
- تسجيل البيانات المقدمة على الشريط المغنطيسي.
- كل ثانية او كل عشر ثوان من نهاية القياس.
التقييم (4)

بنفس الطريقة (3) تستخرج الأحداث بواسطة الداكنة الرباطية ويجب مقدار المؤشر الزمني المطابق لذلك الحد على الشريط المغناطيسي ليشكل تعاقب زمني للحد.

وعند ربط هذه الطرق الأربعة مع: مؤشرات حالة النظام يمكن استخراج بيانات النظام المختلفة.

مناقشة عامة:

إن أحد الأسباب الرئيسية في نقص بيانات التقييم ناتج عن قلة وجود الأدوات المستخدمة في التقييم الكمي لجودة البنية والتصميم للإجهزة والبرامج الأساسية.

إن تقنية قياس النظام لا تزال في البداية، ولم ينتج انجازها بصورة ثابتة بعد ويتم هذا بصورة خاصة عند استخدام (PERFORMANCE EVALUATION) التقني في نظرة فعالية النظام.

وعند وضع هذه الحالة بالبحث، يجب الأخذ بنظر الاعتبار المرونة عند تصميم الـ SYDAS للكشف عن ماذا وكيف تقنيات أنظمة الحاسة. إن استخراج الحدوث وتحريه باستخدام الذاكرة الرباطية هو أحد الأمثلة في اعطاء هذه المرونة.

-152-
أن المشكلة الرئيسية في نحو موضوع الـ SYDAS هو تصميم المجر، أن المجر يجب أن يكون ذا متنورة عالية لمساعدته للتفاعل في نظام التشغيل الاعتيادي، وعشر الحجم الكبيرة لا يعيب عمليات البناء، ورغم الكلفة وهناك رفعة عالية في ايجاد بعض الطرق التي تسهل الوصول على مؤشرات تظهر ببساطة نظام الحاسة مستقبلاً.

إن الخطوة التالية في قياس فعالية النظام هو في التنفيذ الاستراتيجية للمعلومات المراد قياسها إلى الحاسة، فإن هناك إمكانية عالية في تحسين فعالية النظام إذا ما كانت الweenات المقاومة مستخدمة بصورة صحيحة، فإن نماذج النظام التي تحدد العلاقة ما بين معاملات النظام وفعالية النظام ويجد دفعاً بقوة إلى الأمام في سبيل الوصول إلى الهدف.

(7) K. Hakozaki, M. Yamamoto, T. Ono, N. Ohno and M. UMEMURA
"Design and Evaluation System for Computer architecture"
Nippon Electric Company ltd., Kawasaki, Japan

(8) K. Hakozaki, T. Ono: "System Measurement using a
Hardware Monitor". Information Processing society of
<table>
<thead>
<tr>
<th>English</th>
<th>Arabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONITOR</td>
<td>المراقبة</td>
</tr>
<tr>
<td>PROCESSOR</td>
<td>المعالج</td>
</tr>
<tr>
<td>FIRMWARE</td>
<td>البرنامج المبني</td>
</tr>
<tr>
<td>TRADE OFF</td>
<td>الموازنة</td>
</tr>
<tr>
<td>SOFTWARE</td>
<td>البرنامج الأساسية</td>
</tr>
<tr>
<td>COUNTER</td>
<td>عداد</td>
</tr>
<tr>
<td>PROBE</td>
<td>مسند</td>
</tr>
<tr>
<td>SUPERVISOR</td>
<td>المشترف</td>
</tr>
<tr>
<td>EVENT</td>
<td>الحدث</td>
</tr>
<tr>
<td>CONVERTER</td>
<td>مكتول</td>
</tr>
<tr>
<td>TIMER</td>
<td>مؤشر زمني</td>
</tr>
<tr>
<td>ASSOCIATIVE</td>
<td>ذاكرة ارتباطية</td>
</tr>
<tr>
<td>NUMERICAL DISPLAY</td>
<td>التمثيل الرقمي الملموسي</td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>فعالية</td>
</tr>
<tr>
<td>تاريOMETR</td>
<td>المكان</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1 - 6</td>
<td>APEC</td>
</tr>
</tbody>
</table>
كتبة جديدة

