

Introduction to
Computer Security

Bishop.book Page i Tuesday, September 28, 2004 1:46 PM

Bishop.book Page ii Tuesday, September 28, 2004 1:46 PM

Introduction to

Computer Security

Matt Bishop

Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Bishop.book Page iii Tuesday, September 28, 2004 1:46 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Bishop, Matt (Matthew A.)
 Introduction to computer security / Matt Bishop.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-24744-2 (hardcover : alk. paper)
 1. Computer security. I. Title.

 QA76.9.A25B563 2004
 005.8—dc22 2004019195

Copyright © 2005 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Chapters 17 and 18 Copyright 2005 by Elisabeth C. Sullivan. Published by Pearson Education, Inc. with
permission.

For information on obtaining permission for use of material from this work, please submit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN: 0-321-24744-2
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—CRS—0807060504
First printing, October 2004

Bishop.book Page iv Tuesday, September 28, 2004 2:34 PM

Bishop.book Page v Tuesday, September 28, 2004 1:46 PM

To my dear Holly; our children Heidi, Steven, David, and Caroline; our
grandson Skyler; our son-in-law Mike; and our friends Seaview, Tinker Belle,
Stripe, Baby Windsor, Fuzzy, Scout, Fur, Puff, and the rest of the menagerie.

Bishop.book Page vi Tuesday, September 28, 2004 1:46 PM

vii

Contents

Preface .xxv

Goals . xxvi
Philosophy .xxvii
Organization. xxix
Differences Between this Book and

Computer Security:
Art and Science

 .xxx
Special Acknowledgment. xxxi
Acknowledgments . xxxi

Chapter 1 An Overview of Computer Security. .1

1.1 The Basic Components .1
1.1.1 Confidentiality .2
1.1.2 Integrity .3
1.1.3 Availability .4

1.2 Threats .4
1.3 Policy and Mechanism. .7

1.3.1 Goals of Security .8
1.4 Assumptions and Trust .9
1.5 Assurance. .10

1.5.1 Specification. .11
1.5.2 Design. .12
1.5.3 Implementation. .12

1.6 Operational Issues .14
1.6.1 Cost-Benefit Analysis. .14
1.6.2 Risk Analysis .15
1.6.3 Laws and Customs .16

1.7 Human Issues. .17
1.7.1 Organizational Problems .18
1.7.2 People Problems .19

1.8 Tying It All Together. .20
1.9 Summary .21

1.10 Further Reading .22
1.11 Exercises .22

Bishop.book Page vii Tuesday, September 28, 2004 1:46 PM

viii Contents

Chapter 2 Access Control Matrix . 27

2.1 Protection State . 27
2.2 Access Control Matrix Model . 28
2.3 Protection State Transitions . 31

2.3.1 Conditional Commands . 33
2.4 Summary. 34
2.5 Further Reading . 35
2.6 Exercises . 35

Chapter 3 Foundational Results . 37

3.1 The General Question . 37
3.2 Basic Results. 38
3.3 Summary. 43
3.4 Further Reading . 43
3.5 Exercises . 44

Chapter 4 Security Policies . 45

4.1 Security Policies . 45
4.2 Types of Security Policies . 49
4.3 The Role of Trust . 51
4.4 Types of Access Control. 53
4.5 Example: Academic Computer Security Policy . 54

4.5.1 General University Policy . 55
4.5.2 Electronic Mail Policy. 55

4.5.2.1 The Electronic Mail Policy Summary 56
4.5.2.2 The Full Policy . 56
4.5.2.3 Implementation at UC Davis . 57

4.6 Summary. 58
4.7 Further Reading . 58
4.8 Exercises . 59

Chapter 5 Confidentiality Policies. 61

5.1 Goals of Confidentiality Policies . 61
5.2 The Bell-LaPadula Model. 62

5.2.1 Informal Description . 62
5.2.2 Example: The Data General B2 UNIX System. 66

5.2.2.1 Assigning MAC Labels . 66
5.2.2.2 Using MAC Labels . 69

5.3 Summary. 70
5.4 Further Reading . 70
5.5 Exercises . 71

Bishop.book Page viii Tuesday, September 28, 2004 1:46 PM

 Contents ix

Chapter 6 Integrity Policies .73

6.1 Goals .73
6.2 Biba Integrity Model .75
6.3 Clark-Wilson Integrity Model .76

6.3.1 The Model .77
6.3.2 Comparison with the Requirements .79
6.3.3 Comparison with Other Models .80

6.4 Summary .81
6.5 Further Reading .81
6.6 Exercises .82

Chapter 7 Hybrid Policies .83

7.1 Chinese Wall Model .83
7.1.1 Bell-LaPadula and Chinese Wall Models 86
7.1.2 Clark-Wilson and Chinese Wall Models87

7.2 Clinical Information Systems Security Policy. .88
7.2.1 Bell-LaPadula and Clark-Wilson Models 90

7.3 Originator Controlled Access Control .91
7.4 Role-Based Access Control .92
7.5 Summary .94
7.6 Further Reading .95
7.7 Exercises .95

Chapter 8 Basic Cryptography. .97

8.1 What Is Cryptography? .97
8.2 Classical Cryptosystems .98

8.2.1 Transposition Ciphers. .99
8.2.2 Substitution Ciphers .100

8.2.2.1 Vigenère Cipher .101
8.2.2.2 One-Time Pad .107

8.2.3 Data Encryption Standard .108
8.2.4 Other Classical Ciphers .112

8.3 Public Key Cryptography .113
8.3.1 RSA .114

8.4 Cryptographic Checksums. .116
8.4.1 HMAC .118

8.5 Summary .119
8.6 Further Reading .119
8.7 Exercises .120

Bishop.book Page ix Tuesday, September 28, 2004 1:46 PM

x Contents

Chapter 9 Key Management . 123

9.1 Session and Interchange Keys . 124
9.2 Key Exchange. 124

9.2.1 Classical Cryptographic Key Exchange and Authentication. . 125
9.2.2 Kerberos . 128
9.2.3 Public Key Cryptographic Key Exchange and

Authentication . 129
9.3 Cryptographic Key Infrastructures . 130

9.3.1 Certificate Signature Chains . 131

9.3.1.1 X.509: Certification Signature Chains 132
9.3.1.2 PGP Certificate Signature Chains 134

9.3.2 Summary . 136
9.4 Storing and Revoking Keys . 136

9.4.1 Key Storage . 136
9.4.2 Key Revocation . 137

9.5 Digital Signatures . 137
9.5.1 Classical Signatures. 138
9.5.2 Public Key Signatures . 139

9.6 Summary. 140
9.7 Further Reading . 141
9.8 Exercises . 142

Chapter 10 Cipher Techniques . 145

10.1 Problems . 145
10.1.1 Precomputing the Possible Messages 145
10.1.2 Misordered Blocks. 146
10.1.3 Statistical Regularities . 146
10.1.4 Summary . 147

10.2 Stream and Block Ciphers . 147
10.2.1 Stream Ciphers . 148

10.2.1.1 Synchronous Stream Ciphers . 148
10.2.1.2 Self-Synchronous Stream Ciphers. 150

10.2.2 Block Ciphers . 151

10.2.2.1 Multiple Encryption . 152

10.3 Networks and Cryptography. 153
10.4 Example Protocols . 156

10.4.1 Secure Electronic Mail: PEM . 156

10.4.1.1 Design Principles . 157
10.4.1.2 Basic Design . 158
10.4.1.3 Other Considerations . 159
10.4.1.4 Conclusion . 160

Bishop.book Page x Tuesday, September 28, 2004 1:46 PM

 Contents xi

10.4.2 Security at the Network Layer: IPsec.161

10.4.2.1 IPsec Architecture .162
10.4.2.2 Authentication Header Protocol .165
10.4.2.3 Encapsulating Security Payload Protocol166

10.4.3 Conclusion .167
10.5 Summary .168
10.6 Further Reading .168
10.7 Exercises .169

Chapter 11 Authentication .171

11.1 Authentication Basics .171
11.2 Passwords .172

11.2.1 Attacking a Password System .174
11.2.2 Countering Password Guessing .175

11.2.2.1 Random Selection of Passwords .176
11.2.2.2 Pronounceable and Other Computer-Generated

Passwords .177
11.2.2.3 User Selection of Passwords .178
11.2.2.4 Reusable Passwords and Dictionary Attacks 182
11.2.2.5 Guessing Through Authentication Functions 183

11.2.3 Password Aging .184
11.3 Challenge-Response .186

11.3.1 Pass Algorithms .186
11.3.2 One-Time Passwords .187
11.3.3 Hardware-Supported Challenge-Response Procedures188
11.3.4 Challenge-Response and Dictionary Attacks189

11.4 Biometrics .190
11.4.1 Fingerprints .190
11.4.2 Voices .191
11.4.3 Eyes .191
11.4.4 Faces .191
11.4.5 Keystrokes .192
11.4.6 Combinations .192
11.4.7 Caution .192

11.5 Location .193
11.6 Multiple Methods .193
11.7 Summary .195
11.8 Further Reading .196
11.9 Exercises .196

Bishop.book Page xi Tuesday, September 28, 2004 1:46 PM

xii Contents

Chapter 12 Design Principles. 199

12.1 Overview. 199
12.2 Design Principles . 201

12.2.1 Principle of Least Privilege . 201
12.2.2 Principle of Fail-Safe Defaults . 202
12.2.3 Principle of Economy of Mechanism 202
12.2.4 Principle of Complete Mediation . 203
12.2.5 Principle of Open Design . 204
12.2.6 Principle of Separation of Privilege . 205
12.2.7 Principle of Least Common Mechanism 206
12.2.8 Principle of Psychological Acceptability 206

12.3 Summary. 207
12.4 Further Reading . 208
12.5 Exercises . 208

Chapter 13 Representing Identity . 211

13.1 What Is Identity?. 211
13.2 Files and Objects. 212
13.3 Users . 213
13.4 Groups and Roles . 214
13.5 Naming and Certificates . 215

13.5.1 The Meaning of the Identity . 218
13.5.2 Trust. 220

13.6 Identity on the Web . 221
13.6.1 Host Identity . 221

13.6.1.1 Static and Dynamic Identifiers . 222
13.6.1.2 Security Issues with the Domain Name Service 224

13.6.2 State and Cookies . 225
13.6.3 Anonymity on the Web . 226

13.6.3.1 Anonymity for Better or Worse . 230

13.7 Summary. 233
13.8 Further Reading . 233
13.9 Exercises . 234

Chapter 14 Access Control Mechanisms . 237

14.1 Access Control Lists . 237
14.1.1 Abbreviations of Access Control Lists 238
14.1.2 Creation and Maintenance of Access Control Lists 240

14.1.2.1 Which Subjects Can Modify an Object’s ACL? 241
14.1.2.2 Do the ACLs Apply to a Privileged User? 241
14.1.2.3 Does the ACL Support Groups and Wildcards? 242

Bishop.book Page xii Tuesday, September 28, 2004 1:46 PM

 Contents xiii

14.1.2.4 Conflicts .242
14.1.2.5 ACLs and Default Permissions .243

14.1.3 Revocation of Rights .243
14.1.4 Example: Windows NT Access Control Lists244

14.2 Capabilities .246
14.2.1 Implementation of Capabilities .247
14.2.2 Copying and Amplifying Capabilities248
14.2.3 Revocation of Rights .249
14.2.4 Limits of Capabilities .250
14.2.5 Comparison with Access Control Lists 251

14.3 Locks and Keys .252
14.3.1 Type Checking .253

14.4 Ring-Based Access Control. .255
14.5 Propagated Access Control Lists .257
14.6 Summary .258
14.7 Further Reading .258
14.8 Exercises .259

Chapter 15 Information Flow. .261

15.1 Basics and Background .261
15.1.1 Information Flow Models and Mechanisms.263

15.2 Compiler-Based Mechanisms .263
15.2.1 Declarations .264
15.2.2 Program Statements .266

15.2.2.1 Assignment Statements. .266
15.2.2.2 Compound Statements .267
15.2.2.3 Conditional Statements .267
15.2.2.4 Iterative Statements .268
15.2.2.5 Goto Statements .269
15.2.2.6 Procedure Calls .272

15.2.3 Exceptions and Infinite Loops .272
15.2.4 Concurrency .274
15.2.5 Soundness .276

15.3 Execution-Based Mechanisms. .277
15.3.1 Fenton’s Data Mark Machine. .278
15.3.2 Variable Classes .280

15.4 Example Information Flow Controls .281
15.4.1 Security Pipeline Interface .282
15.4.2 Secure Network Server Mail Guard .282

15.5 Summary .284
15.6 Further Reading .284
15.7 Exercises .285

Bishop.book Page xiii Tuesday, September 28, 2004 1:46 PM

xiv Contents

Chapter 16 Confinement Problem. 287

16.1 The Confinement Problem . 287
16.2 Isolation . 290

16.2.1 Virtual Machines . 290
16.2.2 Sandboxes . 292

16.3 Covert Channels . 294
16.3.1 Detection of Covert Channels . 296
16.3.2 Mitigation of Covert Channels . 303

16.4 Summary. 306
16.5 Further Reading . 306
16.6 Exercises . 307

Chapter 17 Introduction to Assurance . 309

17.1 Assurance and Trust . 309
17.1.1 The Need for Assurance . 311
17.1.2 The Role of Requirements in Assurance 313
17.1.3 Assurance Throughout the Life Cycle. 314

17.2 Building Secure and Trusted Systems . 316
17.2.1 Life Cycle . 316

17.2.1.1 Conception . 317
17.2.1.2 Manufacture . 318
17.2.1.3 Deployment . 319
17.2.1.4 Fielded Product Life . 320

17.2.2 The Waterfall Life Cycle Model . 320

17.2.2.1 Requirements Definition and Analysis 320
17.2.2.2 System and Software Design. 321
17.2.2.3 Implementation and Unit Testing 321
17.2.2.4 Integration and System Testing. 322
17.2.2.5 Operation and Maintenance . 322
17.2.2.6 Discussion . 322

17.2.3 Other Models of Software Development. 323

17.2.3.1 Exploratory Programming . 323
17.2.3.2 Prototyping . 323
17.2.3.3 Formal Transformation . 323
17.2.3.4 System Assembly from Reusable Components 324
17.2.3.5 Extreme Programming . 324

17.3 Building Security In or Adding Security Later. 324
17.4 Summary. 328
17.5 Further Reading . 328
17.6 Exercises . 329

Bishop.book Page xiv Tuesday, September 28, 2004 1:46 PM

 Contents xv

Chapter 18 Evaluating Systems .331

18.1 Goals of Formal Evaluation. .331
18.1.1 Deciding to Evaluate .332
18.1.2 Historical Perspective of Evaluation Methodologies333

18.2 TCSEC: 1983–1999. .334
18.2.1 TCSEC Requirements .335

18.2.1.1 TCSEC Functional Requirements 335
18.2.1.2 TCSEC Assurance Requirements.336

18.2.2 The TCSEC Evaluation Classes .337
18.2.3 The TCSEC Evaluation Process. .338
18.2.4 Impacts .338

18.2.4.1 Scope Limitations. .339
18.2.4.2 Process Limitations .339
18.2.4.3 Contributions .340

18.3 FIPS 140: 1994–Present .341
18.3.1 FIPS 140 Requirements .341
18.3.2 FIPS 140-2 Security Levels .342
18.3.3 Impact .342

18.4 The Common Criteria: 1998–Present .343
18.4.1 Overview of the Methodology .344
18.4.2 CC Requirements .348
18.4.3 CC Security Functional Requirements349
18.4.4 Assurance Requirements .351
18.4.5 Evaluation Assurance Levels .351
18.4.6 Evaluation Process .353
18.4.7 Impacts .354
18.4.8 Future of the Common Criteria .354

18.4.8.1 Interpretations .355
18.4.8.2 Assurance Class AMA and Family ALC_FLR.355
18.4.8.3 Products Versus Systems .355
18.4.8.4 Protection Profiles and Security Targets.355
18.4.8.5 Assurance Class AVA. .356
18.4.8.6 EAL5 .356

18.5 SSE-CMM: 1997–Present .356
18.5.1 The SSE-CMM Model .357
18.5.2 Using the SSE-CMM .358

18.6 Summary .359
18.7 Further Reading .360
18.8 Exercises .361

Bishop.book Page xv Tuesday, September 28, 2004 1:46 PM

xvi Contents

Chapter 19 Malicious Logic . 363

19.1 Introduction. 363
19.2 Trojan Horses . 364
19.3 Computer Viruses . 365

19.3.1 Boot Sector Infectors . 367
19.3.2 Executable Infectors . 368
19.3.3 Multipartite Viruses. 369
19.3.4 TSR Viruses. 370
19.3.5 Stealth Viruses. 370
19.3.6 Encrypted Viruses . 370
19.3.7 Polymorphic Viruses . 371
19.3.8 Macro Viruses . 372

19.4 Computer Worms . 373
19.5 Other Forms of Malicious Logic . 374

19.5.1 Rabbits and Bacteria . 374
19.5.2 Logic Bombs . 375

19.6 Defenses . 376
19.6.1 Malicious Logic Acting as Both Data and Instructions. 376
19.6.2 Malicious Logic Assuming the Identity of a User. 377

19.6.2.1 Information Flow Metrics . 377
19.6.2.2 Reducing the Rights . 378
19.6.2.3 Sandboxing . 381

19.6.3 Malicious Logic Crossing Protection Domain Boundaries
by Sharing . 381

19.6.4 Malicious Logic Altering Files . 382
19.6.5 Malicious Logic Performing Actions Beyond

Specification . 383

19.6.5.1 Proof-Carrying Code . 384

19.6.6 Malicious Logic Altering Statistical Characteristics 384
19.6.7 The Notion of Trust . 385

19.7 Summary. 385
19.8 Further Reading . 386
19.9 Exercises . 386

Chapter 20 Vulnerability Analysis . 389

20.1 Introduction. 389
20.2 Penetration Studies . 391

20.2.1 Goals . 391
20.2.2 Layering of Tests . 392
20.2.3 Methodology at Each Layer . 393
20.2.4 Flaw Hypothesis Methodology . 393

Bishop.book Page xvi Tuesday, September 28, 2004 1:46 PM

 Contents xvii

20.2.4.1 Information Gathering and Flaw Hypothesis 394
20.2.4.2 Flaw Testing .395
20.2.4.3 Flaw Generalization .395
20.2.4.4 Flaw Elimination .396

20.2.5 Example: Penetration of the Michigan Terminal System 396
20.2.6 Example: Compromise of a Burroughs System398
20.2.7 Example: Penetration of a Corporate Computer System399
20.2.8 Example: Penetrating a UNIX System.400
20.2.9 Example: Penetrating a Windows NT System402

20.2.10 Debate. .403
20.2.11 Conclusion .404

20.3 Vulnerability Classification .404
20.3.1 Two Security Flaws .405

20.4 Frameworks .406
20.4.1 The RISOS Study .406

20.4.1.1 The Flaw Classes .408
20.4.1.2 Legacy .409

20.4.2 Protection Analysis Model .409

20.4.2.1 The Flaw Classes .410
20.4.2.2 Legacy .412

20.4.3 The NRL Taxonomy .412

20.4.3.1 The Flaw Classes .412
20.4.3.2 Legacy .414

20.4.4 Aslam’s Model .414

20.4.4.1 The Flaw Classes .415
20.4.4.2 Legacy .415

20.4.5 Comparison and Analysis. .415

20.4.5.1 The xterm Log File Flaw .416
20.4.5.2 The fingerd Buffer Overflow Flaw.418
20.4.5.3 Summary .419

20.6 Further Reading .420
20.7 Exercises .421

Chapter 21 Auditing .423

21.1 Definitions .423
21.2 Anatomy of an Auditing System .424

21.2.1 Logger .424
21.2.2 Analyzer .426
21.2.3 Notifier .427

21.3 Designing an Auditing System .428
21.3.1 Implementation Considerations .429

Bishop.book Page xvii Tuesday, September 28, 2004 1:46 PM

xviii Contents

21.3.2 Syntactic Issues . 429
21.3.3 Log Sanitization. 431
21.3.4 Application and System Logging . 433

21.4 A Posteriori Design. 434
21.4.1 Auditing to Detect Violations of a Known Policy. 435

21.4.1.1 State-Based Auditing. 435
21.4.1.2 Transition-Based Auditing . 436

21.4.2 Auditing to Detect Known Violations of a Policy. 437
21.5 Auditing Mechanisms. 438

21.5.1 Secure Systems . 438
21.5.2 Nonsecure Systems . 440

21.6 Examples: Auditing File Systems. 441
21.6.1 Audit Analysis of the NFS Version 2 Protocol 441
21.6.2 The Logging and Auditing File System (LAFS). 445
21.6.3 Comparison . 447

21.7 Audit Browsing. 448
21.8 Summary. 450
21.9 Further Reading . 451

21.10 Exercises . 451

Chapter 22 Intrusion Detection . 455

22.1 Principles . 455
22.2 Basic Intrusion Detection . 456
22.3 Models . 458

22.3.1 Anomaly Modeling . 459
22.3.2 Misuse Modeling . 461
22.3.3 Specification Modeling . 463
22.3.4 Summary . 464

22.4 Architecture . 465
22.4.1 Agent . 465

22.4.1.1 Host-Based Information Gathering 466
22.4.1.2 Network-Based Information Gathering 467
22.4.1.3 Combining Sources . 467

22.4.2 Director . 469
22.4.3 Notifier . 469

22.5 Organization of Intrusion Detection Systems. 471
22.5.1 Monitoring Network Traffic for Intrusions: NSM 471
22.5.2 Combining Host and Network Monitoring: DIDS 472
22.5.3 Autonomous Agents: AAFID . 475

22.6 Intrusion Response . 476
22.6.1 Incident Prevention . 476

Bishop.book Page xviii Tuesday, September 28, 2004 1:46 PM

 Contents xix

22.6.2 Intrusion Handling .477

22.6.2.1 Containment Phase .478
22.6.2.2 Eradication Phase .479
22.6.2.3 Follow-Up Phase .482

22.9 Exercises .485

Chapter 23 Network Security .487

23.1 Introduction .487
23.2 Policy Development .488

23.2.1 Data Classes .489
23.2.2 User Classes .490
23.2.3 Availability .492
23.2.4 Consistency Check .492

23.3 Network Organization .493
23.3.1 Firewalls and Proxies .494
23.3.2 Analysis of the Network Infrastructure 496

23.3.2.1 Outer Firewall Configuration .497
23.3.2.2 Inner Firewall Configuration .499

23.3.3 In the DMZ. .500

23.3.3.1 DMZ Mail Server .500
23.3.3.2 DMZ WWW Server. .501
23.3.3.3 DMZ DNS Server .503
23.3.3.4 DMZ Log Server .503
23.3.3.5 Summary .504

23.3.4 In the Internal Network .504
23.3.5 General Comment on Assurance .506

23.4 Availability and Network Flooding .507
23.4.1 Intermediate Hosts .507
23.4.2 TCP State and Memory Allocations. .508

23.5 Anticipating Attacks .510
23.6 Summary .512
23.7 Further Reading .512
23.8 Exercises .513

Chapter 24 System Security .517

24.1 Introduction .517
24.2 Policy .518

24.2.1 The Web Server System in the DMZ .518
24.2.2 The Development System .519
24.2.3 Comparison .522
24.2.4 Conclusion .523

Bishop.book Page xix Tuesday, September 28, 2004 1:46 PM

xx Contents

24.3 Networks. 523
24.3.1 The Web Server System in the DMZ 524
24.3.2 The Development System . 526
24.3.3 Comparison . 528

24.4 Users . 529
24.4.1 The Web Server System in the DMZ 529
24.4.2 The Development System . 531
24.4.3 Comparison . 534

24.5 Authentication. 534
24.5.1 The Web Server System in the DMZ 535
24.5.2 Development Network System . 535
24.5.3 Comparison . 537

24.6 Processes. 537
24.6.1 The Web Server System in the DMZ 537
24.6.2 The Development System . 541
24.6.3 Comparison . 542

24.7 Files. 543
24.7.1 The Web Server System in the DMZ 543
24.7.2 The Development System . 545
24.7.3 Comparison . 547

24.8 Retrospective . 549
24.8.1 The Web Server System in the DMZ 549
24.8.2 The Development System . 550

24.9 Summary. 550
24.10 Further Reading . 551
24.11 Exercises . 551

Chapter 25 User Security . 555

25.1 Policy . 555
25.2 Access . 556

25.2.1 Passwords . 556
25.2.2 The Login Procedure . 558

25.2.2.1 Trusted Hosts . 560

25.2.3 Leaving the System . 560
25.3 Files and Devices . 562

25.3.1 Files . 562

25.3.1.1 File Permissions on Creation . 563
25.3.1.2 Group Access . 564
25.3.1.3 File Deletion . 565

25.3.2 Devices . 567

25.3.2.1 Writable Devices . 567

Bishop.book Page xx Tuesday, September 28, 2004 1:46 PM

 Contents xxi

25.3.2.2 Smart Terminals. .567
25.3.2.3 Monitors and Window Systems .569

25.4 Processes .570
25.4.1 Copying and Moving Files .570
25.4.2 Accidentally Overwriting Files .571
25.4.3 Encryption, Cryptographic Keys, and Passwords 571
25.4.4 Start-up Settings .573
25.4.5 Limiting Privileges .573
25.4.6 Malicious Logic .574

25.5 Electronic Communications .575
25.5.1 Automated Electronic Mail Processing575
25.5.2 Failure to Check Certificates .575
25.5.3 Sending Unexpected Content .576

25.6 Summary .576
25.7 Further Reading .577
25.8 Exercises .577

Chapter 26 Program Security. .579

26.1 Introduction .579
26.2 Requirements and Policy .580

26.2.1 Requirements .580
26.2.2 Threats .581

26.2.2.1 Group 1: Unauthorized Users Accessing Role
Accounts. .581

26.2.2.2 Group 2: Authorized Users Accessing Role
Accounts. .582

26.2.2.3 Summary .583

26.3 Design .583
26.3.1 Framework .584

26.3.1.1 User Interface .584
26.3.1.2 High-Level Design .584

26.3.2 Access to Roles and Commands .585

26.3.2.1 Interface .586
26.3.2.2 Internals .586
26.3.2.3 Storage of the Access Control Data.587

26.4 Refinement and Implementation .590
26.4.1 First-Level Refinement. .590
26.4.2 Second-Level Refinement .591
26.4.3 Functions .594

26.4.3.1 Obtaining Location .594
26.4.3.2 The Access Control Record .595

Bishop.book Page xxi Tuesday, September 28, 2004 1:46 PM

xxii Contents

26.4.3.3 Error Handling in the Reading and Matching
Routines. 596

26.4.4 Summary . 597
26.5 Common Security-Related Programming Problems 597

26.5.1 Improper Choice of Initial Protection Domain 598

26.5.1.1 Process Privileges. 598
26.5.1.2 Access Control File Permissions 600
26.5.1.3 Memory Protection . 601
26.5.1.4 Trust in the System . 602

26.5.2 Improper Isolation of Implementation Detail 603

26.5.2.1 Resource Exhaustion and User Identifiers 603
26.5.2.2 Validating the Access Control Entries 604
26.5.2.3 Restricting the Protection Domain of the Role

Process . 604

26.5.3 Improper Change . 605

26.5.3.1 Memory . 605
26.5.3.2 Changes in File Contents . 608
26.5.3.3 Race Conditions in File Accesses 608

26.5.4 Improper Naming . 609
26.5.5 Improper Deallocation or Deletion . 611
26.5.6 Improper Validation . 612

26.5.6.1 Bounds Checking . 612
26.5.6.2 Type Checking. 613
26.5.6.3 Error Checking . 614
26.5.6.4 Checking for Valid, not Invalid, Data. 614
26.5.6.5 Checking Input . 615
26.5.6.6 Designing for Validation. 617

26.5.7 Improper Indivisibility. 617
26.5.8 Improper Sequencing. 618
26.5.9 Improper Choice of Operand or Operation 619

26.5.10 Summary . 621
26.6 Testing, Maintenance, and Operation . 623

26.6.1 Testing . 624

26.6.1.1 Testing the Module . 625

26.6.2 Testing Composed Modules . 626
26.6.3 Testing the Program . 627

26.7 Distribution . 627
26.8 Conclusion . 629
26.9 Summary. 629

26.10 Further Reading . 629
26.11 Exercises . 630

Bishop.book Page xxii Tuesday, September 28, 2004 1:46 PM

 Contents xxiii

Chapter 27 Lattices .633

27.1 Basics. .633
27.2 Lattices. .635
27.3 Exercises .635

Chapter 28 The Extended
Euclidean Algorithm. .637

28.1 The Euclidean Algorithm .637
28.2 The Extended Euclidean Algorithm .638
28.3 Solving ax mod n = 1. .640
28.4 Solving ax mod n = b. .640
28.5 Exercises .641

Chapter 29 Virtual Machines .643

29.1 Virtual Machine Structure .643
29.2 Virtual Machine Monitor. .644

29.2.1 Privilege and Virtual Machines .645
29.2.2 Physical Resources and Virtual Machines646
29.2.3 Paging and Virtual Machines .647

29.3 Exercises .648

Bibliography .649

Index. .713

Bishop.book Page xxiii Tuesday, September 28, 2004 1:46 PM

Bishop.book Page xxiv Tuesday, September 28, 2004 1:46 PM

xxv

Preface

H

ORTENSIO

: Madam, before you touch the instrument
To learn the order of my fingering,
I must begin with rudiments of art

To teach you gamouth in a briefer sort,
More pleasant, pithy and effectual,

Than hath been taught by any of my trade;
And there it is in writing, fairly drawn.

—

The Taming of the Shrew

, III, i, 62–68.

On September 11, 2001, terrorists seized control of four airplanes. Three were flown
into buildings, and a fourth crashed, with catastrophic loss of life. In the aftermath, the
security and reliability of many aspects of society drew renewed scrutiny. One of these
aspects was the widespread use of computers and their interconnecting networks.

The issue is not new. In 1988, approximately 5,000 computers throughout the
Internet were rendered unusable within 4 hours by a program called a

worm

 [386].

1

While the spread, and the effects, of this program alarmed computer scientists, most
people were not worried because the worm did not affect their lives or their ability to
do their jobs. In 1993, more users of computer systems were alerted to such dangers
when a set of programs called

sniffers were placed on many computers run by net-
work service providers and recorded login names and passwords [339].

After an attack on Tsutomu Shimomura’s computer system, and the fascinat-
ing way Shimomura followed the attacker’s trail, which led to his arrest [821], the
public’s interest and apprehension were finally aroused. Computers were now vul-
nerable. Their once reassuring protections were now viewed as flimsy.

Several films explored these concerns. Movies such as War Games and Hack-
ers provided images of people who can, at will, wander throughout computers and
networks, maliciously or frivolously corrupting or destroying information it may
have taken millions of dollars to amass. (Reality intruded on Hackers when the
World Wide Web page set up by MGM/United Artists was quickly altered to present

1 Section 19.4 discusses computer worms.

Bishop.book Page xxv Tuesday, September 28, 2004 1:46 PM

xxvi Preface

an irreverent commentary on the movie and to suggest that viewers see The Net
instead. Paramount Pictures denied doing this [399].) Another film, Sneakers, pre-
sented a picture of those who test the security of computer (and other) systems for
their owners and for the government.

Goals

This book has three goals. The first is to show the importance of theory to practice and
of practice to theory. All too often, practitioners regard theory as irrelevant and theoreti-
cians think of practice as trivial. In reality, theory and practice are symbiotic. For
example, the theory of covert channels, in which the goal is to limit the ability of pro-
cesses to communicate through shared resources, provides a mechanism for evaluating
the effectiveness of mechanisms that confine processes, such as sandboxes and fire-
walls. Similarly, business practices in the commercial world led to the development of
several security policy models such as the Clark-Wilson model and the Chinese Wall
model. These models in turn help the designers of security policies better understand
and evaluate the mechanisms and procedures needed to secure their sites.

The second goal is to emphasize that computer security and cryptography are
different. Although cryptography is an essential component of computer security, it is
by no means the only component. Cryptography provides a mechanism for perform-
ing specific functions, such as preventing unauthorized people from reading and
altering messages on a network. However, unless developers understand the context
in which they are using cryptography, and unless the assumptions underlying the pro-
tocol and the cryptographic mechanisms apply to the context, the cryptography may
not add to the security of the system. The canonical example is the use of cryptogra-
phy to secure communications between two low-security systems. If only trusted
users can access the two systems, cryptography protects messages in transit. But if
untrusted users can access either system (through authorized accounts or, more likely,
by breaking in), the cryptography is not sufficient to protect the messages. The
attackers can read the messages at either endpoint.

The third goal is to demonstrate that computer security is not just a science but
also an art. It is an art because no system can be considered secure without an exami-
nation of how it is to be used. The definition of a “secure computer” necessitates a
statement of requirements and an expression of those requirements in the form of
authorized actions and authorized users. (A computer engaged in work at a university
may be considered “secure” for the purposes of the work done at the university.
When moved to a military installation, that same system may not provide sufficient
control to be deemed “secure” for the purposes of the work done at that installation.)
How will people, as well as other computers, interact with the computer system?
How clear and restrictive an interface can a designer create without rendering the sys-
tem unusable while trying to prevent unauthorized use or access to the data or
resources on the system?

Bishop.book Page xxvi Tuesday, September 28, 2004 1:46 PM

Preface xxvii

Just as an artist paints his view of the world onto canvas, so does a designer of
security features articulate his view of the world of human/machine interaction in the
security policy and mechanisms of the system. Two designers may use entirely dif-
ferent designs to achieve the same creation, just as two artists may use different sub-
jects to achieve the same concept.

Computer security is also a science. Its theory is based on mathematical con-
structions, analyses, and proofs. Its systems are built in accordance with the accepted
practices of engineering. It uses inductive and deductive reasoning to examine the
security of systems from key axioms and to discover underlying principles. These
scientific principles can then be applied to untraditional situations and new theories,
policies, and mechanisms.

Philosophy

Key to understanding the problems that exist in computer security is a recognition
that the problems are not new. They are old problems, dating from the beginning of
computer security (and, in fact, arising from parallel problems in the noncomputer
world). But the locus has changed as the field of computing has changed. Before the
mid-1980s, mainframe and mid-level computers dominated the market, and com-
puter security problems and solutions were phrased in terms of securing files or pro-
cesses on a single system. With the rise of networking and the Internet, the arena has
changed. Workstations and servers, and the networking infrastructure that connects
them, now dominate the market. Computer security problems and solutions now
focus on a networked environment. However, if the workstations and servers, and the
supporting network infrastructure, are viewed as a single system, the models, theo-
ries, and problem statements developed for systems before the mid-1980s apply
equally well to current systems.

As an example, consider the issue of assurance. In the early period, assurance
arose in several ways: formal methods and proofs of correctness, validation of policy
to requirements, and acquisition of data and programs from trusted sources, to name
a few. Those providing assurance analyzed a single system, the code on it, and the
sources (vendors and users) from which the code could be acquired to ensure that
either the sources could be trusted or the programs could be confined adequately to
do minimal damage. In the later period, the same basic principles and techniques
apply, except that the scope of some has been greatly expanded (from a single system
and a small set of vendors to the world-wide Internet). The work on proof-carrying
code, an exciting development in which the proof that a downloadable program mod-
ule satisfies a stated policy is incorporated into the program itself,2 is an example of
this expansion. It extends the notion of a proof of consistency with a stated policy. It

2 Section 19.6.5.1 discusses proof-carrying code.

Bishop.book Page xxvii Tuesday, September 28, 2004 1:46 PM

xxviii Preface

advances the technology of the earlier period into the later period. But in order to
understand it properly, one must understand the ideas underlying the concept of
proof-carrying code, and these ideas lie in the earlier period.

As another example, consider Saltzer and Schroeder’s principles of secure
design.3 Enunciated in 1975, they promote simplicity, confinement, and understand-
ing. When security mechanisms grow too complex, attackers can evade or bypass
them. Many programmers and vendors are learning this when attackers break into
their systems and servers. The argument that the principles are old, and somehow
outdated, rings hollow when the result of their violation is a nonsecure system.

The work from the earlier period is sometimes cast in terms of systems that no
longer exist and that differ in many ways from modern systems. This does not vitiate
the ideas and concepts, which also underlie the work done today. Once these ideas
and concepts are properly understood, applying them in a multiplicity of environ-
ments becomes possible. Furthermore, the current mechanisms and technologies will
become obsolete and of historical interest themselves as new forms of computing
arise, but the underlying principles will live on, to underlie the next generation—
indeed the next era—of computing.

The philosophy of this book is that certain key concepts underlie all of com-
puter security, and that the study of all parts of computer security enriches the under-
standing of all parts. Moreover, critical to an understanding of the applications of
security-related technologies and methodologies is an understanding of the theory
underlying those applications.

Advances in the theory of computer protection have illuminated the founda-
tions of security systems. Issues of abstract modeling, and modeling to meet specific
environments, lead to systems designed to achieve a specific and rewarding goal.
Theorems about the undecidability of the general security question4 have indicated
the limits of what can be done.

Application of these results has improved the quality of the security of the sys-
tems being protected. However, the issue is how compatibly the assumptions of the
model (and theory) conform to the environment to which the theory is applied.
Although our knowledge of how to apply these abstractions is continually increasing,
we still have difficulty correctly transposing the relevant information from a realistic
setting to one in which analyses can then proceed. Such abstraction often eliminates
vital information. The omitted data may pertain to security in nonobvious ways.
Without this information, the analysis is flawed.

 Unfortunately, no single work can cover all aspects of computer security, so
this book focuses on those parts that are, in the author’s opinion, most fundamental
and most pervasive. The mechanisms exemplify the applications of these principles.

3 Chapter 12 discusses these principles.
4 See Section 3.2, “Basic Results.”

Bishop.book Page xxviii Tuesday, September 28, 2004 1:46 PM

Preface xxix

Organization

The organization of this book reflects its philosophy. It begins with fundamentals and
principles that provide boundaries within which security can be modeled and analyzed
effectively. This provides a framework for expressing and analyzing the requirements
of the security of a system. These policies constrain what is allowed and what is not
allowed. Mechanisms provide the ability to implement these policies. The degree to
which the mechanisms correctly implement the policies, and indeed the degree to
which the policies themselves meet the requirements of the organizations using the
system, are questions of assurance. Exploiting failures in policy, in implementation,
and in assurance comes next, as well as mechanisms for providing information on the
attack. The book concludes with the applications of both theory and policy focused on
realistic situations. This natural progression emphasizes the development and applica-
tion of the principles existent in computer security.

The first chapter describes what computer security is all about and explores
the problems and challenges to be faced. It sets the context for the remainder of the
book.

Chapters 2 and 3 deal with basic questions such as how “security” can be
clearly and functionally defined, whether or not it is realistic, and whether or not it is
decidable.

Chapters 4 through 7 probe the relationship between policy and security. The
definition of “security” depends on policy. We examine several types of policies,
including the ever-present fundamental questions of trust, analysis of policies, and
the use of policies to constrain operations and transitions.

Chapters 9 through 12 discuss cryptography and its role in security, focusing
on applications and issues such as key management, key distribution, and how cryp-
tosystems are used in networks. A quick study of authentication completes this part.

Chapters 13 through 16 consider how to implement the requirements imposed
by policies using system-oriented techniques. Certain design principles are funda-
mental to effective security mechanisms. Policies define who can act and how they
can act, and so identity is a critical aspect of implementation. Mechanisms imple-
menting access control and flow control enforce various aspects of policies.

Chapters 17 and 18 present concepts and standards used to ascertain how well a
system, or a product, meets its goals.

Chapters 19 through 22 discuss some miscellaneous aspects of computer secu-
rity. Malicious logic thwarts many mechanisms. Despite our best efforts at high assur-
ance, systems today are replete with vulnerabilities. Why? How can a system be
analyzed to detect vulnerabilities? What models might help us improve the state of the
art? Given these security holes, how can we detect attackers who exploit them? A dis-
cussion of auditing flows naturally into a discussion of intrusion detection—a detection
method for such attacks.

Chapters 23 through 26 present examples of how to apply the principles dis-
cussed throughout the book. They begin with networks and proceed to systems, users,

Bishop.book Page xxix Tuesday, September 28, 2004 1:46 PM

xxx Preface

and programs. Each chapter states a desired policy and shows how to translate that pol-
icy into a set of mechanisms and procedures that support the policy. This part tries to
demonstrate that the material covered elsewhere can be, and should be, used in practice.

Each chapter in this book ends with a summary and some suggestions for fur-
ther reading. The summary highlights the important ideas in the chapter. Interested
readers who wish to pursue the topics in any chapter in more depth can go to some of
the suggested readings. They expand on the material in the chapter or present other
interesting avenues.

Differences Between this Book and
Computer Security: Art and Science

The differences between this book and Computer Security: Art and Science result
from the different intended audiences. This book is a shorter version of the latter,
omitting much of the mathematical formalism. It is suited for computer security pro-
fessionals, students, and prospective readers who have a less formal mathematical
background, or who are not interested in the mathematical formalisms and would
only be distracted by them, or for courses with a more practical than theoretical
focus.

The foundations and policy sections of this book do not present results involv-
ing formal modeling or derivations of limits on the decidability of security (although
it does present the central result, that the generic safety problem is undecidable).
Some policies, significant in the history of the development of policy models but no
longer used widely, have been omitted, as has discussion of the notions of nondeduc-
ibility and noninterference. Further, the section on assurance omits the presentation
of formal methods and the detailed discussion of designing and building secure systems.
It preserves the exposition of the basic concepts and ideas, especially those related to
reference monitors, and discusses commonly encountered evaluation criteria.

The reasons for these differences come from the different backgrounds
expected of readers. This book is intended for readers who may not be familiar with
highly mathematical concepts, or for classes in which the instructor does not intend
to expound upon formalisms, such as those required for the development of high
assurance systems, but wants students to be exposed to the ideas underlying a "high
assurance system." These situations most often arise in classes in which students’
backgrounds may not include classes that provide the understanding needed to assim-
ilate the mathematical details of the work. As a consequence, students are often intimi-
dated by the formalism even if the instructor skips it. The original version of this
book is intended for classes where the instructor wishes to explain, or allow the stu-
dents to explore on their own, the rich mathematical background and formalisms of
computer security.

Bishop.book Page xxx Tuesday, September 28, 2004 1:46 PM

Preface xxxi

Some students learn best by an informal description of a subject. What is the
intuition underlying the ideas and principles of the field? How does the practitioner
apply these to improve the state of the art? For these students, this version of the
book is more appropriate. Other students are most comfortable with intuition aug-
mented by a formal mathematical exposition of the underlying concepts. How does
one make the intuition formal? How does one apply the ideas rigorously to assure a
secure system (for an appropriate definition of security)? For these students, the orig-
inal book, Computer Security: Art and Science, would be more appropriate.

Practitioners who are less interested in mathematical expositions of the theo-
ries underlying computer security will find this version more to their liking. This ver-
sion keeps the intuitive, non-mathematical exposition of the underlying principles,
but does so using a small amount of formal mathematics. Practitioners will find this
version shorter and, most likely, easier to read because they will not be distracted by
material they would find irrelevant.

Special Acknowledgment

Elisabeth Sullivan contributed the assurance part of this book. She wrote several
drafts, all of which reflect her extensive knowledge and experience in that aspect of
computer security. I am particularly grateful to her for contributing her real-world
knowledge of how assurance is managed. Too often, books recount the mathematics
of assurance without recognizing that other aspects are equally important and more
widely used. These other aspects shine through in the assurance section, thanks to
Liz. As if that were not enough, she made several suggestions that improved the pol-
icy part of this book. I will always be grateful for her contribution, her humor, and
especially her friendship.

Acknowledgments

Many people have contributed to this book. Peter Salus’ suggestion first got me
thinking about writing it, and Peter put me in touch with Addison-Wesley. Midway
through the writing, Blaine Burnham reviewed the completed portions and the pro-
posed topics, and suggested that they be reorganized in several ways. The current
organization of the book grew from his suggestions. Marvin Schaefer reviewed parts
of the book with a keen eye, made suggestions that improved many parts, and
encouraged me at the end. I thank these three for their contributions.

Many others contributed to this book in various ways. Special thanks to
Steven Alexander, Jim Alves-Foss, Bill Arbaugh, Andrew Arcilla, Alex Aris, Rebecca
Bace, Belinda Bashore, Vladimir Berman, Ziad El Bizri, Logan Browne, Terry Brugger,

Bishop.book Page xxxi Tuesday, September 28, 2004 1:46 PM

xxxii Preface

Serdar Cabuk, Raymond Centeno, Lisa Clark, Michael Clifford, Christopher Clifton,
Dan Coming, Kay Connelly, Crispin Cowan, Tom Daniels, Dimitri DeFigueiredo,
Joseph-Patrick Dib, Jeremy Frank, Robert Fourney, Martin Gagne, Ron Gove, James
Hinde, Xuxian Jiang, Jesper Johansson, Mark Jones, Calvin Ko, Mark-Neil Ledesma,
Ken Levine, Karl Levitt, Yunhua Lu, Gary McGraw, Alexander Meau, Nasir Memon,
Mark Morrissey, Ather Nawaz, Iulian Neamtiu, Kimberly Nico, Stephen Northcutt,
Rafael Obelheiro, Josko Orsulic, Holly Pang, Ryan Poling, Sung Park, Ashwini
Raina, Jorge Ramos, Brennen Reynolds, Peter Rozental, Christoph Schuba, David
Shambroom, Jonathan Shapiro, Clay Shields, Sriram Srinivasan, Mahesh V. Tripunit-
ara, Tom Walcott, James Walden, Dan Watson, Guido Wedig, Chris Wee, Patrick
Wheeler, Paul Williams, Bonnie Xu, Xiaoduan Ye, Lara Whelan, John Zachary, Ale-
ksandr Zingorenko, and to everyone in my computer security classes, who (know-
ingly or unknowingly) helped me develop and test this material.

The Addison-Wesley folks, Kathleen Billus, Susannah Buzard, Bernie Gaffney,
Amy Fleischer, Helen Goldstein, Tom Stone, Asdis Thorsteinsson, and most espe-
cially my editor, Peter Gordon, were incredibly patient and helpful, despite fears that
this book would never materialize. The fact that it did so is in great measure attribut-
able to their hard work and encouragement. I also thank Rob Mauhar and Elizabeth
Ryan for their wonderful work.

Dorothy Denning, my advisor in graduate school, guided me through the maze
of computer security when I was just beginning. Peter Denning, Barry Leiner, Karl
Levitt, Peter Neumann, Marvin Schaefer, Larry Snyder, and several others influenced
my approach to the subject. I hope this work reflects in some small way what they
gave to me and passes a modicum of it along to my readers.

I also thank my parents, Leonard Bishop and Linda Allen. My father, a writer,
gave me some useful tips on writing, which I tried to follow. My mother, a literary
agent, helped me understand the process of getting the book published, and supported
me throughout.

Finally, I would like to thank my family for their support throughout the writ-
ing. Sometimes they wondered if I would ever finish. My wife Holly and our children
Steven, David, and Caroline were very patient and understanding and made sure I
had time to work on the book. Our oldest daughter Heidi and her husband Mike also
provided much love and encouragement and the most wonderful distraction: our
grandson—Skyler. To all, my love and gratitude.

Bishop.book Page xxxii Tuesday, September 28, 2004 1:46 PM

1

Chapter 1
An Overview of
Computer Security

ANTONIO: Whereof what’s past is prologue, what to come
In yours and my discharge.

—The Tempest, II, i, 257–258.

This chapter presents the basic concepts of computer security. The remainder of
the book will elaborate on these concepts in order to reveal the logic underlying the
principles of these concepts.

We begin with basic security-related services that protect against threats to the
security of the system. The next section discusses security policies that identify
the threats and define the requirements for ensuring a secure system. Security mech-
anisms detect and prevent attacks and recover from those that succeed. Analyzing the
security of a system requires an understanding of the mechanisms that enforce the
security policy. It also requires a knowledge of the related assumptions and trust,
which lead to the threats and the degree to which they may be realized. Such knowl-
edge allows one to design better mechanisms and policies to neutralize these threats.
This process leads to risk analysis. Human beings are the weakest link in the security
mechanisms of any system. Therefore, policies and procedures must take people into
account. This chapter discusses each of these topics.

1.1 The Basic Components

Computer security rests on confidentiality, integrity, and availability. The interpreta-
tions of these three aspects vary, as do the contexts in which they arise. The interpre-
tation of an aspect in a given environment is dictated by the needs of the individuals,
customs, and laws of the particular organization.

Bishop.book Page 1 Tuesday, September 28, 2004 1:46 PM

2 Chapter 1 An Overview of Computer Security

1.1.1 Confidentiality

Confidentiality is the concealment of information or resources. The need for keeping
information secret arises from the use of computers in sensitive fields such as gov-
ernment and industry. For example, military and civilian institutions in the govern-
ment often restrict access to information to those who need that information. The
first formal work in computer security was motivated by the military’s attempt to
implement controls to enforce a “need to know” principle. This principle also applies
to industrial firms, which keep their proprietary designs secure lest their competitors
try to steal the designs. As a further example, all types of institutions keep personnel
records secret.

Access control mechanisms support confidentiality. One access control mech-
anism for preserving confidentiality is cryptography, which scrambles data to make it
incomprehensible. A cryptographic key controls access to the unscrambled data, but
then the cryptographic key itself becomes another datum to be protected.

EXAMPLE: Enciphering an income tax return will prevent anyone from reading it. If
the owner needs to see the return, it must be deciphered. Only the possessor of the
cryptographic key can enter it into a deciphering program. However, if someone else
can read the key when it is entered into the program, the confidentiality of the tax
return has been compromised.

Other system-dependent mechanisms can prevent processes from illicitly
accessing information. Unlike enciphered data, however, data protected only by these
controls can be read when the controls fail or are bypassed. Then their advantage is off-
set by a corresponding disadvantage. They can protect the secrecy of data more com-
pletely than cryptography, but if they fail or are evaded, the data becomes visible.

Confidentiality also applies to the existence of data, which is sometimes more
revealing than the data itself. The precise number of people who distrust a politician
may be less important than knowing that such a poll was taken by the politician’s
staff. How a particular government agency harassed citizens in its country may be
less important than knowing that such harassment occurred. Access control mecha-
nisms sometimes conceal the mere existence of data, lest the existence itself reveal
information that should be protected.

Resource hiding is another important aspect of confidentiality. Sites often
wish to conceal their configuration as well as what systems they are using; organiza-
tions may not wish others to know about specific equipment (because it could be
used without authorization or in inappropriate ways), and a company renting time
from a service provider may not want others to know what resources it is using.
Access control mechanisms provide these capabilities as well.

All the mechanisms that enforce confidentiality require supporting services
from the system. The assumption is that the security services can rely on the kernel,
and other agents, to supply correct data. Thus, assumptions and trust underlie confi-
dentiality mechanisms.

Bishop.book Page 2 Tuesday, September 28, 2004 1:46 PM

1.1 The Basic Components 3

1.1.2 Integrity

Integrity refers to the trustworthiness of data or resources, and it is usually phrased in
terms of preventing improper or unauthorized change. Integrity includes data integrity
(the content of the information) and origin integrity (the source of the data, often called
authentication). The source of the information may bear on its accuracy and credibil-
ity and on the trust that people place in the information.This dichotomy illustrates
the principle that the aspect of integrity known as credibility is central to the proper
functioning of a system. We will return to this issue when discussing malicious logic.

EXAMPLE: A newspaper may print information obtained from a leak at the White
House but attribute it to the wrong source. The information is printed as received
(preserving data integrity), but its source is incorrect (corrupting origin integrity).

Integrity mechanisms fall into two classes: prevention mechanisms and detec-
tion mechanisms.

Prevention mechanisms seek to maintain the integrity of the data by blocking
any unauthorized attempts to change the data or any attempts to change the data in
unauthorized ways. The distinction between these two types of attempts is important.
The former occurs when a user tries to change data which she has no authority to
change. The latter occurs when a user authorized to make certain changes in the data
tries to change the data in other ways. For example, suppose an accounting system is
on a computer. Someone breaks into the system and tries to modify the accounting
data. Then an unauthorized user has tried to violate the integrity of the accounting
database. But if an accountant hired by the firm to maintain its books tries to embez-
zle money by sending it overseas and hiding the transactions, a user (the accountant)
has tried to change data (the accounting data) in unauthorized ways (by moving it to
a Swiss bank account). Adequate authentication and access controls will generally
stop the break-in from the outside, but preventing the second type of attempt requires
very different controls.

Detection mechanisms do not try to prevent violations of integrity; they sim-
ply report that the data’s integrity is no longer trustworthy. Detection mechanisms
may analyze system events (user or system actions) to detect problems or (more
commonly) may analyze the data itself to see if required or expected constraints still
hold. The mechanisms may report the actual cause of the integrity violation (a spe-
cific part of a file was altered), or they may simply report that the file is now corrupt.

Working with integrity is very different from working with confidentiality.
With confidentiality, the data is either compromised or it is not, but integrity includes
both the correctness and the trustworthiness of the data. The origin of the data (how
and from whom it was obtained), how well the data was protected before it arrived at
the current machine, and how well the data is protected on the current machine all
affect the integrity of the data. Thus, evaluating integrity is often very difficult,
because it relies on assumptions about the source of the data and about trust in that
source—two underpinnings of security that are often overlooked.

Bishop.book Page 3 Tuesday, September 28, 2004 1:46 PM

4 Chapter 1 An Overview of Computer Security

1.1.3 Availability

Availability refers to the ability to use the information or resource desired. Availabil-
ity is an important aspect of reliability as well as of system design because an
unavailable system is at least as bad as no system at all. The aspect of availability
that is relevant to security is that someone may deliberately arrange to deny access to
data or to a service by making it unavailable. System designs usually assume a statis-
tical model to analyze expected patterns of use, and mechanisms ensure availability
when that statistical model holds. Someone may be able to manipulate use (or
parameters that control use, such as network traffic) so that the assumptions of the
statistical model are no longer valid. This means that the mechanisms for keeping the
resource or data available are working in an environment for which they were not
designed. As a result, they will often fail.

EXAMPLE: Suppose Anne has compromised a bank’s secondary system server,
which supplies bank account balances. When anyone else asks that server for infor-
mation, Anne can supply any information she desires. Merchants validate checks by
contacting the bank’s primary balance server. If a merchant gets no response, the sec-
ondary server will be asked to supply the data. Anne’s colleague prevents merchants
from contacting the primary balance server, so all merchant queries go to the second-
ary server. Anne will never have a check turned down, regardless of her actual
account balance. Notice that if the bank had only one server (the primary one), this
scheme would not work. The merchant would be unable to validate the check.

Attempts to block availability, called denial of service attacks, can be the most
difficult to detect, because the analyst must determine if the unusual access patterns
are attributable to deliberate manipulation of resources or of environment. Compli-
cating this determination is the nature of statistical models. Even if the model accu-
rately describes the environment, atypical events simply contribute to the nature of
the statistics. A deliberate attempt to make a resource unavailable may simply look
like, or be, an atypical event. In some environments, it may not even appear atypical.

1.2 Threats

A threat is a potential violation of security. The violation need not actually occur for
there to be a threat. The fact that the violation might occur means that those actions
that could cause it to occur must be guarded against (or prepared for). Those actions
are called attacks. Those who execute such actions, or cause them to be executed, are
called attackers.

The three security services—confidentiality, integrity, and availability—
counter threats to the security of a system. Shirey [823] divides threats into four
broad classes: disclosure, or unauthorized access to information; deception, or

Bishop.book Page 4 Tuesday, September 28, 2004 1:46 PM

1.2 Threats 5

acceptance of false data; disruption, or interruption or prevention of correct opera-
tion; and usurpation, or unauthorized control of some part of a system. These four
broad classes encompass many common threats. Because the threats are ubiquitous,
an introductory discussion of each one will present issues that recur throughout the
study of computer security.

Snooping, the unauthorized interception of information, is a form of disclosure.
It is passive, suggesting simply that some entity is listening to (or reading) communica-
tions or browsing through files or system information. Wiretapping, or passive wiretap-
ping, is a form of snooping in which a network is monitored. (It is called “wiretapping”
because of the “wires” that compose the network, although the term is used even if no
physical wiring is involved.) Confidentiality services counter this threat.