فاز الكتاب المعنى (الالكترونيات الرقمية) الزمن من قبل السيدين سعيد خليل عمر المدرس من جامعة الموصل وصموء هيئة تحرير مجلة الحاسوب الإلكترونية، والدكتور رياض كمال الحكيم بجائزة احسن كتاب علمي مشارك في معرض الكتاب العربي لعام 1982 المقام باشراف مؤسسة الكويت للتقدم العلمي.

وتم الكتاب من خلال مساعيه ال (68) اربعة عشر فصيلة تناولت الموضوعات التالية: الرومان الشمالي وSwift الحساب، وتبسيط دوائر المنطق، وأجهزة الادخال والإخراج، وتحليل الرقم إلى النظري والاجهزة الحاسوبية والذكاء واسع والحساب الرقمي ومقدمة إلى الحواسيب الإلكترونية الرقمية.

وامتزج الكتاب بين تعبيره وتسليط مواده وسلاسة الطوسيه، ولهذا فأنه يعد بهج من الكتب الجديدة في تدريس مادة المنطق والحواسيب الإلكترونية للمبتدئين بدراسة الإلكترونيات الرقمية.

ويأتي نشر هذا الكتاب في وقت يشهد استعمال الإجهزة والأنظمة الرقمية في نمو واسع لا يقترب من اساليب المعينة في مجال الحواسيب الإلكترونية ك سيكونات، وأجهزة الاتصالات ومعالجة البيانات والعملية الصناعية والطبية.
والسيطرة الذاتية والموصلات باتجاه تبيان كيفية عمل اشياء الموصلات والترانزستورات وغيرها.

المجلة إذ تحتوي النيابيين عمر والحكيم على ما قدماه من جهد مشتر ومتميز في تدوين الكتاب المذكور والذي جاء منجها مع النص الأصلي من حيث الحفاظ على حرية المعنى دون الوقوع في حرية النقل. فهي تأمل أن يكون هذا الكتاب قد ساهم في المكتبة العربية في مجال علم الإلكتروني الرقمي والرائع من النتائج العلمية العربية في علم الالکترونية...
تَقَام وَفَدُ من مَكتب مَكتب الموظفين لتنمية المعلومات بزيارة أقطار الخليج العربي مؤخراً. وقد شملت الزيارة التي كان هدفها شرح أهداف ومهام المنظمة كل من دولة الأمانات العربية المتحدة ودولة الكويت.

سيصدر قريباً عن كلية العلوم في الرباط، مجلة علمية متخصصة في علم سيطرة الحاسات الالكترونية ومعالجة الإشارات. وقد وافقت مكتبة تحرير المجلة بالإعلان الرسمي عن المجلة وهي ترحيب الإشارة إليه من خلال ملاحظات ملخص

(الحاسبات الإلكترونية).

وتشمل المجلة المغربية إلى تطوير التبادل العلمي والفضاء في المواضيع النظرية والتجريبية للسيطرة الآلفتوماتيكية وعلوم الحاسوب الإلكترونية ومعالجة الإشارات والقياسات.

واعربت المجلة عن ترحيبها بالباحثات التي تقدم المساهمات والتي تعطي نتائج يمكن استخدامها من قبل المهندسين لاستشراق التطبيقات العملية.