Modification or alteration, an unauthorized change of information, covers three
classes of threats. The goal may be deception, in which some entity relies on the modi-
fied data to determine which action to take, or in which incorrect information is
accepted as correct and is released. If the modified data controls the operation of the
system, the threats of disruption and usurpation arise. Unlike snooping, modification is
active; it results from an entity changing information. Active wiretapping is a form of
modification in which data moving across a network is altered; the term “active” dis-
tinguishes it from snooping (“passive” wiretapping). An example is the man-in-the-
middle attack, in which an intruder reads messages from the sender and sends (possibly
modified) versions to the recipient, in hopes that the recipient and sender will not real-
ize the presence of the intermediary. Integrity services counter this threat.

Masquerading or spoofing, an impersonation of one entity by another, is a
form of both deception and usurpation. It lures a victim into believing that the entity
with which it is communicating is a different entity. For example, if a user tries to log
into a computer across the Internet but instead reaches another computer that claims
to be the desired one, the user has been spoofed. Similarly, if a user tries to read a
file, but an attacker has arranged for the user to be given a different file, another
spoof has taken place. This may be a passive attack (in which the user does not
attempt to authenticate the recipient, but merely accesses it), but it is usually an
active attack (in which the masquerader issues responses to mislead the user about its
identity). Although primarily deception, it is often used to usurp control of a system
by an attacker impersonating an authorized manager or controller. Integrity services
(called “authentication services” in this context) counter this threat.

Some forms of masquerading may be allowed. Delegation occurs when one
entity authorizes a second entity to perform functions on its behalf. The distinctions
between delegation and masquerading are important. If Susan delegates to Thomas
the authority to act on her behalf, she is giving permission for him to perform spe-
cific actions as though she were performing them herself. All parties are aware of the
delegation. Thomas will not pretend to be Susan; rather, he will say, “I am Thomas
and I have authority to do this on Susan’s behalf.” If asked, Susan will verify this. On
the other hand, in a masquerade, Thomas will pretend to be Susan. No other parties
(including Susan) will be aware of the masquerade, and Thomas will say, “I am
Susan.” Should anyone discover that he or she is dealing with Thomas and ask Susan

Bishop.book Page 5 Tuesday, September 28, 2004 1:46 PM

6 Chapter 1 An Overview of Computer Security

about it, she will deny that she authorized Thomas to act on her behalf. In terms of
security, masquerading is a violation of security, whereas delegation is not.

Repudiation of origin, a false denial that an entity sent (or created) something,
is a form of deception. For example, suppose a customer sends a letter to a vendor
agreeing to pay a large amount of money for a product. The vendor ships the product
and then demands payment. The customer denies having ordered the product and by
law is therefore entitled to keep the unsolicited shipment without payment. The cus-
tomer has repudiated the origin of the letter. If the vendor cannot prove that the letter
came from the customer, the attack succeeds. A variant of this is denial by a user that
he created specific information or entities such as files. Integrity mechanisms cope
with this threat.

Denial of receipt, a false denial that an entity received some information or
message, is a form of deception. Suppose a customer orders an expensive product,
but the vendor demands payment before shipment. The customer pays, and the ven-
dor ships the product. The customer then asks the vendor when he will receive the
product. If the customer has already received the product, the question constitutes a
denial of receipt attack. The vendor can defend against this attack only by proving
that the customer did, despite his denials, receive the product. Integrity and availabil-
ity mechanisms guard against these attacks.

Delay, a temporary inhibition of a service, is a form of usurpation, although it
can play a supporting role in deception. Typically, delivery of a message or service
requires some time t; if an attacker can force the delivery to take more than time t,
the attacker has successfully delayed delivery. This requires manipulation of system
control structures, such as network components or server components, and hence is a
form of usurpation. If an entity is waiting for an authorization message that is
delayed, it may query a secondary server for the authorization. Even though the
attacker may be unable to masquerade as the primary server, she might be able to
masquerade as that secondary server and supply incorrect information. Availability
mechanisms can thwart this threat.

Denial of service, a long-term inhibition of service, is a form of usurpation,
although it is often used with other mechanisms to deceive. The attacker prevents a
server from providing a service. The denial may occur at the source (by preventing
the server from obtaining the resources needed to perform its function), at the desti-
nation (by blocking the communications from the server), or along the intermediate
path (by discarding messages from either the client or the server, or both). Denial of
service poses the same threat as an infinite delay. Availability mechanisms counter
this threat.

Denial of service or delay may result from direct attacks or from nonsecurity-
related problems. From our point of view, the cause and result are important; the
intention underlying them is not. If delay or denial of service compromises system
security, or is part of a sequence of events leading to the compromise of a system,
then we view it as an attempt to breach system security. But the attempt may not be
deliberate; indeed, it may be the product of environmental characteristics rather than
specific actions of an attacker.

Bishop.book Page 6 Tuesday, September 28, 2004 1:46 PM

1.3 Policy and Mechanism 7

1.3 Policy and Mechanism

Critical to our study of security is the distinction between policy and mechanism.

Definition 1–1. A security policy is a statement of what is, and what is not,
allowed.

Definition 1–2. A security mechanism is a method, tool, or procedure for
enforcing a security policy.

Mechanisms can be nontechnical, such as requiring proof of identity before
changing a password; in fact, policies often require some procedural mechanisms
that technology cannot enforce.

As an example, suppose a university’s computer science laboratory has a pol-
icy that prohibits any student from copying another student’s homework files. The
computer system provides mechanisms for preventing others from reading a user’s
files. Anna fails to use these mechanisms to protect her homework files, and Bill cop-
ies them. A breach of security has occurred, because Bill has violated the security
policy. Anna’s failure to protect her files does not authorize Bill to copy them.

In this example, Anna could easily have protected her files. In other environ-
ments, such protection may not be easy. For example, the Internet provides only the
most rudimentary security mechanisms, which are not adequate to protect information
sent over that network. Nevertheless, acts such as the recording of passwords and other
sensitive information violate an implicit security policy of most sites (specifically, that
passwords are a user’s confidential property and cannot be recorded by anyone).

Policies may be presented mathematically, as a list of allowed (secure) and
disallowed (nonsecure) states. For our purposes, we will assume that any given pol-
icy provides an axiomatic description of secure states and nonsecure states. In prac-
tice, policies are rarely so precise; they normally describe in English what users and
staff are allowed to do. The ambiguity inherent in such a description leads to states
that are not classified as “allowed” or “disallowed.” For example, consider the home-
work policy discussed above. If someone looks through another user’s directory
without copying homework files, is that a violation of security? The answer depends
on site custom, rules, regulations, and laws, all of which are outside our focus and
may change over time.

When two different sites communicate or cooperate, the entity they compose
has a security policy based on the security policies of the two entities. If those poli-
cies are inconsistent, either or both sites must decide what the security policy for the
combined site should be. The inconsistency often manifests itself as a security
breach. For example, if proprietary documents were given to a university, the policy
of confidentiality in the corporation would conflict with the more open policies of
most universities. The university and the company must develop a mutual security
policy that meets both their needs in order to produce a consistent policy. When the

Bishop.book Page 7 Tuesday, September 28, 2004 1:46 PM

8 Chapter 1 An Overview of Computer Security

two sites communicate through an independent third party, such as an Internet ser-
vice provider, the complexity of the situation grows rapidly.

1.3.1 Goals of Security

Given a security policy’s specification of “secure” and “nonsecure” actions, these
security mechanisms can prevent the attack, detect the attack, or recover from the
attack. The strategies may be used together or separately.

Prevention means that an attack will fail. For example, if one attempts to
break into a host over the Internet and that host is not connected to the Internet, the
attack has been prevented. Typically, prevention involves implementation of mecha-
nisms that users cannot override and that are trusted to be implemented in a correct,
unalterable way, so that the attacker cannot defeat the mechanism by changing it.
Preventative mechanisms often are very cumbersome and interfere with system use
to the point that they hinder normal use of the system. But some simple preventative
mechanisms, such as passwords (which aim to prevent unauthorized users from
accessing the system), have become widely accepted. Prevention mechanisms can
prevent compromise of parts of the system; once in place, the resource protected by
the mechanism need not be monitored for security problems, at least in theory.

Detection is most useful when an attack cannot be prevented, but it can also
indicate the effectiveness of preventative measures. Detection mechanisms accept
that an attack will occur; the goal is to determine that an attack is under way, or has
occurred, and report it. The attack may be monitored, however, to provide data about
its nature, severity, and results. Typical detection mechanisms monitor various
aspects of the system, looking for actions or information indicating an attack. A good
example of such a mechanism is one that gives a warning when a user enters an
incorrect password three times. The login may continue, but an error message in a
system log reports the unusually high number of mistyped passwords. Detection
mechanisms do not prevent compromise of parts of the system, which is a serious
drawback. The resource protected by the detection mechanism is continuously or
periodically monitored for security problems.

Recovery has two forms. The first is to stop an attack and to assess and repair
any damage caused by that attack. As an example, if the attacker deletes a file, one
recovery mechanism would be to restore the file from backup tapes. In practice,
recovery is far more complex, because the nature of each attack is unique. Thus, the
type and extent of any damage can be difficult to characterize completely. Moreover,
the attacker may return, so recovery involves identification and fixing of the vulnera-
bilities used by the attacker to enter the system. In some cases, retaliation (by attack-
ing the attacker’s system or taking legal steps to hold the attacker accountable) is part
of recovery. In all these cases, the system’s functioning is inhibited by the attack. By
definition, recovery requires resumption of correct operation.

In a second form of recovery, the system continues to function correctly while
an attack is under way. This type of recovery is quite difficult to implement because
of the complexity of computer systems. It draws on techniques of fault tolerance as

Bishop.book Page 8 Tuesday, September 28, 2004 1:46 PM

1.4 Assumptions and Trust 9

well as techniques of security and is typically used in safety-critical systems. It dif-
fers from the first form of recovery, because at no point does the system function
incorrectly. However, the system may disable nonessential functionality. Of course,
this type of recovery is often implemented in a weaker form whereby the system
detects incorrect functioning automatically and then corrects (or attempts to correct)
the error.

1.4 Assumptions and Trust

How do we determine if the policy correctly describes the required level and type of
security for the site? This question lies at the heart of all security, computer and oth-
erwise. Security rests on assumptions specific to the type of security required and the
environment in which it is to be employed.

EXAMPLE: Opening a door lock requires a key. The assumption is that the lock is
secure against lock picking. This assumption is treated as an axiom and is made
because most people would require a key to open a door lock. A good lock picker,
however, can open a lock without a key. Hence, in an environment with a skilled,
untrustworthy lock picker, the assumption is wrong and the consequence invalid.

If the lock picker is trustworthy, the assumption is valid. The term “trustwor-
thy” implies that the lock picker will not pick a lock unless the owner of the lock
authorizes the lock picking. This is another example of the role of trust. A well-
defined exception to the rules provides a “back door” through which the security
mechanism (the locks) can be bypassed. The trust resides in the belief that this back
door will not be used except as specified by the policy. If it is used, the trust has been
misplaced and the security mechanism (the lock) provides no security.

Like the lock example, a policy consists of a set of axioms that the policy
makers believe can be enforced. Designers of policies always make two assumptions.
First, the policy correctly and unambiguously partitions the set of system states into
“secure” and “nonsecure” states. Second, the security mechanisms prevent the sys-
tem from entering a “nonsecure” state. If either assumption is erroneous, the system
will be nonsecure.

These two assumptions are fundamentally different. The first assumption asserts
that the policy is a correct description of what constitutes a “secure” system. For exam-
ple, a bank’s policy may state that officers of the bank are authorized to shift money
among accounts. If a bank officer puts $100,000 in his account, has the bank’s security
been violated? Given the aforementioned policy statement, no, because the officer was
authorized to move the money. In the “real world,” that action would constitute embez-
zlement, something any bank would consider a security violation.

The second assumption says that the security policy can be enforced by secu-
rity mechanisms. These mechanisms are either secure, precise, or broad. Let P be the

Bishop.book Page 9 Tuesday, September 28, 2004 1:46 PM

10 Chapter 1 An Overview of Computer Security

set of all possible states. Let Q be the set of secure states (as specified by the security
policy). Let the security mechanisms restrict the system to some set of states R (thus,
R ⊆ P). Then we have the following definition.

Definition 1–3. A security mechanism is secure if R ⊆ Q; it is precise if
R = Q; and it is broad if there are states r such that r ∈ R and r ∉ Q.

Ideally, the union of all security mechanisms active on a system would pro-
duce a single precise mechanism (that is, R = Q). In practice, security mechanisms
are broad; they allow the system to enter nonsecure states. We will revisit this topic
when we explore policy formulation in more detail.

Trusting that mechanisms work requires several assumptions.

1. Each mechanism is designed to implement one or more parts of the
security policy.

2. The union of the mechanisms implements all aspects of the security
policy.

3. The mechanisms are implemented correctly.
4. The mechanisms are installed and administered correctly.

Because of the importance and complexity of trust and of assumptions, we will
revisit this topic repeatedly and in various guises throughout this book.

1.5 Assurance

Trust cannot be quantified precisely. System specification, design, and implementa-
tion can provide a basis for determining “how much” to trust a system. This aspect of
trust is called assurance. It is an attempt to provide a basis for bolstering (or substan-
tiating or specifying) how much one can trust a system.

EXAMPLE: In the United States, aspirin from a nationally known and reputable man-
ufacturer, delivered to the drugstore in a safety-sealed container, and sold with the
seal still in place, is considered trustworthy by most people. The bases for that trust
are as follows.

• The testing and certification of the drug (aspirin) by the Food and
Drug Administration. The FDA has jurisdiction over many types of
medicines and allows medicines to be marketed only if they meet
certain clinical standards of usefulness.

Bishop.book Page 10 Tuesday, September 28, 2004 1:46 PM

1.5 Assurance 11

• The manufacturing standards of the company and the precautions it
takes to ensure that the drug is not contaminated. National and state
regulatory commissions and groups ensure that the manufacture of
the drug meets specific acceptable standards.

• The safety seal on the bottle. To insert dangerous chemicals into a
safety-sealed bottle without damaging the seal is very difficult.

The three technologies (certification, manufacturing standards, and preventative seal-
ing) provide some degree of assurance that the aspirin is not contaminated. The
degree of trust the purchaser has in the purity of the aspirin is a result of these three
processes.

In the 1980s, drug manufacturers met two of the criteria above, but none used
safety seals.1 A series of “drug scares” arose when a well-known manufacturer’s
medicines were contaminated after manufacture but before purchase. The manufac-
turer promptly introduced safety seals to assure its customers that the medicine in the
container was the same as when it was shipped from the manufacturing plants.

Assurance in the computer world is similar. It requires specific steps to ensure
that the computer will function properly. The sequence of steps includes detailed
specifications of the desired (or undesirable) behavior; an analysis of the design of
the hardware, software, and other components to show that the system will not vio-
late the specifications; and arguments or proofs that the implementation, operating
procedures, and maintenance procedures will produce the desired behavior.

Definition 1–4. A system is said to satisfy a specification if the specification
correctly states how the system will function.

This definition also applies to design and implementation satisfying a
specification.

1.5.1 Specification

A specification is a (formal or informal) statement of the desired functioning of the
system. It can be highly mathematical, using any of several languages defined for
that purpose. It can also be informal, using, for example, English to describe what
the system should do under certain conditions. The specification can be low-level,
combining program code with logical and temporal relationships to specify ordering
of events. The defining quality is a statement of what the system is allowed to do or
what it is not allowed to do.

1 Many used childproof caps, but they prevented only young children (and some adults) from
opening the bottles. They were not designed to protect the medicine from malicious adults.

Bishop.book Page 11 Tuesday, September 28, 2004 1:46 PM

12 Chapter 1 An Overview of Computer Security

EXAMPLE: A company is purchasing a new computer for internal use. They need to
trust the system to be invulnerable to attack over the Internet. One of their (English)
specifications would read “The system cannot be attacked over the Internet.”

Specifications are used not merely in security but also in systems designed for
safety, such as medical technology. They constrain such systems from performing
acts that could cause harm. A system that regulates traffic lights must ensure that
pairs of lights facing the same way turn red, green, and yellow at the same time and
that at most one set of lights facing cross streets at an intersection is green.

A major part of the derivation of specifications is determination of the set of
requirements relevant to the system’s planned use. Section 1.6 discusses the relation-
ship of requirements to security.

1.5.2 Design

The design of a system translates the specifications into components that will imple-
ment them. The design is said to satisfy the specifications if, under all relevant cir-
cumstances, the design will not permit the system to violate those specifications.

EXAMPLE: A design of the computer system for the company mentioned above had
no network interface cards, no modem cards, and no network drivers in the kernel.
This design satisfied the specification because the system would not connect to the
Internet. Hence it could not be attacked over the Internet.

An analyst can determine whether a design satisfies a set of specifications in
several ways. If the specifications and designs are expressed in terms of mathemat-
ics, the analyst must show that the design formulations are consistent with the speci-
fications. Although much of the work can be done mechanically, a human must still
perform some analyses and modify components of the design that violate specifica-
tions (or, in some cases, components that cannot be shown to satisfy the specifica-
tions). If the specifications and design do not use mathematics, then a convincing and
compelling argument should be made. Most often, the specifications are nebulous
and the arguments are half-hearted and unconvincing or provide only partial cover-
age. The design depends on assumptions about what the specifications mean. This
leads to vulnerabilities, as we will see.

1.5.3 Implementation

Given a design, the implementation creates a system that satisfies that design. If the
design also satisfies the specifications, then by transitivity the implementation will
also satisfy the specifications.

The difficulty at this step is the complexity of proving that a program correctly
implements the design and, in turn, the specifications.

Bishop.book Page 12 Tuesday, September 28, 2004 1:46 PM

1.5 Assurance 13

Definition 1–5. A program is correct if its implementation performs as
specified.

Proofs of correctness require each line of source code to be checked for math-
ematical correctness. Each line is seen as a function, transforming the input (con-
strained by preconditions) into some output (constrained by postconditions derived
from the function and the preconditions). Each routine is represented by the compo-
sition of the functions derived from the lines of code making up the routine. Like
those functions, the function corresponding to the routine has inputs and outputs,
constrained by preconditions and postconditions, respectively. From the combination
of routines, programs can be built and formally verified. One can apply the same
techniques to sets of programs and thus verify the correctness of a system.

There are three difficulties in this process. First, the complexity of programs
makes their mathematical verification difficult. Aside from the intrinsic difficulties,
the program itself has preconditions derived from the environment of the system.
These preconditions are often subtle and difficult to specify, but unless the mathe-
matical formalism captures them, the program verification may not be valid because
critical assumptions may be wrong. Second, program verification assumes that the
programs are compiled correctly, linked and loaded correctly, and executed correctly.
Hardware failure, buggy code, and failures in other tools may invalidate the precon-
ditions. A compiler that incorrectly compiles

x := x + 1

to

move x to regA
subtract 1 from contents of regA
move contents of regA to x

would invalidate the proof statement that the value of x after the line of code is 1
more than the value of x before the line of code. This would invalidate the proof of
correctness. Third, if the verification relies on conditions on the input, the program
must reject any inputs that do not meet those conditions. Otherwise, the program is
only partially verified.

Because formal proofs of correctness are so time-consuming, a posteriori ver-
ification techniques known as testing have become widespread. During testing, the
tester executes the program (or portions of it) on data to determine if the output is
what it should be and to understand how likely the program is to contain an error.
Testing techniques range from supplying input to ensure that all execution paths are
exercised to introducing errors into the program and determining how they affect the
output to stating specifications and testing the program to see if it satisfies the speci-
fications. Although these techniques are considerably simpler than the more formal
methods, they do not provide the same degree of assurance that formal methods do.

Bishop.book Page 13 Tuesday, September 28, 2004 1:46 PM

14 Chapter 1 An Overview of Computer Security

Furthermore, testing relies on test procedures and documentation, errors in either of
which could invalidate the testing results.

Although assurance techniques do not guarantee correctness or security, they
provide a firm basis for assessing what one must trust in order to believe that a sys-
tem is secure. Their value is in eliminating possible, and common, sources of error
and forcing designers to define precisely what the system is to do.

1.6 Operational Issues

Any useful policy and mechanism must balance the benefits of the protection against
the cost of designing, implementing, and using the mechanism. This balance can be
determined by analyzing the risks of a security breach and the likelihood of it occur-
ring. Such an analysis is, to a degree, subjective, because in very few situations can
risks be rigorously quantified. Complicating the analysis are the constraints that
laws, customs, and society in general place on the acceptability of security proce-
dures and mechanisms; indeed, as these factors change, so do security mechanisms
and, possibly, security policies.

1.6.1 Cost-Benefit Analysis

Like any factor in a complex system, the benefits of computer security are weighed
against their total cost (including the additional costs incurred if the system is com-
promised). If the data or resources cost less, or are of less value, than their protec-
tion, adding security mechanisms and procedures is not cost-effective because the
data or resources can be reconstructed more cheaply than the protections themselves.
Unfortunately, this is rarely the case.

EXAMPLE: A database provides salary information to a second system that prints
checks. If the data in the database is altered, the company could suffer grievous
financial loss; hence, even a cursory cost-benefit analysis would show that the stron-
gest possible integrity mechanisms should protect the data in the database.

Now suppose the company has several branch offices, and every day the data-
base downloads a copy of the data to each branch office. The branch offices use the
data to recommend salaries for new employees. However, the main office makes the
final decision using the original database (not one of the copies). In this case, guard-
ing the integrity of the copies is not particularly important, because branch offices
cannot make any financial decisions based on the data in their copies. Hence, the
company cannot suffer any financial loss.

Both of these situations are extreme situations in which the analysis is clear-
cut. As an example of a situation in which the analysis is less clear, consider the need

Bishop.book Page 14 Tuesday, September 28, 2004 1:46 PM

1.6 Operational Issues 15

for confidentiality of the salaries in the database. The officers of the company must
decide the financial cost to the company should the salaries be disclosed, including
potential loss from lawsuits (if any); changes in policies, procedures, and personnel;
and the effect on future business. These are all business-related judgments, and deter-
mining their value is part of what company officers are paid to do.

Overlapping benefits are also a consideration. Suppose the integrity protection
mechanism can be augmented very quickly and cheaply to provide confidentiality.
Then the cost of providing confidentiality is much lower. This shows that evaluating
the cost of a particular security service depends on the mechanism chosen to imple-
ment it and on the mechanisms chosen to implement other security services. The
cost-benefit analysis should take into account as many mechanisms as possible. Add-
ing security mechanisms to an existing system is often more expensive (and, inciden-
tally, less effective) than designing them into the system in the first place.

1.6.2 Risk Analysis

To determine whether an asset should be protected, and to what level, requires analy-
sis of the potential threats against that asset and the likelihood that they will material-
ize. The level of protection is a function of the probability of an attack occurring and
the effects of the attack should it succeed. If an attack is unlikely, protecting against
it has a lower priority than protecting against a likely one. If the unlikely attack
would cause long delays in the company’s production of widgets but the likely attack
would be only a nuisance, then more effort should be put into preventing the unlikely
attack. The situations between these extreme cases are far more subjective.

Let’s revisit our company with the salary database that transmits salary infor-
mation over a network to a second computer that prints employees’ checks. The data
is stored on the database system and then moved over the network to the second sys-
tem. Hence, the risk of unauthorized changes in the data occurs in three places: on
the database system, on the network, and on the printing system. If the network is a
local (company-wide) one and no wide area networks are accessible, the threat of
attackers entering the systems is confined to untrustworthy internal personnel. If,
however, the network is connected to the Internet, the risk of geographically distant
attackers attempting to intrude is substantial enough to warrant consideration.

This example illustrates some finer points of risk analysis. First, risk is a func-
tion of environment. Attackers from a foreign country are not a threat to the company
when the computer is not connected to the Internet. If foreign attackers wanted to
break into the system, they would need physically to enter the company (and would
cease to be “foreign” because they would then be “local”). But if the computer is
connected to the Internet, foreign attackers become a threat because they can attack
over the Internet. An additional, less tangible issue is the faith in the company. If the
company is not able to meet its payroll because it does not know whom it is to pay,
the company will lose the faith of its employees. It may be unable to hire anyone,
because the people hired would not be sure they would get paid. Investors would not

Bishop.book Page 15 Tuesday, September 28, 2004 1:46 PM

16 Chapter 1 An Overview of Computer Security

fund the company because of the likelihood of lawsuits by unpaid employees. The
risk arises from the environments in which the company functions.

Second, the risks change with time. If a company’s network is not connected
to the Internet, there seems to be no risk of attacks from other hosts on the Internet.
However, despite any policies to the contrary, someone could connect a modem to
one of the company computers and connect to the Internet through the modem.
Should this happen, any risk analysis predicated on isolation from the Internet would
no longer be accurate. Although policies can forbid the connection of such a modem
and procedures can be put in place to make such connection difficult, unless the
responsible parties can guarantee that no such modem will ever be installed, the risks
can change.

Third, many risks are quite remote but still exist. In the modem example, the
company has sought to minimize the risk of an Internet connection. Hence, this risk
is “acceptable” but not nonexistent. As a practical matter, one does not worry about
acceptable risks; instead, one worries that the risk will become unacceptable.

Finally, the problem of “analysis paralysis” refers to making risk analyses
with no effort to act on those analyses. To change the example slightly, suppose the
company performs a risk analysis. The executives decide that they are not sure if all
risks have been found, so they order a second study to verify the first. They reconcile
the studies then wait for some time to act on these analyses. At that point, the secu-
rity officers raise the objection that the conditions in the workplace are no longer
those that held when the original risk analyses were done. The analysis is repeated.
But the company cannot decide how to ameliorate the risks, so it waits until a plan of
action can be developed, and the process continues. The point is that the company is
paralyzed and cannot act on the risks it faces.

1.6.3 Laws and Customs

Laws restrict the availability and use of technology and affect procedural controls.
Hence, any policy and any selection of mechanisms must take into account legal con-
siderations.

EXAMPLE: Until the year 2000, the United States controlled the export of crypto-
graphic hardware and software (considered munitions under United States law). If a
U.S. software company worked with a computer manufacturer in London, the U.S.
company could not send cryptographic software to the manufacturer. The U.S. com-
pany first would have to obtain a license to export the software from the United
States. Any security policy that depended on the London manufacturer using that
cryptographic software would need to take this into account.

EXAMPLE: Suppose the law makes it illegal to read a user’s file without the user’s
permission. An attacker breaks into the system and begins to download users’ files. If
the system administrators notice this and observe what the attacker is reading, they
will be reading the victim’s files without his permission and therefore will be violat-

Bishop.book Page 16 Tuesday, September 28, 2004 1:46 PM

1.7 Human Issues 17

ing the law themselves. For this reason, most sites require users to give (implicit or
explicit) permission for system administrators to read their files. In some jurisdic-
tions, an explicit exception allows system administrators to access information on
their systems without permission in order to protect the quality of service provided
or to prevent damage to their systems.

Complicating this issue are situations involving the laws of multiple jurisdic-
tions—especially foreign ones.

EXAMPLE: In the 1990s, the laws involving the use of cryptography in France were
very different from those in the United States. The laws of France required compa-
nies sending enciphered data out of the country to register their cryptographic keys
with the government. Security procedures involving the transmission of enciphered
data from a company in the United States to a branch office in France had to take
these differences into account.

EXAMPLE: If a policy called for prosecution of attackers and intruders came from
Russia to a system in the United States, prosecution would involve asking the United
States authorities to extradite the alleged attackers from Russia. This undoubtedly
would involve court testimony from company personnel involved in handling the
intrusion, possibly trips to Russia, and more court time once the extradition was
completed. The cost of prosecuting the attackers might be considerably higher than
the company would be willing (or able) to pay.

Laws are not the only constraints on policies and selection of mechanisms.
Society distinguishes between legal and acceptable practices. It may be legal for a
company to require all its employees to provide DNA samples for authentication pur-
poses, but it is not socially acceptable. Requiring the use of Social Security numbers as
passwords is legal (unless the computer is one owned by the U.S. government) but also
unacceptable. These practices provide security but at an unacceptable cost, and they
encourage users to evade or otherwise overcome the security mechanisms.

The issue that laws and customs raise is the issue of psychological acceptability.
A security mechanism that would put users and administrators at legal risk would place
a burden on these people that few would be willing to bear; thus, such a mechanism
would not be used. An unused mechanism is worse than a nonexistent one, because it
gives a false impression that a security service is available. Hence, users may rely on
that service to protect their data, when in reality their data is unprotected.

1.7 Human Issues

Implementing computer security controls is complex, and in a large organization
procedural controls often become vague or cumbersome. Regardless of the strength

Bishop.book Page 17 Tuesday, September 28, 2004 1:46 PM

18 Chapter 1 An Overview of Computer Security

of the technical controls, if nontechnical considerations affect their implementation
and use, the effect on security can be severe. Moreover, if configured or used incor-
rectly, even the best security control is useless at best and dangerous at worst. Thus,
the designers, implementers, and maintainers of security controls are essential to the
correct operation of those controls.

1.7.1 Organizational Problems

Security provides no direct financial rewards to the user. It limits losses, but it also
requires the expenditure of resources that could be used elsewhere. Unless losses
occur, organizations often believe they are wasting effort related to security. After a
loss, the value of these controls suddenly becomes appreciated. Furthermore, secu-
rity controls often add complexity to otherwise simple operations. For example, if
concluding a stock trade takes two minutes without security controls and three min-
utes with security controls, adding those controls results in a 50% loss of productivity.

Losses occur when security protections are in place, but such losses are
expected to be less than they would have been without the security mechanisms. The
key question is whether such a loss, combined with the resulting loss in productivity,
would be greater than a financial loss or loss of confidence should one of the nonse-
cured transactions suffer a breach of security.

Compounding this problem is the question of who is responsible for the secu-
rity of the company’s computers. The power to implement appropriate controls must
reside with those who are responsible; the consequence of not doing so is that the
people who can most clearly see the need for security measures, and who are respon-
sible for implementing them, will be unable to do so. This is simply sound business
practice; responsibility without power causes problems in any organization, just as
does power without responsibility.

Once clear chains of responsibility and power have been established, the need
for security can compete on an equal footing with other needs of the organization.
The most common problem a security manager faces is the lack of people trained in
the area of computer security. Another common problem is that knowledgeable peo-
ple are overloaded with work. At many organizations, the “security administrator” is
also involved in system administration, development, or some other secondary func-
tion. In fact, the security aspect of the job is often secondary. The problem is that
indications of security problems often are not obvious and require time and skill to
spot. Preparation for an attack makes dealing with it less chaotic, but such prepara-
tion takes enough time and requires enough attention so that treating it as a second-
ary aspect of a job means that it will not be performed well, with the expected
consequences.

Lack of resources is another common problem. Securing a system requires
resources as well as people. It requires time to design a configuration that will pro-
vide an adequate level of security, to implement the configuration, and to administer
the system. It requires money to purchase products that are needed to build an ade-
quate security system or to pay someone else to design and implement security mea-

Bishop.book Page 18 Tuesday, September 28, 2004 1:46 PM

1.7 Human Issues 19

sures. It requires computer resources to implement and execute the security
mechanisms and procedures. It requires training to ensure that employees understand
how to use the security tools, how to interpret the results, and how to implement the
nontechnical aspects of the security policy.

1.7.2 People Problems

The heart of any security system is people. This is particularly true in computer secu-
rity, which deals mainly with technological controls that can usually be bypassed by
human intervention. For example, a computer system authenticates a user by asking
that user for a secret code; if the correct secret code is supplied, the computer
assumes that the user is authorized to use the system. If an authorized user tells
another person his secret code, the unauthorized user can masquerade as the autho-
rized user with significantly less likelihood of detection.

People who have some motive to attack an organization and are not authorized
to use that organization’s systems are called outsiders and can pose a serious threat.
Experts agree, however, that a far more dangerous threat comes from disgruntled
employees and other insiders who are authorized to use the computers. Insiders typi-
cally know the organization of the company’s systems and what procedures the oper-
ators and users follow and often know enough passwords to bypass many security
controls that would detect an attack launched by an outsider. Insider misuse of autho-
rized privileges is a very difficult problem to solve.

Untrained personnel also pose a threat to system security. As an example, one
operator did not realize that the contents of backup tapes needed to be verified before
the tapes were stored. When attackers deleted several critical system files, she dis-
covered that none of the backup tapes could be read.

System administrators who misread the output of security mechanisms, or do
not analyze that output, contribute to the probability of successful attacks against
their systems. Similarly, administrators who misconfigure security-related features
of a system can weaken the site security. Users can also weaken site security by mis-
using security mechanisms (such as selecting passwords that are easy to guess).

Lack of training need not be in the technical arena. Many successful break-ins
have arisen from the art of social engineering. If operators will change passwords
based on telephone requests, all an attacker needs to do is to determine the name of
someone who uses the computer. A common tactic is to pick someone fairly far
above the operator (such as a vice president of the company) and to feign an emer-
gency (such as calling at night and saying that a report to the president of the com-
pany is due the next morning) so that the operator will be reluctant to refuse the
request. Once the password has been changed to one that the attacker knows, he can
simply log in as a normal user. Social engineering attacks are remarkably successful
and often devastating.

The problem of misconfiguration is aggravated by the complexity of many
security-related configuration files. For instance, a typographical error can disable
key protection features. Even worse, software does not always work as advertised.

Bishop.book Page 19 Tuesday, September 28, 2004 1:46 PM

20 Chapter 1 An Overview of Computer Security

One widely used system had a vulnerability that arose when an administrator made
too long a list that named systems with access to certain files. Because the list was
too long, the system simply assumed that the administrator meant to allow those files
to be accessed without restriction on who could access them—exactly the opposite
of what was intended.

1.8 Tying It All Together

The considerations discussed above appear to flow linearly from one to the next (see
Figure 1–1). Human issues pervade each stage of the cycle. In addition, each stage of
the cycle feeds back to the preceding stage, and through that stage to all earlier
stages. The operation and maintenance stage is critical to the life cycle. Figure 1–1
breaks it out so as to emphasize the impact it has on all stages. The following exam-
ple shows the importance of feedback.

EXAMPLE: A major corporation decided to improve its security. It hired consultants,
determined the threats, and created a policy. From the policy, the consultants derived
several specifications that the security mechanisms had to meet. They then developed
a design that would meet the specifications.

During the implementation phase, the company discovered that employees
could connect modems to the telephones without being detected. The design required

Threats

Policy

Specification

Design

Implementation

Operation and Maintenance

Figure 1–1 The security life cycle.

Bishop.book Page 20 Tuesday, September 28, 2004 1:46 PM

1.9 Summary 21

all incoming connections to go through a firewall. The design had to be modified to
divide systems into two classes: systems connected to “the outside,” which were put
outside the firewall; and all other systems, which were put behind the firewall. The
design needed other modifications as well.

When the system was deployed, the operation and maintenance phase revealed
several unexpected threats. The most serious was that systems were repeatedly miscon-
figured to allow sensitive data to be sent across the Internet in the clear. The implemen-
tation made use of cryptographic software very difficult. Once this problem had been
remedied, the company discovered that several “trusted” hosts (those allowed to log in
without authentication) were physically outside the control of the company. This vio-
lated policy, but for commercial reasons the company needed to continue to use these
hosts. The policy element that designated these systems as “trusted” was modified.
Finally, the company detected proprietary material being sent to a competitor over
electronic mail. This added a threat that the company had earlier discounted. The com-
pany did not realize that it needed to worry about insider attacks.

Feedback from operation is critical. Whether or not a program is tested or
proved to be secure, operational environments always introduce unexpected prob-
lems or difficulties. If the assurance (specification, design, implementation, and test-
ing/proof) phase is done properly, the extra problems and difficulties are minimal.
The analysts can handle them, usually easily and quickly. If the assurance phase has
been omitted or done poorly, the problems may require a complete reevaluation of
the system. The tools used for the feedback include auditing, in which the operation
of the system is recorded and analyzed so that the analyst can determine what the
problems are.

1.9 Summary

Computer security depends on many aspects of a computer system. The threats that a
site faces, and the level and quality of the countermeasures, depend on the quality of
the security services and supporting procedures. The specific mix of these attributes is
governed by the site security policy, which is created after careful analysis of the value
of the resources on the system or controlled by the system and of the risks involved.

Underlying all this are key assumptions describing what the site and the sys-
tem accept as true or trustworthy; understanding these assumptions is the key to ana-
lyzing the strength of the system’s security. This notion of “trust” is the central
notion for computer security. If trust is well placed, any system can be made accept-
ably secure. If it is misplaced, the system cannot be secure in any sense of the word.

Once this is understood, the reason that people consider security to be a relative
attribute is plain. Given enough resources, an attacker can often evade the security pro-
cedures and mechanisms that are in place. Such a desire is tempered by the cost of the
attack, which in some cases can be very expensive. If it is less expensive to regenerate
the data than to launch the attack, most attackers will simply regenerate the data.

Bishop.book Page 21 Tuesday, September 28, 2004 1:46 PM

22 Chapter 1 An Overview of Computer Security

This chapter has laid the foundation for what follows. All aspects of computer
security begin with the nature of threats and countering security services. In future
chapters, we will build on these basic concepts.

1.10 Further Reading

Risk analysis arises in a variety of contexts. Molak [646] presents essays on risk
management and analysis in a variety of fields. Laudan [552] provides an enjoyable
introduction to the subject. Neumann [688] discusses the risks of technology and
recent problems. Software safety (Leveson [557]) requires an understanding of the
risks posed in the environment. Peterson [717] discusses many programming errors
in a readable way. All provide insights into the problems that arise in a variety of
environments.

Many authors recount stories of security incidents. The earliest, Parker’s won-
derful book [713], discusses motives and personalities as well as technical details.
Stoll recounts the technical details of uncovering an espionage ring that began as the
result of a 75¢ accounting error [878, 880]. Hafner and Markoff describe the same
episode in a study of “cyberpunks” [386]. The Internet worm [292, 386, 757, 858]
brought the problem of computer security into popular view. Numerous other inci-
dents [339, 386, 577, 821, 838, 873] have heightened public awareness of the problem.

Several books [55, 57, 737, 799] discuss computer security for the layperson.
These works tend to focus on attacks that are visible or affect the end user (such as
pornography, theft of credit card information, and deception). They are worth read-
ing for those who wish to understand the results of failures in computer security.

1.11 Exercises

1. Classify each of the following as a violation of confidentiality, of integrity,
of availability, or of some combination thereof.

a. John copies Mary’s homework.
b. Paul crashes Linda’s system.
c. Carol changes the amount of Angelo’s check from $100 to $1,000.
d. Gina forges Roger’s signature on a deed.
e. Rhonda registers the domain name “AddisonWesley.com” and

refuses to let the publishing house buy or use that domain name.
f. Jonah obtains Peter’s credit card number and has the credit card

company cancel the card and replace it with another card bearing a
different account number.

Bishop.book Page 22 Tuesday, September 28, 2004 1:46 PM

1.11 Exercises 23

g. Henry spoofs Julie’s IP address to gain access to her computer.

2. Identify mechanisms for implementing the following. State what policy or
policies they might be enforcing.

a. A password-changing program will reject passwords that are less
than five characters long or that are found in the dictionary.

b. Only students in a computer science class will be given accounts on
the department’s computer system.

c. The login program will disallow logins of any students who enter
their passwords incorrectly three times.

d. The permissions of the file containing Carol’s homework will
prevent Robert from cheating and copying it.

e. When World Wide Web traffic climbs to more than 80% of the
network’s capacity, systems will disallow any further
communications to or from Web servers.

f. Annie, a systems analyst, will be able to detect a student using a
program to scan her system for vulnerabilities.

g. A program used to submit homework will turn itself off just after the
due date.

3. The aphorism “security through obscurity” suggests that hiding
information provides some level of security. Give an example of a
situation in which hiding information does not add appreciably to the
security of a system. Then give an example of a situation in which it does.

4. Give an example of a situation in which a compromise of confidentiality
leads to a compromise in integrity.

5. Show that the three security services—confidentiality, integrity, and
availability—are sufficient to deal with the threats of disclosure,
disruption, deception, and usurpation.

6. In addition to mathematical and informal statements of policy, policies can
be implicit (not stated). Why might this be done? Might it occur with
informally stated policies? What problems can this cause?

7. For each of the following statements, give an example of a situation in
which the statement is true.

a. Prevention is more important than detection and recovery.
b. Detection is more important than prevention and recovery.
c. Recovery is more important than prevention and detection.

8. Is it possible to design and implement a system in which no assumptions
about trust are made? Why or why not?

9. Policy restricts the use of electronic mail on a particular system to faculty
and staff. Students cannot send or receive electronic mail on that host.
Classify the following mechanisms as secure, precise, or broad.

Bishop.book Page 23 Tuesday, September 28, 2004 1:46 PM

24 Chapter 1 An Overview of Computer Security

a. The electronic mail sending and receiving programs are disabled.
b. As each letter is sent or received, the system looks up the sender (or

recipient) in a database. If that party is listed as faculty or staff, the
mail is processed. Otherwise, it is rejected. (Assume that the
database entries are correct.)

c. The electronic mail sending programs ask the user if he or she is a
student. If so, the mail is refused. The electronic mail receiving
programs are disabled.

10. Consider a very high-assurance system developed for the military. The
system has a set of specifications, and both the design and implementation
have been proven to satisfy the specifications. What questions should
school administrators ask when deciding whether to purchase such a
system for their school’s use?

11. How do laws protecting privacy impact the ability of system
administrators to monitor user activity?

12. Computer viruses are programs that, among other actions, can delete files
without a user’s permission. A U.S. legislator wrote a law banning the
deletion of any files from computer disks. What was the problem with this
law from a computer security point of view? Specifically, state which
security service would have been affected if the law had been passed.

13. Users often bring in programs or download programs from the Internet.
Give an example of a site for which the benefits of allowing users to do
this outweigh the dangers. Then give an example of a site for which the
dangers of allowing users to do this outweigh the benefits.

14. A respected computer scientist has said that no computer can ever be made
perfectly secure. Why might she have said this?

15. An organization makes each lead system administrator responsible for
the security of the system he or she runs. However, the management
determines what programs are to be on the system and how they are to be
configured.

a. Describe the security problem(s) that this division of power would
create.

b. How would you fix them?

16. The president of a large software development company has become
concerned about competitors learning proprietary information. He is
determined to stop them. Part of his security mechanism is to require all
employees to report any contact with employees of the company’s
competitors, even if it is purely social. Do you believe this will have the
desired effect? Why or why not?

Bishop.book Page 24 Tuesday, September 28, 2004 1:46 PM

1.11 Exercises 25

17. The police and the public defender share a computer. What security
problems does this present? Do you feel it is a reasonable cost-saving
measure to have all public agencies share the same (set of) computers?

18. Companies usually restrict the use of electronic mail to company business
but do allow minimal use for personal reasons.

a. How might a company detect excessive personal use of electronic
mail, other than by reading it? (Hint: Think about the personal use of
a company telephone.)

b. Intuitively, it seems reasonable to ban all personal use of electronic
mail on company computers. Explain why most companies do not
do this.

19. Argue for or against the following proposition. Ciphers that the
government cannot cryptanalyze should be outlawed. How would your
argument change if such ciphers could be used provided that the users
registered the keys with the government?

20. For many years, industries and financial institutions hired people who
broke into their systems once those people were released from prison.
Now, such a conviction tends to prevent such people from being hired.
Why you think attitudes on this issue changed? Do you think they changed
for the better or for the worse?

21. A graduate student accidentally releases a program that spreads from
computer system to computer system. It deletes no files but requires much
time to implement the necessary defenses. The graduate student is
convicted. Despite demands that he be sent to prison for the maximum
time possible (to make an example of him), the judge sentences him to pay
a fine and perform community service. What factors do you believe caused
the judge to hand down the sentence he did? What would you have done
were you the judge, and what extra information would you have needed to
make your decision?

Bishop.book Page 25 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 26 Tuesday, September 28, 2004 1:46 PM

27

Chapter 2
Access Control Matrix

GRANDPRÉ: Description cannot suit itself in words
To demonstrate the life of such a battle

In life so lifeless as it shows itself.
—The Life of Henry the Fifth, IV, ii, 53–55.

A protection system describes the conditions under which a system is secure. In this
chapter, we present a classical formulation of a protection system. The access control
matrix model arose both in operating systems research and in database research; it
describes allowed accesses using a matrix.

2.1 Protection State

The state of a system is the collection of the current values of all memory locations,
all secondary storage, and all registers and other components of the system. The sub-
set of this collection that deals with protection is the protection state of the system.
An access control matrix is one tool that can describe the current protection state.

Consider the set of possible protection states P. Some subset Q of P consists of
exactly those states in which the system is authorized to reside. So, whenever the sys-
tem state is in Q, the system is secure. When the current state is in P – Q,1 the system is
not secure. Our interest in representing the state is to characterize those states in Q, and
our interest in enforcing security is to ensure that the system state is always an element
of Q. Characterizing the states in Q is the function of a security policy; preventing the
system from entering a state in P – Q is the function of a security mechanism. Recall
from Definition 1–3 that a mechanism that enforces this restriction is precise.

The access control matrix model is the most precise model used to describe a
protection state. It characterizes the rights of each subject (active entity, such as
a process) with respect to every other entity. The description of elements of A
form a specification against which the current state can be compared. Specifications

1 The notation P – Q means all elements of set P not in set Q.

Bishop.book Page 27 Tuesday, September 28, 2004 1:46 PM

28 Chapter 2 Access Control Matrix

take many forms, and different specification languages have been created to describe
the characteristics of allowable states.

As the system changes, the protection state changes. When a command
changes the state of the system, a state transition occurs. Very often, constraints on
the set of allowed states use these transitions inductively; a set of authorized states is
defined, and then a set of operations is allowed on the elements of that set. The result
of transforming an authorized state with an operation allowed in that state is an
authorized state. By induction, the system will always be in an authorized state.
Hence, both states and state transitions are often constrained.

In practice, any operation on a real system causes multiple state transitions;
the reading, loading, altering, and execution of any datum or instruction causes a
transition. We are concerned only with those state transitions that affect the protec-
tion state of the system, so only transitions that alter the actions a subject is autho-
rized to take are relevant. For example, a program that changes a variable to 0 does
not (usually) alter the protection state. However, if the variable altered is one that
affects the privileges of a process, then the program does alter the protection state
and needs to be accounted for in the set of transitions.

2.2 Access Control Matrix Model

The simplest framework for describing a protection system is the access control
matrix model, which describes the rights of users over files in a matrix. Butler Lamp-
son first proposed this model in 1971 [543]; Graham and Denning [252, 370] refined
it, and we will use their version.

The set of all protected entities (that is, entities that are relevant to the protec-
tion state of the system) is called the set of objects O. The set of subjects S is the set
of active objects, such as processes and users. In the access control matrix model, the
relationship between these entities is captured by a matrix A with rights drawn from
a set of rights R in each entry a[s, o], where s ∈ S, o ∈ O, and a[s, o] ⊆ R. The sub-
ject s has the set of rights a[s, o] over the object o. The set of protection states of the
system is represented by the triple (S, O, A). For example, Figure 2–1 shows the pro-
tection state of a system. Here, process 1 can read or write file 1 and can read file 2;
process 2 can append to file 1 and read file 2. Process 1 can communicate with pro-
cess 2 by writing to it, and process 2 can read from process 1. Each process owns
itself and the file with the same number. Note that the processes themselves are
treated as both subjects (rows) and objects (columns). This enables a process to be
the target of operations as well as the operator.

Interpretation of the meaning of these rights varies from system to system.
Reading from, writing to, and appending to files is usually clear enough, but what does
“reading from” a process mean? Depending on the instantiation of the model, it could
mean that the reader accepts messages from the process being read, or it could mean
that the reader simply looks at the state of the process being read (as a debugger does,

Bishop.book Page 28 Tuesday, September 28, 2004 1:46 PM

2.2 Access Control Matrix Model 29

for example). The meaning of the right may vary depending on the object involved.
The point is that the access control matrix model is an abstract model of the protection
state, and when one talks about the meaning of some particular access control matrix,
one must always talk with respect to a particular implementation or system.

The own right is a distinguished right. In most systems, the creator of an
object has special privileges: the ability to add and delete rights for other users (and
for the owner). In the system shown in Figure 2–1, for example, process 1 could alter
the contents of A[x, file 1], where x is any subject.

EXAMPLE: The UNIX system defines the rights “read,” “write,” and “execute.”
When a process accesses a file, these terms mean what one would expect. When a
process accesses a directory, “read” means to be able to list the contents of the direc-
tory; “write” means to be able to create, rename, or delete files or subdirectories in
that directory; and “execute” means to be able to access files or subdirectories in that
directory. When a process accesses another process, “read” means to be able to
receive signals, “write” means to be able to send signals, and “execute” means to be
able to execute the process as a subprocess.

Moreover, the superuser can access any (local) file regardless of the permis-
sions the owner has granted. In effect, the superuser “owns” all objects on the sys-
tem. Even in this case however, the interpretation of the rights is constrained. For
example, the superuser cannot alter a directory using the system calls and commands
that alter files. The superuser must use specific system calls and commands to create,
rename, and delete files.

Although the “objects” involved in the access control matrix are normally
thought of as files, devices, and processes, they could just as easily be messages sent
between processes, or indeed systems themselves. Figure 2–2 shows an example
access control matrix for three systems on a local area network (LAN). The rights
correspond to various network protocols: own (the ability to add servers), ftp (the
ability to access the system using the File Transfer Protocol, or FTP [728]), nfs (the
ability to access file systems using the Network File System, or NFS, protocol [149,
886]), and mail (the ability to send and receive mail using the Simple Mail Transfer

Figure 2–1 An access control matrix. The system has two processes and two
files. The set of rights is {read, write, execute, append, own}.

file 1 file 2 process 1 process 2

process 1 read, write,
own

read read, write,
execute, own

write

process 2 append read, own read read, write,
execute, own

Bishop.book Page 29 Tuesday, September 28, 2004 1:46 PM

30 Chapter 2 Access Control Matrix

Protocol, or SMTP [727]). The subject telegraph is a personal computer with an ftp
client but no servers, so neither of the other systems can access it, but it can ftp to
them. The subject nob is configured to provide NFS service to a set of clients that
does not include the host toadflax, and both systems will exchange mail with any
host and allow any host to use ftp.

At the micro level, access control matrices can model programming language
accesses; in this case, the objects are the variables and the subjects are the procedures
(or modules). Consider a program in which events must be synchronized. A module
provides functions for incrementing (inc_ctr) and decrementing (dec_ctr) a counter
private to that module. The routine manager calls these functions. The access control
matrix is shown in Figure 2–3. Note that “+” and “–” are the rights, representing the
ability to add and subtract, respectively, and call is the ability to invoke a procedure.
The routine manager can call itself; presumably, it is recursive.

In the examples above, entries in the access control matrix are rights. How-
ever, they could as easily have been functions that determined the set of rights at any
particular state based on other data, such as a history of prior accesses, the time of
day, the rights another subject has over the object, and so forth. A common form of
such a function is a locking function used to enforce the Bernstein conditions,2 so
when a process is writing to a file, other processes cannot access the file; but once the
writing is done, the processes can access the file once again.

2 The Bernstein conditions ensure that data is consistent. They state that any number of readers
may access a datum simultaneously, but if a writer is accessing the datum, no other writers or
any reader can access the datum until the current writing is complete [718].

Figure 2–2 Rights on a LAN. The set of rights is {ftp, mail, nfs, own}.

host names telegraph nob toadflax

telegraph own ftp ftp

nob ftp, nfs, mail, own ftp, nfs, mail

toadflax ftp, mail ftp, nfs, mail, own

Figure 2–3 Rights in a program. The set of rights is {+, –, call}.

counter inc_ctr dec_ctr manager

inc_ctr +

dec_ctr –

manager call call call

Bishop.book Page 30 Tuesday, September 28, 2004 1:46 PM

2.3 Protection State Transitions 31

2.3 Protection State Transitions

As processes execute operations, the state of the protection system changes. Let the
initial state of the system be X0 = (S0, O0, A0). The set of state transitions is repre-
sented as a set of operations τ1, τ2, Successive states are represented as X1, X2, ...,
where the notation λ |–, and the expression

Xi |–τ
i+1

 Xi+1

means that state transition τi+1 moves the system from state Xi to state Xi+1. When a
system starts at some state X and, after a series of state transitions, enters state Y, we
can write

X |–* Y.

The representation of the protection system as an access control matrix must
also be updated. In the model, sequences of state transitions are represented as single
commands, or transformation procedures, that update the access control matrix.
The commands state which entry in the matrix is to be changed, and how; hence, the
commands require parameters. Formally, let ck be the kth command with formal
parameters pk,1, ..., pk,m. Then the ith transition would be written as

Xi |–c
i+1

(p
i+1,1, ..., pi+1,m

)
 Xi+1.

Note the similarity in notation between the use of the command and the state
transition operations. This is deliberate. For every command, there is a sequence of
state transition operations that takes the initial state Xi to the resulting state Xi+1.
Using the command notation allows us to shorten the description of the transforma-
tion as well as list the parameters (subjects, objects, and entries) that affect the trans-
formation operations.

We now focus on the commands themselves. Following Harrison, Ruzzo, and
Ullman [401], we define a set of primitive commands that alter the access control
matrix. In the following list, the protection state is (S, O, A) before the execution of
each command and (S´, O´, A´) after each command.

1. Primitive command: create subject s
This primitive command creates a new subject s. Note that s must not exist
as a subject or an object before this command is executed. This operation
does not add any rights. It merely modifies the matrix.

2. Primitive command: create object o
This primitive command creates a new object o. Note that o must not exist
before this command is executed. Like create subject, this operation does
not add any rights. It merely modifies the matrix.

Bishop.book Page 31 Tuesday, September 28, 2004 1:46 PM

32 Chapter 2 Access Control Matrix

3. Primitive command: enter r into a[s, o]
This primitive command adds the right r to the cell a[s, o]. Note that
a[s, o] may already contain the right, in which case the effect of this
primitive depends on the instantiation of the model (it may add another
copy of the right or may do nothing).

4. Primitive command: delete r from a[s, o]
This primitive command deletes the right r from the cell a[s, o]. Note that
a[s, o] need not contain the right, in which case this operation has no
effect.

5. Primitive command: destroy subject s
This primitive command deletes the subject s. The column and row for s in
A are deleted also.

6. Primitive command: destroy object o
This primitive command deletes the object o. The column for o in A is
deleted also.

These primitive operations can be combined into commands, during which
multiple primitive operations may be executed.

EXAMPLE: In the UNIX system, if process p created a file f with owner read (r) and
write (w) permission, the command capturing the resulting changes in the access
control matrix would be

command create•file(p, f)
create object f;
enter own into a[p, f];
enter r into a[p, f];
enter w into a[p, f];

end

Suppose the process p wishes to create a new process q. The following command
would capture the resulting changes in the access control matrix.

command spawn•process(p, q)
create subject q;
enter own into a[p, q];
enter r into a[p, q];
enter w into a[p, q];
enter r into a[q, p];
enter w into a[q, p];

end

The r and w rights enable the parent and child to signal each other.

Bishop.book Page 32 Tuesday, September 28, 2004 1:46 PM

2.3 Protection State Transitions 33

The system can update the matrix only by using defined commands; it cannot
use the primitive commands directly. Of course, a command may invoke only a sin-
gle primitive; such a command is called mono-operational.

EXAMPLE: The command

command make•owner(p, f)
enter own into a[p, f];

end

is a mono-operational command. It does not delete any existing owner rights. It
merely adds p to the set of owners of f. Hence, f may have multiple owners after this
command is executed.

2.3.1 Conditional Commands

The execution of some primitives requires that specific preconditions be satisfied.
For example, suppose a process p wishes to give another process q the right to read a
file f. In some systems, p must own f. The abstract command would be

command grant•read•file•1(p, f, q)
if own in a[p, f]
then

enter r into a[q, f];
end

Any number of conditions may be placed together using and. For example, suppose
a system has the distinguished right c. If a subject has the rights r and c over an
object, it may give any other subject r rights over that object. Then

command grant•read•file•2(p, f, q)
if r in a[p, f] and c in a[p, f]
then

enter r into a[q, f];
end

Commands with one condition are called monoconditional. Commands with two
conditions are called biconditional. The command grant•read•file•1 is monocondi-
tional, and the command grant•read•file•2 is biconditional. Because both have one
primitive command, both are mono-operational.