وترسل المواضيع والبحوث التي يشترط أن تكون مفصلة إلى كلية العلوم الرباط في

2014

اما المواضيع التي يبحث الكتابة فيها فهي:

Control

Systems theory, Modelling, Adaptive control, Control

-162-
of distributed systems, time-delay, systems, stochastic processes...
Large-scale systems are also included. All the mathematical techniques related to optimal control problems

Signal processing:
Signal processing algorithms, speech, seismic, biomedical, image

Computer Science:
Distributed systems, computer networks, learning systems, language theory, pattern recognition
and, artificial intelligence, data acquisition, computing methods in applied sciences and engineering

و مجلة الحاسبات الإلكترونية وهي تنشر بالتزامن الآسيوي في الإشارة إلى مدونة المجلة العربية الرابعة والاعلان عنها

--163--
دُرجُو لِها تَحْقِيق الأهداف العلمية المنشودة، والنجاح والتقدم
وتعرَّب عن تَقَدِّرها لِخطوة إمداد مجلة عربية تعنى بعلم الآداب
الحاسوتيَّة الإلكترونَيَّة.
882. damping
amortissement

883. data
données

884. data accumulation
accumulation des données

885. data acquisition (D.A.)
saisie des données
886. Data Bank
banque des données
مجموعة البيانات من جميع مجالات
النشاط في المنظمة مغزينة
باستعمال إحدى وسائل التخزين
المباشر بحيث يمكن استخراجها
للمعالجة عند الحاجة إليها عادة
عن طريق محطات طرفية، وتجمع
البيانات المخزنة بنك البيانات
كل فترة زمنية معينة أو بعد
مستمرة.

887. Data Base
fichier central
قاعدة البيانات
التي تنظيم البيانات في شكل
ملف أساسي يمكن التعامل مع
بيانات بطريقة شاملة
للمتطلبات المختلفة لمتخير
القرارات، انظر (المصطلح رقم
887).

888. Data Capture
données capturées
حمر البيانات
جمع البيانات وتجزئها بصورة
صالحة للمعالجة على الحاسب.

889. Data Carrier
support d’information
حامل البيانات
أي وسيلة من وسائل
تسجيل البيانات.
890. data cell
cellule (de mémoire à feuillets)

891. data cell drive
cellule des données

892. data center (D.C)
centre de calcul

893. data collection
collection des données

894. data communication
transmission des données

895. data compression
compression des données

896. data control
contrôle des données

897. data control
contrôle des données
898. data conversion
conversion de données

899. data density
densité d'enregistrement

900. data display unit
unité de projection des données

901. data division
division des données

902. data element
e élément d'information

903. data entry
introduction des données

904. data entry keyboard
clavier d'introduction des données

905. data, erasable
données peuvent être éliminées

-168-
906. data error
erreur des données
خطأ البيانات
جروح عن الصحة في البيانات
وعادة يكون اكتشاف هذا الخطأ عند معالجة البيانات

907. data fields
champs des données
حقول البيانات

908. data format
la forme des données
بنية البيانات
وصف كيفية وضع البيانات داخل ملف أو سجل ما

909. data gathering
collectionnement des données
جمع البيانات

910. data grouped
données groupées
بيانات مجمعة
وهي البيانات الموزعة في فترات وتتعامل البيانات الموجودة في فترة واحدة وكأنها واقعة جميعها في مركز الفئة

911. data handling
traitement des données
تناول البيانات

912. data input
données en entrée
ادخال البيانات

913. data link
liaison pour l'acheminement
des données
موصل البيانات
جهاز يسمح بإرسال البيانات في شكل ملائم لربط الأشخاص
914. data logging
 enregistrement chronologique
des données

915. data, master
données maîtresses

916. data - name,
 nom de la données

917. data, ordered
données en order

918. data originating
equipment
 matériel émetteur des données

919. data origination
 création des données

-170-
الالتزام السنوي
في مبادئ الممارسات الإلكترونية

داخل العراق

للدواير والمؤسسات والتركبات: 500 دينار
للإخوان: دينار واحد
للطلبة: نصف دينار

في الوطن العربي

للدواير والمؤسسات والتركبات: 000 دينار
للإخوان: 2 دينار

تنشئ جميع المراسلات التي
ربعي عشر برميل مالية للمؤسسات الإلكترونية
مركز القوى للمؤسسات الإلكترونية بربع 3261 الدوائر
الجبرية العراقية
تفلكل: 212163

لا مهاد الأسام المقدمة إلى اكتماله فجر أو لامنهار
مجلة علمية نصف سنوية
العدد الحادي عشر
1984