Note that all conditions are joined by and, and never by or. Because joining
conditions with or is equivalent to two commands each with one of the conditions,
the disjunction is unnecessary and thus is omitted. For example, suppose the right a

Bishop.book Page 33 Tuesday, September 28, 2004 1:46 PM

34 Chapter 2 Access Control Matrix

enables one to grant the right r to another subject. To achieve the effect of a com-
mand equivalent to

if own in a[p, f] or a in a[p, f]
then

enter r into a[q, f];

define the following two commands:

command grant•write•file•1(p, f, q)
if own in a[p, f]
then

enter r into a[q, f];
end
command grant•write•file•2(p, f, q)

if a in a[p, f]
then

enter r into a[q, f];
end

and then say

grant•write•file•1(p, f, q); grant•write•file•2(p, f, q);

Also, the negation of a condition is not permitted—that is, one cannot test for
the absence of a right within a command by the condition

if r not in A[p, f].

This has some interesting consequences, which we will explore in the next chapter.

2.4 Summary

The access control matrix is the primary abstraction mechanism in computer secu-
rity. In its purest form, it can express any expressible security policy. In practice, it is
not used directly because of space requirements; most systems have (at least) thou-
sands of objects and could have thousands of subjects, and the storage requirements
would simply be too much. However, its simplicity makes it ideal for theoretical
analyses of security problems.

Transitions change the state of the system. Transitions are expressed in terms
of commands. A command consists of a possible condition followed by one or more
primitive operations. Conditions may involve ownership or the ability to copy a right.

Bishop.book Page 34 Tuesday, September 28, 2004 1:46 PM

2.6 Exercises 35

2.5 Further Reading

The access control matrix is sometimes called an authorization matrix in older litera-
ture [426].

In 1972, Conway, Maxwell, and Morgan [205], in parallel with Graham and
Denning, proposed a protection method for databases equivalent to the access control
model. Hartson and Hsiao [404] point out that databases in particular use functions
as described above to control access to records and fields; for this reason, entries in
the access control matrix for a database are called decision procedures or decision
rules. These entries are very similar to the earlier formulary model [425], in which
access procedures determine whether to grant access and, if so, provide a mapping to
virtual addresses and any required encryption and decryption.

Miller and Baldwin [637] use an access control matrix with entries determined
by the evaluation of boolean expressions to control access to fields in a database. The
query-set-overlap control [275] is a prevention mechanism that answers queries only
when the size of the intersection of the query set and each previous query set is smaller
than some parameter r, and can be represented as an access control matrix with entries
determined by the history of queries.

2.6 Exercises

1. Consider a computer system with three users: Alice, Bob, and Cyndy.
Alice owns the file alicerc, and Bob and Cyndy can read it. Cyndy can
read and write the file bobrc, which Bob owns, but Alice can only read it.
Only Cyndy can read and write the file cyndyrc, which she owns. Assume
that the owner of each of these files can execute it.

a. Create the corresponding access control matrix.
b. Cyndy gives Alice permission to read cyndyrc, and Alice removes

Bob’s ability to read alicerc. Show the new access control matrix.

2. Consider the set of rights {read, write, execute, append, list, modify, own}.

a. Using the syntax in Section 2.3, write a command delete_all_rights
(p, q, s). This command causes p to delete all rights the subject q has
over an object s.

b. Modify your command so that the deletion can occur only if p has
modify rights over s.

c. Modify your command so that the deletion can occur only if p has
modify rights over s and q does not have own rights over s.

Bishop.book Page 35 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 36 Tuesday, September 28, 2004 1:46 PM

37

Chapter 3
Foundational Results

MARIA: Ay, but you must confine yourself
within the modest limits of order.

—Twelfth Night, I, iii, 8–9.

In 1976, Harrison, Ruzzo, and Ullman [401] proved that in the most general abstract
case, the security of computer systems was undecidable and explored some of the
limits of this result.

Models explore the most basic question of the art and science of computer
security: under what conditions can a generic algorithm determine whether a system
is secure? Understanding models and the results derived from them lays the founda-
tions for coping with limits in policy and policy composition as well as applying the
theoretical work.

3.1 The General Question

Given a computer system, how can we determine if it is secure? More simply, is
there a generic algorithm that allows us to determine whether a computer system is
secure? If so, we could simply apply that algorithm to any system; although the algo-
rithm might not tell us where the security problems were, it would tell us whether
any existed.

The first question is the definition of “secure.” What policy shall define
“secure”? For a general result, the definition should be as broad as possible. We use
the access control matrix to express our policy. However, we do not provide any spe-
cial rights such as copy or own, and the principle of attenuation of privilege does not
apply.

Let R be the set of generic (primitive) rights of the system.

Definition 3–1. When a generic right r is added to an element of the access
control matrix not already containing r, that right is said to be leaked.

Bishop.book Page 37 Tuesday, September 28, 2004 1:46 PM

38 Chapter 3 Foundational Results

Our policy defines the authorized set of states A to be the set of states in which
no command c(x1, ..., xn) can leak r. This means that no generic rights can be added
to the matrix.

We do not distinguish between the leaking of rights and an authorized transfer
of rights. In our model, there is no authorized transfer of rights. (If we wish to allow such
a transfer, we designate the subjects involved as “trusted.” We then eliminate all trusted
subjects from the matrix, because the security mechanisms no longer apply to them.)

Let a computer system begin in protection state s0.

Definition 3–2. If a system can never leak the right r, the system (including
the initial state s0) is called safe with respect to the right r. If the system can
leak the right r (enter an unauthorized state), it is called unsafe with respect to
the right r.

We use these terms rather than secure and nonsecure because safety refers to
the abstract model and security refers to the actual implementation. Thus, a secure
system corresponds to a model safe with respect to all rights, but a model safe with
respect to all rights does not ensure a secure system.

EXAMPLE: A computer system allows the network administrator to read all network
traffic. It disallows all other users from reading this traffic. The system is designed in
such a way that the network administrator cannot communicate with other users.
Thus, there is no way for the right r of the network administrator over the network
device to leak. This system is safe.

Unfortunately, the operating system has a flaw. If a user specifies a certain file
name in a file deletion system call, that user can obtain access to any file on the sys-
tem (bypassing all file system access controls). This is an implementation flaw, not a
theoretical one. It also allows the user to read data from the network. So this system
is not secure.

Our question (called the safety question) is: Does there exist an algorithm for
determining whether a given protection system with initial state s0 is safe with
respect to a generic right r?

3.2 Basic Results

The simplest case is a system in which the commands are mono-operational (each con-
sisting of a single primitive command). In such a system, the following theorem holds.

Theorem 3–1. [401] There exists an algorithm that will determine whether a
given mono-operational protection system with initial state s0 is safe with
respect to a generic right r.

Bishop.book Page 38 Tuesday, September 28, 2004 1:46 PM

3.2 Basic Results 39

Proof Because all commands are mono-operational, we can identify each
command by the type of primitive operation it invokes. Consider the minimal
sequence of commands c1, ..., ck needed to leak the right r from the system
with initial state s0.

Because no commands can test for the absence of rights in an access
control matrix entry, we can omit the delete and destroy commands from the
analysis. They do not affect the ability of a right to leak.

Now suppose that multiple create commands occurred during the
sequence of commands, causing a leak. Subsequent commands check only for
the presence of rights in an access control matrix element. They distinguish
between different elements only by the presence (or lack of presence) of a par-
ticular right. Suppose that two subjects s1 and s2 are created and the rights in
A[s1, o1] and A[s2, o2] are tested. The same test for A[s1, o1] and A[s1, o2] =
A[s1, o2] ∪ A[s2, o2] will produce the same result. Hence, all creates are
unnecessary except possibly the first (and that only if there are no subjects ini-
tially), and any commands entering rights into the new subjects are rewritten
to enter the new right into the lone created subject. Similarly, any tests for the
presence of rights in the new subjects are rewritten to test for the presence of
that right in an existing subject (or, if none initially, the first subject created).

Let |S0| be the number of subjects and |O0| the number of objects in the
initial state. Let n be the number of generic rights. Then, in the worst case, one
new subject must be created (one command), and the sequence of commands
will enter every right into every element of the access control matrix. After the
creation, there are |S0| + 1 subjects and |O0| + 1 objects, and (|S0| + 1)(|O0| + 1)
elements. Because there are n generic rights, this leads to n(|S0| + 1)(|O0| + 1)
commands. Hence, k ≤ n(|S0| + 1)(|O0| + 1) + 1.

By enumerating all possible states we can determine whether the system is
safe. Clearly, this may be computationally infeasible, especially if many subjects,
objects, and rights are involved, but it is computable. (See Exercise 2.) Unfortu-
nately, this result does not generalize to all protection systems.

Before proving this, let us review the notation for a Turing machine. A Turing
machine T consists of a head and an infinite tape divided into cells numbered 1, 2, ...,
from left to right. The machine also has a finite set of states K and a finite set of tape
symbols M. The distinguished symbol b ∈ M is a blank and appears on all the cells of
the tape at the start of all computations; also, at that time T is in the initial state q0.

The tape head occupies one square of the tape, and can read and write sym-
bols on that cell of the tape, and can move into the cell to the left or right of the cell it
currently occupies. The function δ: K × M → K × M × {L, R} describes the action of
T. For example, let p, q ∈ K and A, B ∈ M. Then, if δ(p, A) = (q, B, R), when T is in
state p and the head rests on a cell with symbol A, the tape head changes the symbol
in the cell to B, moves right to the next cell (that is, if the head is in cell i, it moves to
cell i + 1), and the Turing machine enters state q. If δ(p, A) = (q, B, L), then the
actions would be the same except the head would move to the left unless it were
already in the leftmost square (because the head may never move off the tape).

Bishop.book Page 39 Tuesday, September 28, 2004 1:46 PM

40 Chapter 3 Foundational Results

Let the final state be qf , if T enters this state, it halts. The halting problem is to
determine whether an arbitrary Turing machine will enter the state qf , and is known
to be undecidable [299].

Given this, we can now present the following theorem.

Theorem 3–2. [401] It is undecidable whether a given state of a given protec-
tion system is safe for a given generic right.

Proof Proof by contradiction. We show that an arbitrary Turing machine can
be reduced to the safety problem, with the Turing machine entering a final
state corresponding to the leaking of a given generic right. Then, if the safety
problem is decidable, we can determine when the Turing machine halts, show-
ing that the halting problem is decidable, which (as we said above) is false.

First, we construct a map from the states and symbols of T to rights in
the access control matrix model. Let the set of generic rights be the symbols
in M and a set of distinct symbols each representing an element in K; in other
words, the set of tape symbols and states are represented by generic rights,
one right for each symbol and one for each state.

The cells of the Turing machine tape are sequentially ordered. We con-
sider only the cells that the head has visited, so suppose T has scanned cells 1,
2, ..., n. To simulate this, we represent each cell as a subject and define a dis-
tinguished right called own such that si owns si+1 for 1 ≤ i < k. If cell i contains
the symbol A, then subject si has A rights over itself. Furthermore, the subject
sk, which corresponds to the rightmost cell visited, has end rights over itself;
notice that sk+1 has not been created in this case. Finally, if the head is in cell j
and T is in state p, then subject sj has p rights over itself also. (To keep the
meanings of the rights unambiguous, we require the rights corresponding to
the symbols for the tape to be distinct from the rights corresponding to the
states.) Figure 3–1 shows an example of this mapping, when the head has vis-
ited four cells.

Next, we must translate the Turing machine function δ into access con-
trol matrix commands. Suppose that δ(p, A) = (q, B, L) and the head is not in

cell #

tape

head

s1

s2

s3

s4

s1 s2 s3 s4

A

B

C, p

D, end

own

own

own

Figure 3–1 The Turing machine (at left) is in state p. The corresponding access
control matrix is shown at right.

A B C D …

2 3 4 …1

Bishop.book Page 40 Tuesday, September 28, 2004 1:46 PM

3.2 Basic Results 41

the leftmost cell. Then, in terms of the access control matrix, the rights A and
p must be replaced by B in the entry a[si, si] and the right q must be added to
a[si–1, si–1]. The following access control matrix command, in which si repre-
sents the subject corresponding to the current cell, captures this.

command cp, A(si, si–1)
if own in a[si–1, si] and p in a[si, si] and A in a[si, si]
then

delete p from a[si, si];
delete A from a[si, si];
enter B into a[si, si];
enter q into a[si–1, si–1];

end

If the head is in the leftmost cell of the tape, both si and si–1 are s1.
Now consider motion to the right, such as δ(p, A) = (q, B, R). If the head

is not in the rightmost cell k, by the same reasoning as for the left motion, we
have

command cp, A(si, si+1)
if own in a[si, si+1] and p in a[si, si] and A in a[si, si]
then

delete p from a[si, si];
delete A from a[si, si];
enter B into a[si, si];
enter q into a[si+1, si+1];

end

However, if the head is in the rightmost cell k, the command must create a
new subject sk+1. Then, to maintain the consistency of the access control
matrix, sk is given own rights over the new subject sk+1, sk+1 is given end
rights over itself, and sk’s end rights over itself must be removed. At that point,
the problem is reduced to the problem of regular right motion. So:

command crightmostp, A(sk, sk+1)
if end in a[si, si] and p in a[si, si] and A in a[si, si]
then

delete end from a[sk, sk];
create new subject sk+1;
enter own into a[sk, sk+1];
enter end into a[sk+1, sk+1];
delete p from a[si, si];
delete A from a[si, si];
enter B into a[si, si];

Bishop.book Page 41 Tuesday, September 28, 2004 1:46 PM

42 Chapter 3 Foundational Results

enter q into a[si+1, si+1];
end

Clearly, only one right in any of the access control matrices corresponds to
a state, and there will be exactly one end right in the matrix (by the nature of the
commands simulating Turing machine actions). Hence, in each configuration of
the Turing machine, there is at most one applicable command. Thus, the protec-
tion system exactly simulates the Turing machine, given the representation above.
Now, if the Turing machine enters state qf, then the protection system has leaked
the right qf ; otherwise, the protection system is safe for the generic right qf.
But whether the Turing machine will enter the (halting) state qf is undecidable, so
whether the protection system is safe must be undecidable also.

However, we can generate a list of all unsafe systems.

Theorem 3–3. [242] The set of unsafe systems is recursively enumerable.

Proof See Exercise 3.

Assume that the create primitive is disallowed. Clearly, the safety question is
decidable (simply enumerate all possible sequences of commands from the given
state; as no new subjects or objects are created, at some point no new rights can be
added to any element of the access control matrix, so if the leak has not yet occurred,
it cannot occur). Hence, we have the following theorem.

Theorem 3–4. [401] For protection systems without the create primitives, the
question of safety is complete in P-SPACE.

Proof Consider a Turing machine bounded in polynomial space. A construc-
tion similar to that of Theorem 3–2 reduces that Turing machine in polyno-
mial time to an access control matrix whose size is polynomial in the length of
the Turing machine input.

If deleting the create primitives makes the safety question decidable, would
deleting the delete and destroy primitives but not the create primitive also make the
safety question decidable? Such systems are called monotonic because they only
increase in size and complexity; they cannot decrease. But:

Theorem 3–5. [402] It is undecidable whether a given configuration of a
given monotonic protection system is safe for a given generic right.

Restricting the number of conditions in the commands to two does not help:

Theorem 3–6. [402] The safety question for biconditional monotonic protec-
tion systems is undecidable.

Bishop.book Page 42 Tuesday, September 28, 2004 1:46 PM

3.4 Further Reading 43

But if at most one condition per command is allowed:

Theorem 3–7. [402] The safety question for monoconditional monotonic pro-
tection systems is decidable.

This can be made somewhat stronger:

Theorem 3–8. [402] The safety question for monoconditional protection sys-
tems with create, enter, and delete primitives (but no destroy primitive) is
decidable.

Thus, the safety question is undecidable for generic protection models but is
decidable if the protection system is restricted in some way. Two questions arise.
First, given a particular system with specific rules for transformation, can we show
that the safety question is decidable? Second, what are the weakest restrictions on a
protection system that will make the safety question decidable in that system?

3.3 Summary

The safety problem is a rich problem that has led to the development of several mod-
els and analysis techniques. The key result is that the general problem of safety is
undecidable. But in specific cases, or in systems with limited sets of rules and enti-
ties, safety may well be decidable. Ultimately, however, security (the analogue of
safety) is analyzed for a system or for a class of systems.

3.4 Further Reading

In that same year as the HRU result, Jones, Lipton, and Snyder [473] presented a
specific model, called the Take-Grant Protection Model, in which security was not
only decidable, but decidable in time linear with the size of the system. Several
papers [112,576,848,849,850] have explored this system and its applications. Budd
[141] analyzes safety properties of grammatical protection schemes, which he and
Lipton defined earlier [575]. Minsky [639] suggested another model to examine what
made the general, abstract case undecidable but at least one specific case decidable.
Sandhu and others [777,778,779] extended this model, which he called the Sche-
matic Protection Model or SPM, to examine the boundary even more closely. Sandhu
has also presented interesting work on the representation of models, and has unified
many of them with his transform model [781, 782, 786].

Some interesting work [18,19,20,780,783] has characterized the expressive
power of these, and other, models.

Bishop.book Page 43 Tuesday, September 28, 2004 1:46 PM

44 Chapter 3 Foundational Results

Sandhu and Ganta [785] have explored the effects of allowing testing for the
absence of rights in an access control matrix (as opposed to testing for the presence
of rights, which all the models described in this chapter do).

3.5 Exercises

1. The proof of Theorem 3–1 states the following: Suppose two subjects s1
and s2 are created and the rights in A[s1, o1] and A[s2, o2] are tested. The
same test for A[s1, o1] and A[s1, o2] = A[s1, o2] ∪ A[s2, o2] will produce
the same result. Justify this statement. Would it be true if one could test for
the absence of rights as well as for the presence of rights?

2. Devise an algorithm that determines whether or not a system is safe by
enumerating all possible states. Is this problem NP-complete? Justify your
answer.

3. Prove Theorem 3–3. (Hint: Use a diagonalization argument to test each
system as the set of protection systems is enumerated. Whenever a
protection system leaks a right, add it to the list of unsafe protection
systems.)

Bishop.book Page 44 Tuesday, September 28, 2004 1:46 PM

45

Chapter 4
Security Policies

PORTIA: Of a strange nature is the suit you follow;
Yet in such rule that the Venetian law

Cannot impugn you as you do proceed.
[To Antonio.] You stand within his danger, do you not?

—The Merchant of Venice, IV, i, 177–180.

A security policy defines “secure” for a system or a set of systems. Security policies
can be informal or highly mathematical in nature. After defining a security policy
precisely, we expand on the nature of “trust” and its relationship to security policies.
We also discuss different types of policy models.

4.1 Security Policies

Consider a computer system to be a finite-state automaton with a set of transition
functions that change state. Then:

Definition 4–1. A security policy is a statement that partitions the states of
the system into a set of authorized, or secure, states and a set of unauthorized,
or nonsecure, states.

A security policy sets the context in which we can define a secure system.
What is secure under one policy may not be secure under a different policy. More
precisely:

Definition 4–2. A secure system is a system that starts in an authorized state
and cannot enter an unauthorized state.

Consider the finite-state machine in Figure 4–1. It consists of four states and
five transitions. The security policy partitions the states into a set of authorized states
A = { s1, s2 } and a set of unauthorized states UA = { s3, s4 }. This system is not

Bishop.book Page 45 Tuesday, September 28, 2004 1:46 PM

46 Chapter 4 Security Policies

secure, because regardless of which authorized state it starts in, it can enter an unau-
thorized state. However, if the edge from s1 to s3 were not present, the system would
be secure, because it could not enter an unauthorized state from an authorized state.

Definition 4–3. A breach of security occurs when a system enters an unau-
thorized state.

We informally discussed the three basic properties relevant to security in Sec-
tion 1.1. We now define them precisely.

Definition 4–4. Let X be a set of entities and let I be some information. Then
I has the property of confidentiality with respect to X if no member of X can
obtain information about I.

Confidentiality implies that information must not be disclosed to some set of
entities. It may be disclosed to others. The membership of set X is often implicit—for
example, when we speak of a document that is confidential. Some entity has access
to the document. All entities not authorized to have such access make up the set X.

Definition 4–5. Let X be a set of entities and let I be some information or a
resource. Then I has the property of integrity with respect to X if all members
of X trust I.

This definition is deceptively simple. In addition to trusting the information
itself, the members of X also trust that the conveyance and storage of I do not change
the information or its trustworthiness (this aspect is sometimes called data integrity).
If I is information about the origin of something, or about an identity, the members of
X trust that the information is correct and unchanged (this aspect is sometimes called
origin integrity or, more commonly, authentication). Also, I may be a resource rather
than information. In that case, integrity means that the resource functions correctly
(meeting its specifications). This aspect is called assurance and will be discussed in
Part 6, “Assurance.” As with confidentiality, the membership of X is often implicit.

Definition 4–6. Let X be a set of entities and let I be a resource. Then I has
the property of availability with respect to X if all members of X can access I.

s1 s2 s3 s4

t1

t2

t3

t4 t5

Figure 4–1 A simple finite-state machine. In this example, the authorized
states are s1 and s2.

Bishop.book Page 46 Tuesday, September 28, 2004 1:46 PM

4.1 Security Policies 47

The exact definition of “access” in Definition 4–6 varies depending on the
needs of the members of X, the nature of the resource, and the use to which the
resource is put. If a book-selling server takes up to 1 hour to service a request to pur-
chase a book, that may meet the client’s requirements for “availability.” If a server of
medical information takes up to 1 hour to service a request for information regarding
an allergy to an anesthetic, that will not meet an emergency room’s requirements for
“availability.”

A security policy considers all relevant aspects of confidentiality, integrity,
and availability. With respect to confidentiality, it identifies those states in which
information leaks to those not authorized to receive it. This includes not only the
leakage of rights but also the illicit transmission of information without leakage of
rights, called information flow. Also, the policy must handle dynamic changes of
authorization, so it includes a temporal element. For example, a contractor working
for a company may be authorized to access proprietary information during the life-
time of a nondisclosure agreement, but when that nondisclosure agreement expires,
the contractor can no longer access that information. This aspect of the security pol-
icy is often called a confidentiality policy.

With respect to integrity, a security policy identifies authorized ways in which
information may be altered and entities authorized to alter it. Authorization may
derive from a variety of relationships, and external influences may constrain it; for
example, in many transactions, a principle called separation of duties forbids an
entity from completing the transaction on its own. Those parts of the security policy
that describe the conditions and manner in which data can be altered are called the
integrity policy.

With respect to availability, a security policy describes what services must be
provided. It may present parameters within which the services will be accessible—
for example, that a browser may download Web pages but not Java applets. It may
require a level of service—for example, that a server will provide authentication data
within 1 minute of the request being made. This relates directly to issues of quality of
service.

The statement of a security policy may formally state the desired properties of
the system. If the system is to be provably secure, the formal statement will allow the
designers and implementers to prove that those desired properties hold. If a formal
proof is unnecessary or infeasible, analysts can test that the desired properties hold
for some set of inputs. Later chapters will discuss both these topics in detail.

In practice, a less formal type of security policy defines the set of authorized
states. Typically, the security policy assumes that the reader understands the context
in which the policy is issued—in particular, the laws, organizational policies, and
other environmental factors. The security policy then describes conduct, actions, and
authorizations defining “authorized users” and “authorized use.”

EXAMPLE: A university disallows cheating, which is defined to include copying
another student’s homework assignment (with or without permission). A computer
science class requires the students to do their homework on the department’s com-
puter. One student notices that a second student has not read protected the file

Bishop.book Page 47 Tuesday, September 28, 2004 1:46 PM

48 Chapter 4 Security Policies

containing her homework and copies it. Has either student (or have both students)
breached security?

The second student has not, despite her failure to protect her homework. The
security policy requires no action to prevent files from being read. Although she may
have been too trusting, the policy does not ban this; hence, the second student has not
breached security.

The first student has breached security. The security policy disallows the
copying of homework, and the student has done exactly that. Whether the security
policy specifically states that “files containing homework shall not be copied” or
simply says that “users are bound by the rules of the university” is irrelevant; in the
latter case, one of those rules bans cheating. If the security policy is silent on such
matters, the most reasonable interpretation is that the policy disallows actions that
the university disallows, because the computer science department is part of the
university.

The retort that the first user could copy the files, and therefore the action is
allowed, confuses mechanism with policy. The distinction is sharp:

Definition 4–7. A security mechanism is an entity or procedure that enforces
some part of the security policy.

EXAMPLE: In the preceding example, the policy is the statement that no student may
copy another student’s homework. One mechanism is the file access controls; if the
second student had set permissions to prevent the first student from reading the file
containing her homework, the first student could not have copied that file.

EXAMPLE: Another site’s security policy states that information relating to a partic-
ular product is proprietary and is not to leave the control of the company. The com-
pany stores its backup tapes in a vault in the town’s bank (this is common practice in
case the computer installation is completely destroyed). The company must ensure
that only authorized employees have access to the backup tapes even when the tapes
are stored off-site; hence, the bank’s controls on access to the vault, and the proce-
dures used to transport the tapes to and from the bank, are considered security mech-
anisms. Note that these mechanisms are not technical controls built into the
computer. Procedural, or operational, controls also can be security mechanisms.

Security policies are often implicit rather than explicit. This causes confusion,
especially when the policy is defined in terms of the mechanisms. This definition
may be ambiguous—for example, if some mechanisms prevent a specific action and
others allow it. Such policies lead to confusion, and sites should avoid them.

EXAMPLE: The UNIX operating system, initially developed for a small research
group, had mechanisms sufficient to prevent users from accidentally damaging one
another’s files; for example, the user ken could not delete the user dmr’s files (unless
dmr had set the files and the containing directories appropriately). The implied

Bishop.book Page 48 Tuesday, September 28, 2004 1:46 PM

4.2 Types of Security Policies 49

security policy for this friendly environment was “do not delete or corrupt another’s
files, and any file not protected may be read.”

When the UNIX operating system moved into academic institutions and com-
mercial and government environments, the previous security policy became inade-
quate; for example, some files had to be protected from individual users (rather than
from groups of users). Not surprisingly, the security mechanisms were inadequate
for those environments.

The difference between a policy and an abstract description of that policy is
crucial to the analysis that follows.

Definition 4–8. A security model is a model that represents a particular pol-
icy or set of policies.

A model abstracts details relevant for analysis. Analyses rarely discuss partic-
ular policies; they usually focus on specific characteristics of policies, because many
policies exhibit these characteristics; and the more policies with those characteris-
tics, the more useful the analysis. By the HRU result (see Theorem 3–2), no single
nontrivial analysis can cover all policies, but restricting the class of security policies
sufficiently allows meaningful analysis of that class of policies.

4.2 Types of Security Policies

Each site has its own requirements for the levels of confidentiality, integrity, and
availability, and the site policy states these needs for that particular site.

Definition 4–9. A military security policy (also called a governmental secu-
rity policy) is a security policy developed primarily to provide confidentiality.

The name comes from the military’s need to keep information, such as the
date that a troop ship will sail, secret. Although integrity and availability are impor-
tant, organizations using this class of policies can overcome the loss of either—for
example, by using orders not sent through a computer network. But the compromise
of confidentiality would be catastrophic, because an opponent would be able to plan
countermeasures (and the organization may not know of the compromise).

Confidentiality is one of the factors of privacy, an issue recognized in the laws
of many government entities (such as the Privacy Act of the United States and similar
legislation in Sweden). Aside from constraining what information a government entity
can legally obtain from individuals, such acts place constraints on the disclosure and
use of that information. Unauthorized disclosure can result in penalties that include
jail or fines; also, such disclosure undermines the authority and respect that individuals
have for the government and inhibits them from disclosing that type of information
to the agencies so compromised.

Bishop.book Page 49 Tuesday, September 28, 2004 1:46 PM

50 Chapter 4 Security Policies

Definition 4–10. A commercial security policy is a security policy developed
primarily to provide integrity.

The name comes from the need of commercial firms to prevent tampering
with their data, because they could not survive such compromises. For example, if
the confidentiality of a bank’s computer is compromised, a customer’s account bal-
ance may be revealed. This would certainly embarrass the bank and possibly cause
the customer to take her business elsewhere. But the loss to the bank’s “bottom line”
would be minor. However, if the integrity of the computer holding the accounts were
compromised, the balances in the customers’ accounts could be altered, with finan-
cially ruinous effects.

Some integrity policies use the notion of a transaction; like database specifica-
tions, they require that actions occur in such a way as to leave the database in a con-
sistent state. These policies, called transaction-oriented integrity security policies,
are critical to organizations that require consistency of databases.

EXAMPLE: When a customer moves money from one account to another, the bank
uses a well-formed transaction. This transaction has two distinct parts: money is first
debited to the original account and then credited to the second account. Unless both
parts of the transaction are completed, the customer will lose the money. With a well-
formed transaction, if the transaction is interrupted, the state of the database is still
consistent—either as it was before the transaction began or as it would have been
when the transaction ended. Hence, part of the bank’s security policy is that all trans-
actions must be well-formed.

The role of trust in these policies highlights their difference. Confidentiality
policies place no trust in objects; so far as the policy is concerned, the object could
be a factually correct report or a tale taken from Aesop’s Fables. The policy state-
ment dictates whether that object can be disclosed. It says nothing about whether the
object should be believed.

Integrity policies, to the contrary, indicate how much the object can be trusted.
Given that this level of trust is correct, the policy dictates what a subject can do with
that object. But the crucial question is how the level of trust is assigned. For example,
if a site obtains a new version of a program, should that program have high integrity
(that is, the site trusts the new version of that program) or low integrity (that is, the
site does not yet trust the new program), or should the level of trust be somewhere in
between (because the vendor supplied the program, but it has not been tested at the
local site as thoroughly as the old version)? This makes integrity policies consider-
ably more nebulous than confidentiality policies. The assignment of a level of confi-
dentiality is based on what the classifier wants others to know, but the assignment of
a level of integrity is based on what the classifier subjectively believes to be true
about the trustworthiness of the information.

Two other terms describe policies related to security needs; because they
appear elsewhere, we define them now.

Bishop.book Page 50 Tuesday, September 28, 2004 1:46 PM

4.3 The Role of Trust 51

Definition 4–11. A confidentiality policy is a security policy dealing only
with confidentiality.

Definition 4–12. An integrity policy is a security policy dealing only with
integrity.

Both confidentiality policies and military policies deal with confidentiality;
however, a confidentiality policy does not deal with integrity at all, whereas a mili-
tary policy may. A similar distinction holds for integrity policies and commercial
policies.

4.3 The Role of Trust

The role of trust is crucial to understanding the nature of computer security. This
book presents theories and mechanisms for analyzing and enhancing computer secu-
rity, but any theories or mechanisms rest on certain assumptions. When someone
understands the assumptions her security policies, mechanisms, and procedures rest
on, she will have a very good understanding of how effective those policies, mecha-
nisms, and procedures are. Let us examine the consequences of this maxim.

A system administrator receives a security patch for her computer’s operating
system. She installs it. Has she improved the security of her system? She has indeed,
given the correctness of certain assumptions:

1. She is assuming that the patch came from the vendor and was not
tampered with in transit, rather than from an attacker trying to trick her
into installing a bogus patch that would actually open security holes.
Winkler [947] describes a penetration test in which this technique enabled
attackers to gain direct access to the computer systems of the target.

2. She is assuming that the vendor tested the patch thoroughly. Vendors are
often under considerable pressure to issue patches quickly and sometimes
test them only against a particular attack. The vulnerability may be deeper,
however, and other attacks may succeed. When someone released an
exploit of one vendor’s operating system code, the vendor released a
correcting patch in 24 hours. Unfortunately, the patch opened a second
hole, one that was far easier to exploit. The next patch (released 48 hours
later) fixed both problems correctly.

3. She is assuming that the vendor’s test environment corresponds to her
environment. Otherwise, the patch may not work as expected. As an
example, a vendor’s patch once reset ownerships of executables to the user
root. At some installations, maintenance procedures required that these
executables be owned by the user bin. The vendor’s patch had to be

Bishop.book Page 51 Tuesday, September 28, 2004 1:46 PM

52 Chapter 4 Security Policies

undone and fixed for the local configuration. This assumption also covers
possible conflicts between different patches, as well as patches that
conflict with one another (such as patches from different vendors of
software that the system is using).

4. She is assuming that the patch is installed correctly. Some patches are
simple to install, because they are simply executable files. Others are
complex, requiring the system administrator to reconfigure network-
oriented properties, add a user, modify the contents of a registry, give
rights to some set of users, and then reboot the system. An error in any of
these steps could prevent the patch from correcting the problems, as could
an inconsistency between the environments in which the patch was
developed and in which the patch is applied. Furthermore, the patch may
claim to require specific privileges, when in reality the privileges are
unnecessary and in fact dangerous.

These assumptions are fairly high-level, but invalidating any of them makes the
patch a potential security problem.

Assumptions arise also at a much lower level. Consider formal verification, an
oft-touted panacea for security problems. The important aspect is that formal verifi-
cation provides a formal mathematical proof that a given program P is correct—that
is, given any set of inputs i, j, k, the program P will produce the output x that its spec-
ification requires. This level of assurance is greater than most existing programs
provide, and hence makes P a desirable program. Suppose a security-related pro-
gram S has been formally verified for the operating system O. What assumptions
would be made when it was installed?

1. The formal verification of S is correct—that is, the proof has no errors.
Because formal verification relies on automated theorem provers as well
as human analysis, the theorem provers must be programmed correctly.

2. The assumptions made in the formal verification of S are correct;
specifically, the preconditions hold in the environment in which the
program is to be executed. These preconditions are typically fed to the
theorem provers as well as the program S. An implicit aspect of this
assumption is that the version of O in the environment in which the
program is to be executed is the same as the version of O used to verify S.

3. The program will be transformed into an executable whose actions
correspond to those indicated by the source code; in other words, the
compiler, linker, loader, and any libraries are correct. An experiment with
one version of the UNIX operating system demonstrated how devastating
a rigged compiler could be, and attackers have replaced libraries with others
that performed additional functions, thereby increasing security risks.

Bishop.book Page 52 Tuesday, September 28, 2004 1:46 PM

4.4 Types of Access Control 53

4. The hardware will execute the program as intended. A program that relies
on floating point calculations would yield incorrect results on some
computer CPU chips, regardless of any formal verification of the program,
owing to a flaw in these chips [178]. Similarly, a program that relies on
inputs from hardware assumes that specific conditions cause those inputs.

The point is that any security policy, mechanism, or procedure is based on
assumptions that, if incorrect, destroy the superstructure on which it is built. Analysts
and designers (and users) must bear this in mind, because unless they understand
what the security policy, mechanism, or procedure is based on, they jump from an
unwarranted assumption to an erroneous conclusion.

4.4 Types of Access Control

A security policy may use two types of access controls, alone or in combination. In
one, access control is left to the discretion of the owner. In the other, the operating
system controls access, and the owner cannot override the controls.

The first type is based on user identity and is the most widely known:

Definition 4–13. If an individual user can set an access control mechanism to
allow or deny access to an object, that mechanism is a discretionary access
control (DAC), also called an identity-based access control (IBAC).

Discretionary access controls base access rights on the identity of the subject
and the identity of the object involved. Identity is the key; the owner of the object
constrains who can access it by allowing only particular subjects to have access. The
owner states the constraint in terms of the identity of the subject, or the owner of the
subject.

EXAMPLE: Suppose a child keeps a diary. The child controls access to the diary,
because she can allow someone to read it (grant read access) or not allow someone to
read it (deny read access). The child allows her mother to read it, but no one else.
This is a discretionary access control because access to the diary is based on the
identity of the subject (mom) requesting read access to the object (the diary).

The second type of access control is based on fiat, and identity is irrelevant:

Definition 4–14. When a system mechanism controls access to an object and
an individual user cannot alter that access, the control is a mandatory access
control (MAC), occasionally called a rule-based access control.

Bishop.book Page 53 Tuesday, September 28, 2004 1:46 PM

54 Chapter 4 Security Policies

The operating system enforces mandatory access controls. Neither the subject
nor the owner of the object can determine whether access is granted. Typically, the
system mechanism will check information associated with both the subject and
the object to determine whether the subject should access the object. Rules describe
the conditions under which access is allowed.

EXAMPLE: The law allows a court to access driving records without the owners’ per-
mission. This is a mandatory control, because the owner of the record has no control
over the court’s accessing the information.

Definition 4–15. An originator controlled access control (ORCON or ORG-
CON) bases access on the creator of an object (or the information it contains).

The goal of this control is to allow the originator of the file (or of the informa-
tion it contains) to control the dissemination of the information. The owner of the file
has no control over who may access the file. Section 7.3 discusses this type of con-
trol in detail.

EXAMPLE: Bit Twiddlers, Inc., a company famous for its embedded systems, con-
tracts with Microhackers Ltd., a company equally famous for its microcoding abili-
ties. The contract requires Microhackers to develop a new microcode language for a
particular processor designed to be used in high-performance embedded systems. Bit
Twiddlers gives Microhackers a copy of its specifications for the processor. The
terms of the contract require Microhackers to obtain permission before it gives any
information about the processor to its subcontractors. This is an originator controlled
access mechanism because, even though Microhackers owns the file containing the
specifications, it may not allow anyone to access that information unless the creator,
Bit Twiddlers, gives permission.

4.5 Example: Academic Computer Security Policy

Security policies can have few details, or many. The explicitness of a security policy
depends on the environment in which it exists. A research lab or office environment
may have an unwritten policy. A bank needs a very explicit policy. In practice, poli-
cies begin as generic statements of constraints on the members of the organization.
These statements are derived from an analysis of threats, as described in Chapter 1,
“An Overview of Computer Security.” As questions (or incidents) arise, the policy is
refined to cover specifics. As an example, we present an academic security policy.

Bishop.book Page 54 Tuesday, September 28, 2004 1:46 PM

4.5 Example: Academic Computer Security Policy 55

4.5.1 General University Policy

This policy is an “Acceptable Use Policy” (AUP) for the Davis campus of the Uni-
versity of California. Because computing services vary from campus unit to campus
unit, the policy does not dictate how the specific resources can be used. Instead, it
presents generic constraints that the individual units can tighten.

The policy first presents the goals of campus computing: to provide access to
resources and to allow the users to communicate with others throughout the world. It
then states the responsibilities associated with the privilege of using campus comput-
ers. All users must “respect the rights of other users, respect the integrity of the sys-
tems and related physical resources, and observe all relevant laws, regulations, and
contractual obligations.”1

The policy states the intent underlying the rules, and notes that the system
managers and users must abide by the law (for example, “Since electronic informa-
tion is volatile and easily reproduced, users must exercise care in acknowledging and
respecting the work of others through strict adherence to software licensing agree-
ments and copyright laws”).2

The enforcement mechanisms in this policy are procedural. For minor viola-
tions, either the unit itself resolves the problem (for example, by asking the offender
not to do it again) or formal warnings are given. For more serious infractions, the
administration may take stronger action such as denying access to campus computer
systems. In very serious cases, the university may invoke disciplinary action. The
Office of Student Judicial Affairs hears such cases and determines appropriate conse-
quences.

The policy then enumerates specific examples of actions that are considered to
be irresponsible use. Among these are illicitly monitoring others, spamming, and
locating and exploiting security vulnerabilities. These are examples; they are not
exhaustive. The policy concludes with references to other documents of interest.

This is a typical AUP. It is written informally and is aimed at the user commu-
nity that is to abide by it. The electronic mail policy presents an interesting contrast
to the AUP, probably because the AUP is for UC Davis only, and the electronic mail
policy applies to all nine University of California campuses.

4.5.2 Electronic Mail Policy

The university has several auxiliary policies, which are subordinate to the general
university policy. The electronic mail policy describes the constraints imposed on
access to, and use of, electronic mail. It conforms to the general university policy but
details additional constraints on both users and system administrators.

The electronic mail policy consists of three parts. The first is a short summary
intended for the general user community, much as the AUP for UC Davis is intended

1 From Part 1, Section 2 of the AUP for the University of California, Davis.
2 From Part 1, Section 2 of the AUP for the University of California, Davis.

Bishop.book Page 55 Tuesday, September 28, 2004 1:46 PM

56 Chapter 4 Security Policies

for the general user community. The second part is the full policy for all university
campuses and is written as precisely as possible. The last document describes how
the Davis campus implements the general university electronic mail policy.

4.5.2.1 The Electronic Mail Policy Summary
The summary first warns users that their electronic mail is not private. It may be read
accidentally, in the course of normal system maintenance, or in other ways stated in
the full policy. It also warns users that electronic mail can be forged or altered as well
as forwarded (and that forwarded messages may be altered). This section is interest-
ing because policies rarely alert users to the threats they face; policies usually focus
on the remedial techniques.

The next two sections are lists of what users should, and should not, do. They
may be summarized as “think before you send; be courteous and respectful of others;
and don’t interfere with others’ use of electronic mail.” They emphasize that supervi-
sors have the right to examine employees’ electronic mail that relates to the job. Sur-
prisingly, the university does not ban personal use of electronic mail, probably in the
recognition that enforcement would demoralize people and that the overhead of car-
rying personal mail is minimal in a university environment. The policy does require
that users not use personal mail to such an extent that it interferes with their work or
causes the university to incur extra expense.

Finally, the policy concludes with a statement about its application. In a pri-
vate company, this would be unnecessary, but the University of California is a quasi-
governmental institution and as such is bound to respect parts of the United States
Constitution and the California Constitution that private companies are not bound to
respect. Also, as an educational institution, the university takes the issues surround-
ing freedom of expression and inquiry very seriously. Would a visitor to campus be
bound by these policies? The final section says yes. Would an employee of Lawrence
Livermore National Laboratories, run for the Department of Energy by the Univer-
sity of California, also be bound by these policies? Here, the summary suggests that
they would be, but whether the employees of the lab are Department of Energy
employees or University of California employees could affect this. So we turn to the
full policy.

4.5.2.2 The Full Policy
The full policy also begins with a description of the context of the policy, as well as
its purpose and scope. The scope here is far more explicit than that in the summary.
For example, the full policy does not apply to e-mail services of the Department of
Energy laboratories run by the university, such as Lawrence Livermore National
Laboratories. Moreover, this policy does not apply to printed copies of e-mail,
because other university policies apply to such copies.

The general provisions follow. They state that e-mail services and infrastruc-
ture are university property, and that all who use them are expected to abide by the

Bishop.book Page 56 Tuesday, September 28, 2004 1:46 PM

4.5 Example: Academic Computer Security Policy 57

law and by university policies. Failure to do so may result in access to e-mail being
revoked. The policy reiterates that the university will apply principles of academic
freedom and freedom of speech in its handling of e-mail, and so will seek access to
e-mail without the holder’s permission only under extreme circumstances, which are
enumerated, and only with the approval of a campus vice chancellor or a university
vice president (essentially, the second ranking officer of a campus or of the university
system). If this is infeasible, the e-mail may be read only as is needed to resolve the
emergency, and then authorization must be secured after the fact.

The next section discusses legitimate and illegitimate use of the university’s
e-mail. The policy allows anonymity to senders provided that it does not violate laws
or other policies. It disallows using mail to interfere with others, such as by sending
spam or letter bombs. It also expressly permits the use of university facilities for
sending personal e-mail, provided that doing so does not interfere with university
business; and it cautions that such personal e-mail may be treated as a “University
record” subject to disclosure.

The discussion of security and confidentiality emphasizes that, although the
university will not go out of its way to read e-mail, it can do so for legitimate busi-
ness purposes and to keep e-mail service robust and reliable. The section on
archiving and retention says that people may be able to recover e-mail from end sys-
tems where it may be archived as part of a regular backup.

The last three sections discuss the consequences of violations and direct the
chancellor of each campus to develop procedures to implement the policy.

An interesting sidelight occurs in Appendix A, “Definitions.” The definition of
“E-mail” includes any computer records viewed with e-mail systems or services, and
the “transactional information associated with such records [E-mail], such as head-
ers, summaries, addresses, and addressees.” This appears to encompass the network
packets used to carry the e-mail from one host to another. This ambiguity illustrates
the problem with policies. The language is imprecise. This motivates the use of more
mathematical languages, such as DTEL, for specifying policies.

4.5.2.3 Implementation at UC Davis
This interpretation of the policy simply specifies those points delegated to the cam-
pus. Specifically, “incidental personal use” is not allowed if that personal use benefits
a non-university organization, with a few specific exceptions enumerated in the pol-
icy. Then procedures for inspecting, monitoring, and disclosing the contents of
e-mail are given, as are appeal procedures. The section on backups states that the
campus does not archive all e-mail, and even if e-mail is backed up incidental to
usual backup practices, it need not be made available to the employee.

This interpretation adds campus-specific requirements and procedures to the
university’s policy. The local augmentation amplifies the system policy; it does not
contradict it or limit it. Indeed, what would happen if the campus policy conflicted
with the system’s policy? In general, the higher (system-wide) policy would prevail.
The advantage of leaving implementation to the campuses is that they can take into

Bishop.book Page 57 Tuesday, September 28, 2004 1:46 PM

58 Chapter 4 Security Policies

account local variations and customs, as well as any peculiarities in the way the
administration and the Academic Senate govern that campus.

4.6 Summary

Security policies define “security” for a system or site. They may be implied policies
defined by the common consensus of the community, or they may be informal poli-
cies whose interpretations are defined by the community. Both of these types of
policies are usually ambiguous and do not precisely define “security.” A policy may
be formal, in which case ambiguities arise either from the use of natural languages
such as English or from the failure to cover specific areas.

Formal mathematical models of policies enable analysts to deduce a rigorous
definition of “security” but do little to improve the average user’s understanding of
what “security” means for a site. The average user is not mathematically sophisti-
cated enough to read and interpret the mathematics.

Trust underlies all policies and enforcement mechanisms. Policies themselves
make assumptions about the way systems, software, hardware, and people behave. At a
lower level, security mechanisms and procedures also make such assumptions. Even
when rigorous methodologies (such as formal mathematical models or formal verifica-
tion) are applied, the methodologies themselves simply push the assumptions, and there-
fore the trust, to a lower level. Understanding the assumptions and the trust involved in
any policies and mechanisms deepens one’s understanding of the security of a system.

This brief overview of policy, and of policy expression, lays the foundation
for understanding the more detailed policy models used in practice.

4.7 Further Reading

Much of security analysis involves definition and refinement of security policies.
Wood [954] has published a book of templates for specific parts of policies. That
book justifies each part and allows readers to develop policies by selecting the appro-
priate parts from a large set of possibilities. Essays by Bailey [51] and Abrams and
Bailey [4] discuss management of security issues and explain why different members
of an organization interpret the same policy differently. Sterne’s wonderful paper
[875] discusses the nature of policy in general.

Jajodia and his colleagues [467] present a “little language” for expressing
authorization policies. They show that their language can express many aspects of
existing policies and argue that it allows elements of these policies to be combined
into authorization schemes. Other little languages include DTEL [50,336], a constraint

Bishop.book Page 58 Tuesday, September 28, 2004 1:46 PM

4.8 Exercises 59

language for Java programs [708]. File system state analysis programs use low-level
policy languages to describe the current file system state; two examples are the pro-
grams tripwire [510] and the RIACS auditing and checking system [98].

Boebert and Kain [119] observed that type checking provides a form of access
control. Some policy languages (such as DTEL) are based on this observation. At
least one firewall [900] has security mechanisms also based on type checking.

Cholvy and Cuppens [173] describe a method of checking policies for consis-
tency and determining how they apply to given situations.

Son, Chaney, and Thomlinson [856] discuss enforcement of partial security
policies in real-time databases to balance real-time requirements with security. Their
idea of “partial security policies” has applications in other environments. Zurko and
Simon [966] present an alternative focus for policies.

Jones and Lipton [472] explored the balancing of security and precision for
confidentiality policies.

4.8 Exercises

1. In Figure 4–1, suppose that edge t3 went from s1 to s4. Would the resulting
system be secure?

2. Revisit the example of one student copying another student’s homework
assignment. Describe three other ways the first student could copy the
second student’s homework assignment, even assuming that the file access
control mechanisms are set to deny him permission to read the file.

3. A noted computer security expert has said that without integrity, no system
can provide confidentiality.

a. Do you agree? Justify your answer.
b. Can a system provide integrity without confidentiality? Again,

justify your answer.

4. A cryptographer once claimed that security mechanisms other than
cryptography were unnecessary because cryptography could provide any
desired level of confidentiality and integrity. Ignoring availability, either
justify or refute the cryptographer’s claim.

5. Classify each of the following as an example of a mandatory,
discretionary, or originator controlled policy, or a combination thereof.
Justify your answers.

a. The file access control mechanisms of the UNIX operating system
b. A system in which no memorandum can be distributed without the

author’s consent
c. A military facility in which only generals can enter a particular room

Bishop.book Page 59 Tuesday, September 28, 2004 1:46 PM

60 Chapter 4 Security Policies

d. A university registrar’s office, in which a faculty member can see the
grades of a particular student provided that the student has given
written permission for the faculty member to see them.

6. Consider the UC Davis policy on reading electronic mail. A research
group wants to obtain raw data from a network that carries all network
traffic to the Department of Political Science.

a. Discuss the impact of the electronic mail policy on the collection of
such data.

b. How would you change the policy to allow the collection of this data
without abandoning the principle that electronic mail should be
protected?

Bishop.book Page 60 Tuesday, September 28, 2004 1:46 PM

61

Chapter 5
Confidentiality Policies

SHEPHERD: Sir, there lies such secrets in this fardel
and box which none must know but the king;
and which he shall know within this hour, if I

may come to the speech of him.
—The Winter’s Tale, IV, iv, 785–788.

Confidentiality policies emphasize the protection of confidentiality. The importance
of these policies lies in part in what they provide, and in part in their role in the
development of the concept of security. This chapter explores one such policy—the
Bell-LaPadula Model—and the controversy it engendered.

5.1 Goals of Confidentiality Policies

A confidentiality policy, also called an information flow policy, prevents the unautho-
rized disclosure of information. Unauthorized alteration of information is secondary.
For example, the navy must keep confidential the date on which a troop ship will sail.
If the date is changed, the redundancy in the systems and paperwork should catch
that change. But if the enemy knows the date of sailing, the ship could be sunk.
Because of extensive redundancy in military communications channels, availability
is also less of a problem.

The term “governmental” covers several requirements that protect citizens’
privacy. In the United States, the Privacy Act requires that certain personal data be
kept confidential. Income tax returns are legally confidential and are available only to
the Internal Revenue Service or to legal authorities with a court order. The principle
of “executive privilege” and the system of nonmilitary classifications suggest that the
people working in the government need to limit the distribution of certain documents
and information. Governmental models represent the policies that satisfy these
requirements.

Bishop.book Page 61 Tuesday, September 28, 2004 1:46 PM

62 Chapter 5 Confidentiality Policies

5.2 The Bell-LaPadula Model

The Bell-LaPadula Model [63, 64] corresponds to military-style classifications. It
has influenced the development of many other models and indeed much of the devel-
opment of computer security technologies.1

5.2.1 Informal Description

The simplest type of confidentiality classification is a set of security clearances
arranged in a linear (total) ordering (see Figure 5–1). These clearances represent sen-
sitivity levels. The higher the security clearance, the more sensitive the information
(and the greater the need to keep it confidential). A subject has a security clearance.
In the figure, Claire’s security clearance is C (for CONFIDENTIAL), and Thomas’ is
TS (for TOP SECRET). An object has a security classification; the security classifi-
cation of the electronic mail files is S (for SECRET), and that of the telephone list
files is UC (for UNCLASSIFIED). (When we refer to both subject clearances and
object classifications, we use the term “classification.”) The goal of the Bell-LaPadula
security model is to prevent read access to objects at a security classification higher
than the subject’s clearance.

The Bell-LaPadula security model combines mandatory and discretionary
access controls. In what follows, “S has discretionary read (write) access to O”
means that the access control matrix entry for S and O corresponding to the discre-
tionary access control component contains a read (write) right. In other words, were
the mandatory controls not present, S would be able to read (write) O.

1 The terminology in this section follows that of the unified exposition of the Bell-LaPadula
Model [64].

TOP SECRET (TS)
|

SECRET (S)
|

CONFIDENTIAL (C)
|

UNCLASSIFIED (UC)

Tamara, Thomas
|

Sally, Samuel
|

Claire, Clarence
|

Ulaley, Ursula

Personnel Files
|

Electronic Mail Files
|

Activity Log Files
|

Telephone List Files

Figure 5–1 At the left is the basic confidentiality classification system. The
four security levels are arranged with the most sensitive at the top and the
least sensitive at the bottom. In the middle are individuals grouped by their
security clearances, and at the right is a set of documents grouped by their
security levels.

Bishop.book Page 62 Tuesday, September 28, 2004 1:46 PM

5.2 The Bell-LaPadula Model 63

Let L(S) = ls be the security clearance of subject S, and let L(O) = lo be the secu-
rity classification of object O. For all security classifications li, i = 0, ..., k – 1, li < li+1.

• Simple Security Condition, Preliminary Version: S can read O if and only
if lo ≤ ls and S has discretionary read access to O.

In Figure 5–1, for example, Claire and Clarence cannot read personnel files, but Tam-
ara and Sally can read the activity log files (and, in fact, Tamara can read any of the
files, given her clearance), assuming that the discretionary access controls allow it.

Should Tamara decide to copy the contents of the personnel files into the
activity log files and set the discretionary access permissions appropriately, Claire
could then read the personnel files. Thus, for all practical purposes, Claire could read
the files at a higher level of security. A second property prevents this:

• *-Property (Star Property), Preliminary Version: S can write O if and
only if ls ≤ lo and S has discretionary write access to O.

Because the activity log files are classified C and Tamara has a clearance of TS, she
cannot write to the activity log files.

Define a secure system as one in which both the simple security condition,
preliminary version, and the *-property, preliminary version, hold. A straightforward
induction establishes the following theorem.

Theorem 5–1. Basic Security Theorem, Preliminary Version: Let Σ be a sys-
tem with a secure initial state σ0, and let T be a set of state transformations. If
every element of T preserves the simple security condition, preliminary version,
and the *-property, preliminary version, then every state σi, i ≥ 0, is secure.

Expand the model by adding a set of categories to each security classification.
Each category describes a kind of information. Objects placed in multiple categories
have the kinds of information in all of those categories. These categories arise from
the “need to know” principle, which states that no subject should be able to read
objects unless reading them is necessary for that subject to perform its functions. The
sets of categories to which a person may have access is simply the power set of the
set of categories. For example, if the categories are NUC, EUR, and US, someone
can have access to any of the following sets of categories: ∅ (none), { NUC },
{ EUR }, { US }, { NUC, EUR }, {NUC, US }, { EUR, US }, and { NUC, EUR, US }.
These sets of categories form a lattice under the operation ⊆ (subset of); see Figure
5–2. (Chapter 27, “Lattices,” discusses the mathematical nature of lattices.)

Each security level and category form a security level.2 As before, we say that
subjects have clearance at (or are cleared into, or are in) a security level and that

2 There is less than full agreement on this terminology. Some call security levels “compartments.”
However, others use this term as a synonym for “categories.” We follow the terminology of the
unified exposition [64].

Bishop.book Page 63 Tuesday, September 28, 2004 1:46 PM

64 Chapter 5 Confidentiality Policies

objects are at the level of (or are in) a security level. For example, William may be
cleared into the level (SECRET, { EUR }) and George into the level (TOP SECRET,
{ NUC, US }). A document may be classified as (CONFIDENTIAL, {EUR }).

Security levels change access. Because categories are based on a “need to
know,” someone with access to the category set { NUC, US } presumably has no
need to access items in the category EUR. Hence, read access should be denied, even
if the security clearance of the subject is higher than the security classification of the
object. But if the desired object is in any of the security levels ∅, { NUC }, { US },
or { NUC, US } and the subject’s security clearance is no less than the document’s
security classification, access should be granted because the subject is cleared into
the same category set as the object.

This suggests a new relation for capturing the combination of security classifi-
cation and category set. Define the relation dom (dominates) as follows.

Definition 5–1. The security level (L, C) dominates the security level (L´, C´)
if and only if L´ ≤ L and C´ ⊆ C.

We write (L, C) ¬dom (L´, C´) when (L, C) dom (L´, C´) is false. This rela-
tion also induces a lattice on the set of security levels [240].

EXAMPLE: George is cleared into security level (SECRET, { NUC, EUR}), DocA is
classified as (CONFIDENTIAL, { NUC }), DocB is classified as (SECRET,
{ EUR, US}), and DocC is classified as (SECRET, { EUR }). Then:

George dom DocA as CONFIDENTIAL ≤ SECRET and { NUC } ⊆ { NUC, EUR }
George ¬dom DocB as { EUR, US } ⊄ { NUC, EUR }
George dom DocC as SECRET ≤ SECRET and { EUR } ⊆ { NUC, EUR }

Let C(S) be the category set of subject S, and let C(O) be the category set of
object O. The simple security condition, preliminary version, is modified in the obvi-
ous way:

Figure 5–2 Lattice generated by the categories NUC, EUR, and US. The lines
represent the ordering relation induced by ⊆.

{ NUC, EUR, US }

{ NUC, EUR } { NUC, US } { EUR, US}

{ NUC } { EUR } { US }

∅

Bishop.book Page 64 Tuesday, September 28, 2004 1:46 PM

5.2 The Bell-LaPadula Model 65

• Simple Security Condition: S can read O if and only if S dom O and S has
discretionary read access to O.

In the example above, George can read DocA and DocC but not DocB (again, assum-
ing that the discretionary access controls allow such access).

Suppose Paul is cleared into security level (SECRET, { EUR, US, NUC })
and has discretionary read access to DocB. Paul can read DocB; were he to copy its
contents to DocA and set its access permissions accordingly, George could then read
DocB. The modified *-property prevents this:

• *-Property: S can write to O if and only if O dom S and S has discretionary
write access to O.

Because DocA dom Paul is false (because C(Paul) ⊄ C(DocA)), Paul cannot write to
DocA.

The simple security condition is often described as “no reads up” and the
*-property as “no writes down.”

Redefine a secure system as one in which both the simple security property
and the *-property hold. The analogue to the Basic Security Theorem, preliminary
version, can also be established by induction.

Theorem 5–2. Basic Security Theorem: Let Σ be a system with a secure ini-
tial state σ0, and let T be a set of state transformations. If every element of T
preserves the simple security condition and the *-property, then every σi, i ≥ 0,
is secure.

At times, a subject must communicate with another subject at a lower level.
This requires the higher-level subject to write into a lower-level object that the lower-
level subject can read.

EXAMPLE: A colonel with (SECRET, { NUC, EUR }) clearance needs to send a
message to a major with (SECRET, { EUR }) clearance. The colonel must write a
document that has at most the (SECRET, { EUR }) classification. But this violates
the *-property, because (SECRET, { NUC, EUR }) dom (SECRET, { EUR }).

The model provides a mechanism for allowing this type of communication. A
subject has a maximum security level and a current security level. The maximum
security level must dominate the current security level. A subject may (effectively)
decrease its security level from the maximum in order to communicate with entities
at lower security levels.

EXAMPLE: The colonel’s maximum security level is (SECRET, { NUC, EUR }).
She changes her current security level to (SECRET, { EUR }). This is valid, because
the maximum security level dominates the current security level. She can then create
the document at the major’s clearance level and send it to him.

Bishop.book Page 65 Tuesday, September 28, 2004 1:46 PM

66 Chapter 5 Confidentiality Policies

How this policy is instantiated in different environments depends on the
requirements of each environment. The conventional use is to define “read” as
“allowing information to flow from the object being read to the subject reading,” and
“write” as “allowing information to flow from the subject writing to the object being
written.” Thus, “read” usually includes “execute” (because by monitoring the
instructions executed, one can determine the contents of portions of the file) and
“write” includes “append” (as the information is placed in the file, it does not over-
write what is already in the file, however). Other actions may be included as appro-
priate; however, those who instantiate the model must understand exactly what those
actions are.

5.2.2 Example: The Data General B2 UNIX System

The Data General B2 UNIX (DG/UX) system provides mandatory access controls
(MACs). The MAC label is a label identifying a particular compartment. This section
describes only the default labels; the system enables other labels to be created.

5.2.2.1 Assigning MAC Labels
When a process (subject) begins, it is assigned the MAC label of its parent. The ini-
tial label (assigned at login time) is the label assigned to the user in a database called
the Authorization and Authentication (A&A) Database. Objects are assigned labels at
creation, but the labels may be either explicit or implicit. The system stores explicit
labels as parts of the object’s attributes. It determines implicit labels from the parent
directory of the object.

The least upper bound of all compartments in the DG/UX lattice has the label
IMPL_HI (for “implementation high”); the greatest lower bound has the label
IMPL_LO (for “implementation low”). The lattice is divided into three regions,
which are summarized in Figure 5–3.3

The highest region (administrative region) is reserved for data that users can-
not access, such as logs, MAC label definitions, and so forth. Because reading up and
writing up are disallowed (the latter is a DG/UX extension to the multilevel security
model; see Section 5.2.2.2), users can neither read nor alter data in this region.
Administrative processes such as servers execute with MAC labels in this region;
however, they sanitize data sent to user processes with MAC labels in the user
region.

System programs are in the lowest region (virus prevention region). No user
process can write to them, so no user process can alter them. Because execution
requires read access, users can execute the programs. The name of this region comes

3 The terminology used here corresponds to that of the DG/UX system. Note that “hierarchy
level” corresponds to “clearance” or “classification” in the preceding section.

Bishop.book Page 66 Tuesday, September 28, 2004 1:46 PM

5.2 The Bell-LaPadula Model 67

from the fact that viruses and other forms of malicious logic involve alterations of
trusted executables.4

Problems arise when programs of different levels access the same directory. If
a program with MAC label MAC_A tries to create a file, and a file of that name but
with MAC label MAC_B (MAC_B dom MAC_A) exists, the create will fail. To prevent
this leakage of information, only programs with the same MAC label as the directory
can create files in that directory. For the /tmp directory, and the mail spool directory
/var/mail, this restriction will prevent standard operations such as compiling and
delivering mail. DG/UX introduces a “multilevel directory” to solve this problem.

A multilevel directory is a directory with a set of subdirectories, one for each
label. These “hidden directories” normally are not visible to the user, but if a process
with MAC label MAC_A tries to create a file in /tmp, it actually creates a file in the
hidden directory under /tmp with MAC label MAC_A. The file can have the same
name as one in the hidden directory corresponding to label MAC_A. The parent
directory of a file in /tmp is the hidden directory. Furthermore, a reference to the par-
ent directory goes to the hidden directory.

EXAMPLE: A process with label MAC_A creates a directory /tmp/a. Another process
with label MAC_B creates a directory /tmp/a. The processes then change the correct
working directory to /tmp/a and then to .. (the parent directory). Both processes will
appear to have /tmp as the current working directory. However, the system call

stat(“.”, &stat_buffer)

4 The TCB, or trusted computing base, is that part of the system that enforces security.

Administrative RegionA&A database, audit

User data and applications User RegionHierarchy
levels

VP–1

VP–2

VP–3

VP–4

Site executables

Trusted data

Executables not part of the TCB

Reserved for future use

Virus Prevention Region

Categories

Figure 5–3 The three MAC regions in the MAC lattice (modified from the
DG/UX Security Manual [230], p. 4–7, Figure 4–4). TCB stands for “trusted
computing base.”

VP–5

Executables part of the TCB

Bishop.book Page 67 Tuesday, September 28, 2004 1:46 PM

68 Chapter 5 Confidentiality Policies

returns a different inode number for each process, because it returns the inode num-
ber of the current working directory—the hidden directory. The system call

dg_mstat(“.”, &stat_buffer)

translates the notion of “current working directory” to the multilevel directory when
the current working directory is a hidden directory.

Mounting unlabeled file systems requires the files to be labeled. Symbolic
links aggravate this problem. Does the MAC label the target of the link control, or
does the MAC label the link itself? DG/UX uses a notion of inherited labels (called
implicit labels) to solve this problem. The following rules control the way objects are
labeled.

1. Roots of file systems have explicit MAC labels. If a file system without
labels is mounted on a labeled file system, the root directory of the
mounted file system receives an explicit label equal to that of the mount
point. However, the label of the mount point, and of the underlying tree, is
no longer visible, and so its label is unchanged (and will become visible
again when the file system is unmounted).

2. An object with an implicit MAC label inherits the label of its parent.
3. When a hard link to an object is created, that object must have an

explicit label; if it does not, the object’s implicit label is converted
to an explicit label. A corollary is that moving a file to a different
directory makes its label explicit.

4. If the label of a directory changes, any immediate children with implicit
labels have those labels converted to explicit labels before the parent
directory’s label is changed.

5. When the system resolves a symbolic link, the label of the object is the
label of the target of the symbolic link. However, to resolve the link, the
process needs access to the symbolic link itself.

Rules 1 and 2 ensure that every file system object has a MAC label, either implicit or
explicit. But when a file object has an implicit label, and two hard links from differ-
ent directories, it may have two labels. Let /x/y/z and /x/a/b be hard links to the same
object. Suppose y has an explicit label IMPL_HI and a an explicit label IMPL_B.
Then the file object can be accessed by a process at IMPL_HI as /x/y/z and by a pro-
cess at IMPL_B as /x/a/b. Which label is correct? Two cases arise.

Suppose the hard link is created while the file system is on a DG/UX B2 sys-
tem. Then the DG/UX system converts the target’s implicit label to an explicit one
(rule 3). Thus, regardless of the path used to refer to the object, the label of the object
will be the same.

Bishop.book Page 68 Tuesday, September 28, 2004 1:46 PM

5.2 The Bell-LaPadula Model 69

Suppose the hard link exists when the file system is mounted on the DG/UX
B2 system. In this case, the target had no file label when it was created, and one
must be added. If no objects on the paths to the target have explicit labels, the tar-
get will have the same (implicit) label regardless of the path being used. But if any
object on any path to the target of the link acquires an explicit label, the target’s
label may depend on which path is taken. To avoid this, the implicit labels of a
directory’s children must be preserved when the directory’s label is made explicit.
Rule 4 does this.

Because symbolic links interpolate path names of files, rather than store inode
numbers, computing the label of symbolic links is straightforward. If /x/y/z is a sym-
bolic link to /a/b/c, then the MAC label of c is computed in the usual way. However,
the symbolic link itself is a file, and so the process must also have access to the link
file z.

5.2.2.2 Using MAC Labels
The DG/UX B2 system uses the Bell-LaPadula notion of dominance, with one
change. The system obeys the simple security condition (reading down is permitted),
but the implementation of the *-property requires that the process MAC label and the
object MAC label be equal, so writing up is not permitted, but writing is permitted in
the same compartment.

Because of this restriction on writing, the DG/UX system provides processes
and objects with a range of labels called a MAC tuple. A range is a set of labels
expressed by a lower bound and an upper bound. A MAC tuple consists of up to
three ranges (one for each of the regions in Figure 5–3).

EXAMPLE: A system has two security levels, TS and S, the former dominating the
latter. The categories are COMP, NUC, and ASIA. Examples of ranges are

[(S, { COMP }), (TS, { COMP })]
[(S, ∅), (TS, { COMP, NUC, ASIA })]
[(S, { ASIA }), (TS, { ASIA, NUC })]

The label (TS, {COMP}) is in the first two ranges. The label (S, {NUC, ASIA}) is
in the last two ranges. However,

[(S, {ASIA}), (TS, { COMP, NUC})]

is not a valid range because not (TS, { COMP, NUC }) dom (S, { ASIA }).

An object can have a MAC tuple as well as the required MAC label. If both
are present, the tuple overrides the label. A process has read access when its MAC
label grants read access to the upper bound of the range. A process has write access
when its MAC label grants write access to any label in the MAC tuple range.

Bishop.book Page 69 Tuesday, September 28, 2004 1:46 PM

70 Chapter 5 Confidentiality Policies

EXAMPLE: Suppose an object’s MAC tuple is the single range

[(S, { ASIA }), (TS, { ASIA, COMP})]

A subject with MAC label (S, { ASIA }) cannot read the object, because

(TS, { ASIA, COMP}) dom (S, { ASIA })

It can write to the object, because (S, { ASIA }) dominates the lower bound and is
dominated by the upper bound. A subject with MAC label (TS, { ASIA, COMP,
NUC }) can read the object but cannot write the object. A subject with MAC label
(TS, { ASIA, COMP }) can both read and write the object. A subject with MAC
label (TS, {EUR}) can neither read nor write the object, because its label is incom-
parable to that of the object, and the dom relation does not hold.

A process has both a MAC label and a MAC tuple. The label always lies
within the range for the region in which the process is executing. Initially, the sub-
ject’s accesses are restricted by its MAC label. However, the process may extend its
read and write capabilities to within the bounds of the MAC tuple.

5.3 Summary

The influence of the Bell-LaPadula Model permeates all policy modeling in com-
puter security. It was the first mathematical model to capture attributes of a real sys-
tem in its rules. It formed the basis for several standards, including the Department of
Defense’s Trusted Computer System Evaluation Criteria (the TCSEC or the “Orange
Book” discussed in Chapter 18) [257].

5.4 Further Reading

The developers of the ADEPT-50 system presented a formal model of the security
controls that predated the Bell-LaPadula Model [568, 934]. Landwehr and col-
leagues [545] explored aspects of formal models for computer security. Multics
implemented the Bell-LaPadula Model [703]. Denning used the Bell-LaPadula
Model in SeaView [245, 248], a database designed with security features. The model
forms the basis for several other models, including the database model of Jajodia and
Sandhu [468] and the military message system model of Landwehr [548]. The latter
is an excellent example of how models are applied in practice.

Bishop.book Page 70 Tuesday, September 28, 2004 1:46 PM

5.5 Exercises 71

Dion [271] extended the Bell-LaPadula Model to allow system designers and
implementers to use that model more easily. Sidhu and Gasser [828] designed a local
area network to handle multiple security levels.

McLean challenged some of the assumptions of the Bell-LaPadula Model
[610,611]. Bell [60] and LaPadula [551] responded, discussing the different types of
modeling in physical science [560] and mathematics [690].

Feiertag, Levitt, and Robinson [310] developed a multilevel model that has
several differences from the Bell-LaPadula Model. Taylor [896] elegantly compares
them. Smith and Winslett [843] use a mandatory model to model databases that dif-
fer from the Bell-LaPadula Model.

Gambel [344] discusses efforts to apply a confidentiality policy similar to
Bell-LaPadula to a system developed from off-the-shelf components, none of which
implemented the policy precisely.

Irvine and Volpano [461] cast multilevel security in terms of a type subsystem
for a polymorphic programming language.

5.5 Exercises

1. Why is it meaningless to have compartments at the UNCLASSIFIED level
(such as (UNCLASSIFIED, { NUC }) and (UNCLASSIFIED, { EUR }))?

2. Given the security levels TOP SECRET, SECRET, CONFIDENTIAL, and
UNCLASSIFIED (ordered from highest to lowest), and the categories A,
B, and C, specify what type of access (read, write, both, or neither) is
allowed in each of the following situations. Assume that discretionary
access controls allow anyone access unless otherwise specified.

a. Paul, cleared for (TOP SECRET, { A, C }), wants to access a
document classified (SECRET, { B, C }).

b. Anna, cleared for (CONFIDENTIAL, { C }), wants to access a
document classified (CONFIDENTIAL, { B }).

c. Jesse, cleared for (SECRET, { C }), wants to access a document
classified (CONFIDENTIAL, { C }).

d. Sammi, cleared for (TOP SECRET, { A, C }), wants to access a
document classified (CONFIDENTIAL, { A }).

e. Robin, who has no clearances (and so works at the UNCLASSIFIED
level), wants to access a document classified (CONFIDENTIAL,
{ B }).

3. Prove that any file in the DG/UX system with a link count greater than 1
must have an explicit MAC label.

4. In the DG/UX system, why is the virus prevention region below the user region?

Bishop.book Page 71 Tuesday, September 28, 2004 1:46 PM

72 Chapter 5 Confidentiality Policies

5. In the DG/UX system, why is the administrative region above the user region?
6. Declassification effectively violates the *-property of the Bell-LaPadula

Model. Would raising the classification of an object violate any properties
of the model? Why or why not?

Bishop.book Page 72 Tuesday, September 28, 2004 1:46 PM

73

Chapter 6
Integrity Policies

ISABELLA: Some one with child by him? My cousin Juliet?
LUCIO: Is she your cousin?

ISABELLA: Adoptedly; as school-maids change their names
By vain, though apt affection.

—Measure for Measure, I, iv, 45–48.

An inventory control system may function correctly if the data it manages is
released; but it cannot function correctly if the data can be randomly changed. So
integrity, rather than confidentiality, is key. Integrity policies focus on integrity rather
than confidentiality, because most commercial and industrial firms are more con-
cerned with accuracy than disclosure. In this chapter we discuss the major integrity
security policies and explore their design.

6.1 Goals

Commercial requirements differ from military requirements in their emphasis on
preserving data integrity. Lipner [571] identifies five requirements:

1. Users will not write their own programs, but will use existing production
programs and databases.

2. Programmers will develop and test programs on a nonproduction system;
if they need access to actual data, they will be given production data via a
special process, but will use it on their development system.

3. A special process must be followed to install a program from the
development system onto the production system.

4. The special process in requirement 3 must be controlled and audited.
5. The managers and auditors must have access to both the system state and

the system logs that are generated.

These requirements suggest several principles of operation.

Bishop.book Page 73 Tuesday, September 28, 2004 1:46 PM

74 Chapter 6 Integrity Policies

First comes separation of duty. The principle of separation of duty states
that if two or more steps are required to perform a critical function, at least two
different people should perform the steps. Moving a program from the develop-
ment system to the production system is an example of a critical function. Sup-
pose one of the application programmers made an invalid assumption while
developing the program. Part of the installation procedure is for the installer to
certify that the program works “correctly,” that is, as required. The error is more
likely to be caught if the installer is a different person (or set of people) than the
developer. Similarly, if the developer wishes to subvert the production data with
a corrupt program, the certifier either must not detect the code to do the corrup-
tion, or must be in league with the developer.

Next comes separation of function. Developers do not develop new pro-
grams on production systems because of the potential threat to production data.
Similarly, the developers do not process production data on the development sys-
tems. Depending on the sensitivity of the data, the developers and testers may
receive sanitized production data. Further, the development environment must be
as similar as possible to the actual production environment.

Last comes auditing. Commercial systems emphasize recovery and
accountability. Auditing is the process of analyzing systems to determine what
actions took place and who performed them. Hence, commercial systems must
allow extensive auditing and thus have extensive logging (the basis for most
auditing). Logging and auditing are especially important when programs move
from the development system to the production system, since the integrity mech-
anisms typically do not constrain the certifier. Auditing is, in many senses, exter-
nal to the model.

Even when disclosure is at issue, the needs of a commercial environment
differ from those of a military environment. In a military environment, clearance
to access specific categories and security levels brings the ability to access infor-
mation in those compartments. Commercial firms rarely grant access on the basis
of “clearance”; if a particular individual needs to know specific information, he
or she will be given it. While this can be modeled using the Bell-LaPadula
Model, it requires a large number of categories and security levels, increasing the
complexity of the modeling. More difficult is the issue of controlling this prolif-
eration of categories and security levels. In a military environment, creation of
security levels and categories is centralized. In commercial firms, this creation
would usually be decentralized. The former allows tight control on the number of
compartments, whereas the latter allows no such control.

More insidious is the problem of information aggregation. Commercial
firms usually allow a limited amount of (innocuous) information to become pub-
lic, but keep a large amount of (sensitive) information confidential. By aggregat-
ing the innocuous information, one can often deduce much sensitive information.
Preventing this requires the model to track what questions have been asked, and
this complicates the model enormously. Certainly the Bell-LaPadula Model lacks
this ability.

Bishop.book Page 74 Tuesday, September 28, 2004 1:46 PM

6.2 Biba Integrity Model 75

6.2 Biba Integrity Model

In 1977, Biba [88] studied the nature of the integrity of systems. In his model, a
system consists of a set S of subjects, a set O of objects, and a set I of integrity
levels.1 The levels are ordered. The relation ≤ ⊆ I × I holds when the second
integrity level either dominates or is the same as the first. The function i:S ∪
O→I returns the integrity level of an object or a subject.

Some comments on the meaning of “integrity level” will provide intuition
behind the constructions to follow. The higher the level, the more confidence one
has that a program will execute correctly (or detect problems with its inputs and
stop executing). Data at a higher level is more accurate and/or reliable (with
respect to some metric) than data at a lower level. Again, this model implicitly
incorporates the notion of “trust”; in fact, the term “trustworthiness” is used as a
measure of integrity level. For example, a process at a level higher than that of an
object is considered more “trustworthy” than that object.

Integrity labels, in general, are not also security labels. They are assigned
and maintained separately, because the reasons behind the labels are different.
Security labels primarily limit the flow of information; integrity labels primarily
inhibit the modification of information. They may overlap, however, with sur-
prising results (see Exercise 1).

Biba’s model is the dual of the Bell-LaPadula Model. Its rules are as follows.

1. s ∈ S can read o ∈ O if and only if i(s) ≤ i(o).
2. s ∈ S can write to o ∈ O if and only if i(o) ≤ i(s).
3. s1 ∈ S can execute s2 ∈ S if and only if i(s2) ≤ i(s1).

Note that rules 1 and 2 imply that if both read and write are allowed, i(s) = i(o). Also,
by replacing the notion of “integrity level” with “integrity compartments,” and add-
ing the notion of discretionary controls, one obtains the full dual of Bell-LaPadula.

EXAMPLE: Pozzo and Gray [730, 731] implemented Biba’s strict integrity model on
the distributed operating system LOCUS [724]. Their goal was to limit execution
domains for each program to prevent untrusted software from altering data or other
software. Their approach was to make the level of trust in software and data explicit.
They have different classes of executable programs. Their credibility ratings (Biba’s
integrity levels) assign a measure of trustworthiness on a scale from 0 (untrusted) to
n (highly trusted), depending on the source of the software. Trusted file systems con-
tain only executable files with the same credibility level. Associated with each user
(process) is a risk level that starts out set to the highest credibility level at which that
user can execute. Users may execute programs with credibility levels at least as great

1 The original model did not include categories and compartments. The changes required to add
them are straightforward.

Bishop.book Page 75 Tuesday, September 28, 2004 1:46 PM

76 Chapter 6 Integrity Policies

as the user’s risk level. To execute programs at a lower credibility level, a user must
use the run-untrusted command. This acknowledges the risk that the user is taking.

6.3 Clark-Wilson Integrity Model

In 1987, David Clark and David Wilson developed an integrity model [177] radically
different from previous models. This model uses transactions as the basic operation,
which models many commercial systems more realistically than previous models.

One main concern of a commercial environment, as discussed above, is the
integrity of the data in the system and of the actions performed on that data. The data
is said to be in a consistent state (or consistent) if it satisfies given properties. For
example, let D be the amount of money deposited so far today, W the amount of
money withdrawn so far today, YB the amount of money in all accounts at the end of
yesterday, and TB the amount of money in all accounts so far today. Then the consis-
tency property is

D + YB – W = TB

Before and after each action, the consistency conditions must hold. A well-formed
transaction is a series of operations that transition the system from one consistent
state to another consistent state. For example, if a depositor transfers money from
one account to another, the transaction is the transfer; two operations, the deduction
from the first account and the addition to the second account, make up this transac-
tion. Each operation may leave the data in an inconsistent state, but the well-formed
transaction must preserve consistency.

The second feature of a commercial environment relevant to an integrity pol-
icy is the integrity of the transactions themselves. Who examines and certifies that
the transactions are performed correctly? For example, when a company receives an
invoice, the purchasing office requires several steps to pay for it. First, someone must
have requested a service, and determined the account that would pay for the service.
Next, someone must validate the invoice (was the service being billed for actually
performed?). The account authorized to pay for the service must be debited, and the
check must be written and signed. If one person performs all these steps, that person
could easily pay phony invoices; however, if at least two different people perform
these steps, both must conspire to defraud the company. Requiring more than one
person to handle this process is an example of the principle of separation of duty.

Computer-based transactions are no different. Someone must certify that the
transactions are implemented correctly. The principle of separation of duty requires
that the certifier and the implementors be different people. In order for the transac-
tion to corrupt the data (either by illicitly changing the data or by leaving the data in
an inconsistent state), two different people must either make similar mistakes or col-
lude to certify the well-formed transaction as correct.

Bishop.book Page 76 Tuesday, September 28, 2004 1:46 PM

6.3 Clark-Wilson Integrity Model 77

6.3.1 The Model

The Clark-Wilson model defines data subject to its integrity controls as constrained
data items, or CDIs. Data not subject to the integrity controls are called uncon-
strained data items, or UDIs. For example, in a bank, the balances of accounts are
CDIs since their integrity is crucial to the operation of the bank, whereas the gifts
selected by the account holders when their accounts were opened would be UDIs,
because their integrity is not crucial to the operation of the bank. The set of CDIs and
the set of UDIs partition the set of all data in the system being modeled.

A set of integrity constraints (similar in spirit to the consistency constraints
discussed above) constrain the values of the CDIs. In the bank example, the consis-
tency constraint presented earlier would also be an integrity constraint.

The model also defines two sets of procedures. Integrity verification proce-
dures, or IVPs, test that the CDIs conform to the integrity constraints at the time the
IVPs are run. In this case, the system is said to be in a valid state. Transformation
procedures, or TPs, change the state of the data in the system from one valid state to
another; TPs implement well-formed transactions.

Return to the example of bank accounts. The balances in the accounts are
CDIs; checking that the accounts are balanced, as described above, is an IVP. Depos-
iting money, withdrawing money, and transferring money between accounts are TPs.
To ensure that the accounts are managed correctly, a bank examiner must certify that
the bank is using proper procedures to check that the accounts are balanced, to
deposit money, to withdraw money, and to transfer money. Furthermore, those proce-
dures may apply only to deposit and checking accounts; they might not apply to
other types of accounts—for example, to petty cash. The Clark-Wilson model cap-
tures these requirements in two certification rules:

Certification rule 1 (CR1): When any IVP is run, it must ensure that all CDIs are in
a valid state.

Certification rule 2 (CR2): For some associated set of CDIs, a TP must transform
those CDIs in a valid state into a (possibly different) valid state.

CR2 defines as certified a relation that associates a set of CDIs with a particu-
lar TP. Let C be the certified relation. Then, in the bank example,

(balance, account1), (balance, account2), …, (balance, accountn) ∈ C.

CR2 implies that a TP may corrupt a CDI if it is not certified to work on that CDI.
For example, the TP that invests money in the bank’s stock portfolio would corrupt
account balances even if the TP were certified to work on the portfolio, because the
actions of the TP make no sense on the bank accounts. Hence, the system must pre-
vent TPs from operating on CDIs for which they have not been certified. This leads
to the following enforcement rule:

Bishop.book Page 77 Tuesday, September 28, 2004 1:46 PM

78 Chapter 6 Integrity Policies

Enforcement rule 1 (ER1): The system must maintain the certified relations, and
must ensure that only TPs certified to run on a CDI manipulate that CDI.

Specifically, ER1 says that if a TP f operates on a CDI o, then (f, o) ∈ C. How-
ever, in a bank, a janitor is not allowed to balance customer accounts. This restriction
implies that the model must account for the person performing the TP, or user. The
Clark-Wilson model uses an enforcement rule for this:

Enforcement rule 2 (ER2): The system must associate a user with each TP and set
of CDIs. The TP may access those CDIs on behalf of the associated user. If the user
is not associated with a particular TP and CDI, then the TP cannot access that CDI on
behalf of that user.

This defines a set of triples (user, TP, { CDI set }) to capture the association of
users, TPs, and CDIs. Call this relation allowed A. Of course, these relations must be
certified:

Certification rule 3 (CR3): The allowed relations must meet the requirements
imposed by the principle of separation of duty.

Because the model represents users, it must ensure that the identification of a
user with the system’s corresponding user identification code is correct. This suggests:

Enforcement rule 3 (ER3): The system must authenticate each user attempting to
execute a TP.

An interesting observation is that the model does not require authentication
when a user logs into the system, because the user may manipulate only UDIs. But if
the user tries to manipulate a CDI, the user can do so only through a TP; this requires
the user to be certified as allowed (per ER2), which requires authentication of the
user (per ER3).

Most transaction-based systems log each transaction so that an auditor can
review the transactions. The Clark-Wilson model considers the log simply as a CDI,
and every TP appends to the log; no TP can overwrite the log. This leads to:

Certification rule 4 (CR4): All TPs must append enough information to reconstruct
the operation to an append-only CDI.

When information enters a system, it need not be trusted or constrained. For
example, when one deposits money into an automated teller machine (ATM), one
need not enter the correct amount. However, when the ATM is opened and the cash
or checks counted, the bank personnel will detect the discrepancy and fix it before
they enter the deposit amount into one’s account. This is an example of a UDI (the
stated deposit amount) being checked, fixed if necessary, and certified as correct

Bishop.book Page 78 Tuesday, September 28, 2004 1:46 PM

6.3 Clark-Wilson Integrity Model 79

before being transformed into a CDI (the deposit amount added to one’s account).
The Clark-Wilson model covers this situation with certification rule 5:

Certification rule 5 (CR5): Any TP that takes as input a UDI may perform only
valid transformations, or no transformations, for all possible values of the UDI. The
transformation either rejects the UDI or transforms it into a CDI.

The final rule enforces the separation of duty needed to maintain the integrity
of the relations in rules ER2 and ER3. If a user could create a TP and associate some
set of entities and herself with that TP (as in ER3), she could have the TP perform
unauthorized acts that violated integrity constraints. The final enforcement rule pre-
vents this:

Enforcement rule 4 (ER4): Only the certifier of a TP may change the list of entities
associated with that TP. No certifier of a TP, or of an entity associated with that TP,
may ever have execute permission with respect to that entity.

This rule requires that all possible values of the UDI be known, and that the
TP be implemented so as to be able to handle them. This issue arises again in both
vulnerabilities analysis and secure programming.

This model contributed two new ideas to integrity models. First, it captured
the way most commercial firms work with data. The firms do not classify data using
a multilevel scheme, and they enforce separation of duty. Second, the notion of certi-
fication is distinct from the notion of enforcement, and each has its own set of rules.
Assuming correct design and implementation, a system with a policy following the
Clark-Wilson model will ensure that the enforcement rules are obeyed. But the certi-
fication rules require outside intervention, and the process of certification is typically
complex and prone to error or to incompleteness (because the certifiers make
assumptions about what can be trusted). This is a weakness in some sense, but it
makes explicit assumptions that other models do not.

6.3.2 Comparison with the Requirements

We now consider whether the Clark-Wilson model meets the five requirements in
Section 6.1. We assume that production programs correspond to TPs and that pro-
duction data (and databases) are CDIs.

Requirement 1. If users are not allowed to perform certifications of TPs, but
instead only “trusted personnel” are, then CR5 and ER4 enforce
this requirement. Because ordinary users cannot create certified
TPs, they cannot write programs to access production databases.
They must use existing TPs and CDIs—that is, production
programs and production databases.

Bishop.book Page 79 Tuesday, September 28, 2004 1:46 PM

80 Chapter 6 Integrity Policies

Requirement 2. This requirement is largely procedural, because no set of technical
controls can prevent a programmer from developing and testing
programs on production systems. (The standard procedural
control is to omit interpreters and compilers from production
systems.) However, the notion of providing production data via
a special process corresponds to using a TP to sanitize, or
simply provide, production data to a test system.

Requirement 3. Installing a program from a development system onto a
production system requires a TP to do the installation and
“trusted personnel” to do the certification.

Requirement 4. CR4 provides the auditing (logging) of program installation.
ER3 authenticates the “trusted personnel” doing the installation.
CR5 and ER4 control the installation procedure (the new
program being a UDI before certification and a CDI, as well as a
TP in the context of other rules, after certification).

Requirement 5. Finally, because the log is simply a CDI, management and
auditors can have access to the system logs through appropriate
TPs. Similarly, they also have access to the system state.

Thus, the Clark-Wilson model meets Lipner’s requirements.

6.3.3 Comparison with Other Models

The contributions of the Clark-Wilson model are many. We compare it with the Biba
model to highlight these new features.

Recall that the Biba model attaches integrity levels to objects and subjects. In
the broadest sense, so does the Clark-Wilson model, but unlike the Biba model, each
object has two levels: constrained or high (the CDIs) and unconstrained or low (the
UDIs). Similarly, subjects have two levels: certified (the TPs) and uncertified (all
other procedures). Given this similarity, can the Clark-Wilson model be expressed
fully using the Biba model?

The critical distinction between the two models lies in the certification rules.
The Biba model has none; it asserts that “trusted” subjects exist to ensure that the
actions of a system obey the rules of the model. No mechanism or procedure is pro-
vided to verify the trusted entities or their actions. But the Clark-Wilson model pro-
vides explicit requirements that entities and actions must meet; in other words, the
method of upgrading an entity is itself a TP that a security officer has certified. This
underlies the assumptions being made and allows for the upgrading of entities within
the constructs of the model (see ER4 and CR5). As with the Bell-LaPadula Model, if
the Biba model does not have tranquility, trusted entities must change the objects’
integrity levels, and the method of upgrading need not be certified.

Handling changes in integrity levels is critical in systems that receive input from
uncontrolled sources. For example, the Biba model requires that a trusted entity, such

Bishop.book Page 80 Tuesday, September 28, 2004 1:46 PM

6.5 Further Reading 81

as a security officer, pass on every input sent to a process running at an integrity level
higher than that of the input. This is not practical. However, the Clark-Wilson model
requires that a trusted entity (again, perhaps a security officer) certify the method of
upgrading data to a higher integrity level. Thus, the trusted entity would not certify
each data item being upgraded; it would only need to certify the method for upgrading
data, and the data items could be upgraded. This is quite practical.

Can the Clark-Wilson model emulate the Biba model? The relations described
in ER2 capture the ability of subjects to act on objects. By choosing TPs appropri-
ately, the emulation succeeds (although the certification rules constrain trusted sub-
jects in the emulation, whereas the Biba model imposes no such constraints). The
details of the construction are left as an exercise for the reader (see Exercise 6).

6.4 Summary

Integrity models are gaining in variety and popularity. The problems they address
arise from industries in which environments vary wildly. They take into account con-
cepts (such as separation of privilege) from beyond the scope of confidentiality secu-
rity policies. This area will continue to increase in importance as more and more
commercial firms develop models or policies to help them protect their data.

6.5 Further Reading

Nash and Poland discuss realistic situations in which mechanisms are unable to
enforce the principle of separation of duty [661]. Other studies of this principle
include its use in role-based access control [537, 835], databases [697], and multi-
level security [328]. Notargiacomo, Blaustein, and McCollum [696] present a gener-
alization of Clark-Wilson suitable for trusted database management systems that
includes dynamic separation of duty. Polk describes an implementation of Clark-
Wilson under the UNIX operating system [722].

Integrity requirements arise in many contexts. Saltman [771] provides an infor-
mative survey of the requirements for secure electronic voting. Chaum’s classic paper
on electronic payment [165] raises issues of confidentiality and shows that integrity
and anonymity can coexist. Integrity in databases is crucial to their correctness [42,
304, 374]. The analysis of trust in software is also an issue of integrity [22, 650].

Chalmers compares commercial policies with governmental ones [157]. Lee
[554] discusses an alternative to Lipner’s use of mandatory access controls for imple-
menting commercial policies.

Bishop.book Page 81 Tuesday, September 28, 2004 1:46 PM

82 Chapter 6 Integrity Policies

6.6 Exercises

1. Suppose a system implementing Biba’s model used the same labels for
integrity levels and categories as for security levels and categories. Under
what conditions could one subject read an object? Write to an object?

2. In Pozzo and Gray’s modification of LOCUS, what would be the effect of
omitting the run-untrusted command? Do you think this enhances or
degrades security?

3. In the Clark-Wilson model, must the TPs be executed serially, or can they
be executed in parallel? If the former, why; if the latter, what constraints
must be placed on their execution?

4. Prove that applying a sequence of transformation procedures to a system
in a valid state results in the system being in a (possibly different) valid
state.

5. The relations certified (see ER1) and allowed (see ER2) can be collapsed
into a single relation. Please do so and state the new relation. Why doesn’t
the Clark-Wilson model do this?

6. Show that the enforcement rules of the Clark-Wilson model can emulate
the Biba model.

Bishop.book Page 82 Tuesday, September 28, 2004 1:46 PM

83

Chapter 7
Hybrid Policies

JULIET : Come, vial.
What if this mixture do not work at all?

Shall I be marry’d then tomorrow morning?
No, no! this shall forbid it, lie thou there.

—The Tragedy of Romeo and Juliet, IV, iii, 20–22.

Few organizations limit their security objectives to confidentiality or integrity only;
most desire both, in some mixture. This chapter presents two such models. The Chi-
nese Wall model is derived from the British laws concerning conflict of interest. The
Clinical Information Systems security model is derived from medical ethics and laws
about dissemination of patient data. Two other models present alternative views of
information management. Originator controlled access control lets the creator deter-
mine (or assign) who should access the data and how. Role-based access control for-
malizes the more common notion of “groups” of users.

7.1 Chinese Wall Model

The Chinese Wall model [133] is a model of a security policy that refers equally to
confidentiality and integrity. It describes policies that involve a conflict of interest in
business, and is as important to those situations as the Bell-LaPadula Model is to the
military. For example, British law requires the use of a policy similar to this, and cor-
rect implementation of portions of the model provides a defense in cases involving
certain criminal charges [586, 587]. The environment of a stock exchange or invest-
ment house is the most natural environment for this model. In this context, the goal
of the model is to prevent a conflict of interest in which a trader represents two cli-
ents, and the best interests of the clients conflict, so the trader could help one gain at
the expense of the other.

Consider the database of an investment house. It consists of companies’
records about investment and other data that investors are likely to request. Analysts
use these records to guide the companies’ investments, as well as those of individu-

Bishop.book Page 83 Tuesday, September 28, 2004 1:46 PM

84 Chapter 7 Hybrid Policies

als. Suppose Anthony counsels Bank of America in its investments. If he also coun-
sels Citibank, he has a potential conflict of interest, because the two banks’
investments may come into conflict. Hence, Anthony cannot counsel both banks.

The following definitions capture this:

Definition 7–1. The objects of the database are items of information related
to a company.

Definition 7–2. A company dataset (CD) contains objects related to a single
company.

Definition 7–3. A conflict of interest (COI) class contains the datasets of
companies in competition.

Let COI(O) represent the COI class that contains object O, and let CD(O) be
the company dataset that contains object O. The model assumes that each object
belongs to exactly one COI class.

Anthony has access to the objects in the CD of Bank of America. Because the
CD of Citibank is in the same COI class as that of Bank of America, Anthony cannot
gain access to the objects in Citibank’s CD. Thus, this structure of the database pro-
vides the required ability. (See Figure 7–1.)

This implies a temporal element. Suppose Anthony first worked on Bank of
America’s portfolio and was then transferred to Citibank’s portfolio. Even though he is
working only on one CD in the bank COI class at a time, much of the information he
learned from Bank of America’s portfolio will be current. Hence, he can guide

Bank of America

Citibank Bank of the West

Bank COI Class

Shell Oil

Union ’76

Standard Oil

ARCO

Gasoline Company COI Class

Figure 7–1 The Chinese Wall model database. It has two COI classes. The one
for banks contains three CDs. The other one, for gasoline companies, contains
four CDs. Each (COI, CD) pair is represented by a lowercase letter (for example,
(Bank COI, Citibank) is c). Susan may have access to no more than one CD
in each COI, so she could access Citibank’s CD and ARCO’s CD, but not
Citibank’s CD and Bank of America’s CD.

c b

a

u n

s e

Bishop.book Page 84 Tuesday, September 28, 2004 1:46 PM

7.1 Chinese Wall Model 85

Citibank’s investments using information about Bank of America—a conflict of inter-
est. This leads to the following rule, where PR(S) is the set of objects that S has read.

• CW-Simple Security Condition, Preliminary Version: S can read O if and
only if either of the following is true.

1. There is an object O´ such that S has accessed O´ and CD(O´) =
CD(O).

2. For all objects O´, O´ ∈ PR(S) ⇒ COI(O´) ≠ COI(O).

Initially, PR(S) = ∅, and the initial read request is assumed to be granted. Given
these assumptions, in the situation above, Bank of America’s COI class and
Citibank’s COI class are the same, so the second part of the CW-simple security con-
dition applies, and Anthony cannot access an object in the former, having already
accessed an object in the latter.

Two immediate consequences of this rule affect subject rights. First, once a
subject reads any object in a COI class, the only other objects in that COI class that
the subject can read are in the same CD as the read object. So, if Susan accesses
some information in Citibank’s CD, she cannot later access information in Bank of
America’s CD.

Second, the minimum number of subjects needed to access every object in a
COI class is the same as the number of CDs in that COI class. If the gasoline com-
pany COI class has four CDs, then at least four analysts are needed to access all
information in the COI class. Thus, any trading house must have at least four ana-
lysts to access all information in that COI class without creating a conflict of interest.

In practice, companies have information they can release publicly, such as
annual stockholders’ reports and filings before government commissions. The Chi-
nese Wall model should not consider this information restricted, because it is avail-
able to all. Hence, the model distinguishes between sanitized data and unsanitized
data; the latter falls under the CW-simple security condition, preliminary version,
whereas the former does not. The CW-simple security condition can be reformulated
to include this notion.

• CW-Simple Security Condition: S can read O if and only if any of the
following holds.

1. There is an object O´ such that S has accessed O´ and CD(O´) =
CD(O).

2. For all objects O´, O´ ∈ PR(S) ⇒ COI(O´) ≠ COI(O).
3. O is a sanitized object.

Suppose Anthony and Susan work in the same trading house. Anthony can read
objects in Bank of America’s CD, and Susan can read objects in Citibank’s CD. Both
can read objects in ARCO’s CD. If Anthony can also write to objects in ARCO’s CD,
then he can read information from objects in Bank of America’s CD and write to objects
in ARCO’s CD, and then Susan can read that information; so, Susan can indirectly

Bishop.book Page 85 Tuesday, September 28, 2004 1:46 PM

86 Chapter 7 Hybrid Policies

obtain information from Bank of America’s CD, causing a conflict of interest. The
CW-simple security condition must be augmented to prevent this.

• CW-*-Property: A subject S may write to an object O if and only if both of
the following conditions hold.

1. The CW-simple security condition permits S to read O.
2. For all unsanitized objects O´, S can read O´ ⇒ CD(O´) = CD(O).

In the example above, Anthony can read objects in both Bank of America’s CD and
ARCO’s CD. Thus, condition 1 is met. However, assuming that Bank of America’s
CD contains unsanitized objects (a reasonable assumption), then because Anthony
can read those objects, condition 2 is false. Hence, Anthony cannot write to objects
in ARCO’s CD.

7.1.1 Bell-LaPadula and Chinese Wall Models

The Bell-LaPadula Model and the Chinese Wall model are fundamentally different.
Subjects in the Chinese Wall model have no associated security labels, whereas sub-
jects in the Bell-LaPadula Model do have such labels. Furthermore, the Bell-LaPadula
Model has no notion of “past accesses,” but this notion is central to the Chinese Wall
model’s controls.

To emulate the Chinese Wall model using Bell-LaPadula, we assign a security
category to each (COI, CD) pair. We define two security levels, S (for sanitized) and
U (for unsanitized). By assumption, S dom U. Figure 7–2 illustrates this mapping for
the system in Figure 7–1. Each object is transformed into two objects, one sanitized
and one unsanitized.

Each subject in the Chinese Wall model is then assigned clearance for the
compartments that do not contain multiple categories corresponding to CDs in the
same COI class. For example, if Susan can read the Bank of America and ARCO
CDs, her processes would have clearance for compartment (U, {a, n}). There are
three possible clearances from the bank COI class, and four possible clearances from
the gasoline company COI class, combining to give 12 possible clearances for sub-
jects. Of course, all subjects can read all sanitized data.

The CW-simple security condition clearly holds. The CW-*-property also
holds, because the Bell-LaPadula *-property ensures that the category of input
objects is a subset of the category of output objects. Hence, input objects are either
sanitized or in the same category (that is, the same CD) as that of the subject.

This construction shows that at any time the Bell-LaPadula Model can capture
the state of a system using the Chinese Wall model. But the Bell-LaPadula Model
cannot capture changes over time. For example, suppose Susan falls ill, and Anna
needs to access one of the datasets to which Susan has access. How can the system
know if Anna is allowed to access that dataset? The Chinese Wall model tracks the
history of accesses, from which Anna’s ability to access the CD can be determined.

Bishop.book Page 86 Tuesday, September 28, 2004 1:46 PM

7.1 Chinese Wall Model 87

But if the corresponding category is not in Anna’s clearances, the Bell-LaPadula
Model does not retain the history needed to determine whether her accessing the cat-
egory would violate the Chinese Wall constraints.

A second, more serious problem arises when one considers that subjects in the
Chinese Wall model may choose which CDs to access; in other words, initially a sub-
ject is free to access all objects. The Chinese Wall model’s constraints grow as the
subject accesses more objects. However, from the initial state, the Bell-LaPadula
Model constrains the set of objects that a subject can access. This set cannot change
unless a trusted authority (such as a system security officer) changes subject clear-
ances or object classifications. The obvious solution is to clear all subjects for all
categories, but this means that any subject can read any object, which violates the
CW-simple security condition.

Hence, the Bell-LaPadula Model cannot emulate the Chinese Wall model
faithfully. This demonstrates that the two policies are distinct.

However, the Chinese Wall model can emulate the Bell-LaPadula Model; the
construction is left as an exercise for the reader. (See Exercise 1.)

7.1.2 Clark-Wilson and Chinese Wall Models

The Clark-Wilson model deals with many aspects of integrity, such as validation and
verification, as well as access control. Because the Chinese Wall model deals exclu-
sively with access control, it cannot emulate the Clark-Wilson model fully. So, con-
sider only the access control aspects of the Clark-Wilson model.

(U,{a}) (U,{b}) (U,{c}) (U,{s}) (U,{e}) (U,{u}) (U,{n})

(S,{a}) (S,{b}) (S,{c}) (S,{s}) (S,{e}) (S,{u}) (S,{n})

(U,{c, s}) (U,{a, u})(U,{a, s}) (U,{b, e})
(U,{b, n})

(U,{c, u})

(U,{b, s}) (U,{a, e}) (U,{c, e}) (U,{b, u}) (U,{a, n})(U,{c, n})

Figure 7–2 The relevant parts of the Bell-LaPadula lattice induced by the
transformation applied to the system in Figure 7–1. For example, a subject with
security clearance in class (U, {a,s}) can read objects with labels (U, {a}) and
(U, {s}). The Bell-LaPadula Model defines other compartments (such as U,
{a, b}), but because these would allow access to different CDs in the same COI
class, the Chinese Wall model requires that compartment to be empty.

Bishop.book Page 87 Tuesday, September 28, 2004 1:46 PM

88 Chapter 7 Hybrid Policies

The representation of access control in the Clark-Wilson model is the second
enforcement rule, ER2. That rule associates users with transformation procedures
and CDIs on which they can operate. If one takes the usual view that “subject” and
“process” are interchangeable, then a single person could use multiple processes to
access objects in multiple CDs in the same COI class. Because the Chinese Wall
model would view processes independently of who was executing them, no con-
straints would be violated. However, by requiring that a “subject” be a specific indi-
vidual and including all processes executing on that subject’s behalf, the Chinese
Wall model is consistent with the Clark-Wilson model.

7.2 Clinical Information Systems Security Policy

Medical records require policies that combine confidentiality and integrity, but in a very
different way than for brokerage firms. Conflict of interest is not a critical problem.
Patient confidentiality, authentication of both records and the personnel making entries
in those records, and assurance that the records have not been changed erroneously are
critical. Anderson [29] presents a model for such policies that illuminates the combi-
nation of confidentiality and integrity to protect patient privacy and record integrity.

Anderson defines three types of entities in the policy.

Definition 7–4. A patient is the subject of medical records, or an agent for
that person who can give consent for the person to be treated.

Definition 7–5. Personal health information is information about a patient’s
health or treatment enabling that patient to be identified.

In more common parlance, the “personal health information” is contained in a
medical record. We will refer to “medical records” throughout, under the assumption
that all personal health information is kept in the medical records.

Definition 7–6. A clinician is a health-care professional who has access to
personal health information while performing his or her job.

The policy also assumes that personal health information concerns one individ-
ual at a time. Strictly speaking, this is not true. For example, obstetrics/gynecology
records contain information about both the father and the mother. In these cases,
special rules come into play, and the policy does not cover them.

The policy is guided by principles similar to the certification and enforcement
rules of the Clark-Wilson model. These principles are derived from the medical ethics
of several medical societies, and from the experience and advice of practicing clinicians.1

1 The principles are numbered differently in Anderson’s paper.

Bishop.book Page 88 Tuesday, September 28, 2004 1:46 PM

7.2 Clinical Information Systems Security Policy 89

The first set of principles deals with access to the medical records themselves.
It requires a list of those who can read the records, and a list of those who can append
to the records. Auditors are given access to copies of the records, so the auditors can-
not alter the original records in any way. Clinicians by whom the patient has con-
sented to be treated can also read and append to the medical records. Because
clinicians often work in medical groups, consent may apply to a set of clinicians. The
notion of groups abstracts this set well. Thus:

Access Principle 1: Each medical record has an access control list naming the indi-
viduals or groups who may read and append information to the record. The system
must restrict access to those identified on the access control list.

Medical ethics require that only clinicians and the patient have access to the
patient’s medical record. Hence:

Access Principle 2: One of the clinicians on the access control list (called the respon-
sible clinician) must have the right to add other clinicians to the access control list.

Because the patient must consent to treatment, the patient has the right to
know when his or her medical record is accessed or altered. Furthermore, if a clini-
cian who is unfamiliar to the patient accesses the record, the patient should be noti-
fied of the leakage of information. This leads to another access principle:

Access Principle 3: The responsible clinician must notify the patient of the names
on the access control list whenever the patient’s medical record is opened. Except for
situations given in statutes, or in cases of emergency, the responsible clinician must
obtain the patient’s consent.

Erroneous information should be corrected, not deleted, to facilitate auditing
of the records. Auditing also requires that all accesses be recorded, along with the
date and time of each access and the name of each person accessing the record.

Access Principle 4: The name of the clinician, the date, and the time of the access of
a medical record must be recorded. Similar information must be kept for deletions.

The next set of principles concern record creation and information deletion.
When a new medical record is created, the clinician creating the record should have
access, as should the patient. Typically, the record is created as a result of a referral.
The referring clinician needs access to obtain the results of the referral, and so is
included on the new record’s access control list.

Creation Principle: A clinician may open a record, with the clinician and the patient
on the access control list. If the record is opened as a result of a referral, the referring
clinician may also be on the access control list.

How long the medical records are kept varies with the circumstances. Nor-
mally, medical records can be discarded after 8 years, but in some cases—notably
cancer cases—the records are kept longer.

Bishop.book Page 89 Tuesday, September 28, 2004 1:46 PM

90 Chapter 7 Hybrid Policies

Deletion Principle: Clinical information cannot be deleted from a medical record
until the appropriate time has passed.

Containment protects information, so a control must ensure that data copied
from one record to another is not available to a new, wider audience. Thus, informa-
tion from a record can be given only to those on the record’s access control list.

Confinement Principle: Information from one medical record may be appended to a
different medical record if and only if the access control list of the second record is a
subset of the access control list of the first.

A clinician may have access to many records, possibly in the role of an advi-
sor to a medical insurance company or department. If this clinician were corrupt, or
could be corrupted or blackmailed, the secrecy of a large number of medical records
would be compromised. Patient notification of the addition limits this threat.

Aggregation Principle: Measures for preventing the aggregation of patient data
must be effective. In particular, a patient must be notified if anyone is to be added to
the access control list for the patients’s record and if that person has access to a large
number of medical records.

Finally, systems must implement mechanisms for enforcing these principles.

Enforcement Principle: Any computer system that handles medical records must
have a subsystem that enforces the preceding principles. The effectiveness of this
enforcement must be subject to evaluation by independent auditors.

7.2.1 Bell-LaPadula and Clark-Wilson Models

Anderson notes that the Confinement Principle imposes a lattice structure on the
entities in this model, much as the Bell-LaPadula Model imposes a lattice structure
on its entities. Hence, the Bell-LaPadula protection model is a subset of the Clinical
Information Systems security model. But the Bell-LaPadula Model focuses on the
subjects accessing the objects (because there are more subjects than security labels),
whereas the Clinical Information Systems model focuses on the objects being
accessed by the subjects (because there are more patients, and medical records, than
clinicians). This difference does not matter in traditional military applications, but it
might aid detection of “insiders” in specific fields such as intelligence.

The Clark-Wilson model provides a framework for the Clinical Information
Systems model. Take the CDIs to be the medical records and their associated access
control lists. The TPs are the functions that update the medical records and their
access control lists. The IVPs certify several items:

• A person identified as a clinician is a clinician (to the level of assurance
required by the system).

• A clinician validates, or has validated, information in the medical record.

Bishop.book Page 90 Tuesday, September 28, 2004 1:46 PM

7.3 Originator Controlled Access Control 91

• When someone (the patient and/or a clinician) is to be notified of an event,
such notification occurs.

• When someone (the patient and/or a clinician) must give consent, the
operation cannot proceed until the consent is obtained.

Finally, the requirement of auditing (certification rule CR4) is met by making all records
append-only, and notifiying the patient whenever the access control list changes.

7.3 Originator Controlled Access Control

Mandatory and discretionary access controls (MACs and DACs) do not handle envi-
ronments in which the originators of documents retain control over them even after
those documents are disseminated. Graubert [375] developed a policy called ORG-
CON or ORCON (for “ORiginator CONtrolled”) in which a subject can give another
subject rights to an object only with the approval of the creator of that object.

EXAMPLE: The Secretary of Defense of the United States drafts a proposed policy
document and distributes it to her aides for comment. The aides are not allowed to
distribute the document any further without permission from the secretary. The sec-
retary controls dissemination; hence, the policy is ORCON. The trust in this policy is
that the aides will not release the document illicitly—that is, without the permission
of the secretary.

In practice, a single author does not control dissemination; instead, the organi-
zation on whose behalf the document was created does. Hence, objects will be
marked as ORCON on behalf of the relevant organization.

Suppose a subject s ∈ S marks an object o ∈ O as ORCON on behalf of orga-
nization X. Organization X allows o to be disclosed to subjects acting on behalf of a
second organization, Y, subject to the following restrictions.

a. The object o cannot be released to subjects acting on behalf of other
organizations without X’s permission.

b. Any copies of o must have the same restrictions placed on it.

Discretionary access controls are insufficient for this purpose, because the owner
of an object can set any permissions desired. Thus, X cannot enforce condition (b).

Mandatory access controls are theoretically sufficient for this purpose, but in
practice have a serious drawback. Associate a separate category C containing o, X,
and Y and nothing else. If a subject y ∈ Y wishes to read o, x ∈ X makes a copy o´ of
o. The copy o´ is in C, so unless z ∈ Z is also in category C, y cannot give z access to
o´. This demonstrates adequacy.

Bishop.book Page 91 Tuesday, September 28, 2004 1:46 PM

92 Chapter 7 Hybrid Policies

Suppose a member w of an organization W wants to provide access to a docu-
ment d to members of organization Y, but the document is not to be shared with mem-
bers of organization X or Z. So, d cannot be in category C because if it were,
members x ∈ X and z ∈ Z could access d. Another category containing d, W, and Y
must be created. Multiplying this by several thousand possible relationships and doc-
uments creates an unacceptably large number of categories.

A second problem with mandatory access controls arises from the abstraction.
Organizations that use categories grant access to individuals on a “need to know” basis.
There is a formal, written policy determining who needs the access based on common
characteristics and restrictions. These restrictions are applied at a very high level
(national, corporate, organizational, and so forth). This requires a central clearinghouse
for categories. The creation of categories to enforce ORCON implies local control of
categories rather than central control, and a set of rules dictating who has access to each
compartment.

ORCON abstracts none of this. ORCON is a decentralized system of access
control in which each originator determines who needs access to the data. No cen-
tralized set of rules controls access to data; access is at the complete discretion of the
originator. Hence, the MAC representation of ORCON is not suitable.

A solution is to combine features of the MAC and DAC models. The rules are

1. The owner of an object cannot change the access controls of the object.
2. When an object is copied, the access control restrictions of that source are

copied and bound to the target of the copy.
3. The creator (originator) can alter the access control restrictions on a per-

subject and per-object basis.

The first two rules are from mandatory access controls. They say that the system con-
trols all accesses, and no one may alter the rules governing access to those objects.
The third rule is discretionary and gives the originator power to determine who can
access the object. Hence, this hybrid scheme is neither MAC nor DAC.

The critical observation here is that the access controls associated with the
object are under the control of the originator and not the owner of the object. Posses-
sion equates to only some control. The owner of the object may determine to whom
he or she gives access, but only if the originator allows the access. The owner may
not override the originator.

7.4 Role-Based Access Control

The ability, or need, to access information may depend on one’s job functions.

EXAMPLE: Allison is the bookkeeper for the Department of Mathematics. She is
responsible for balancing the books and keeping track of all accounting for that

Bishop.book Page 92 Tuesday, September 28, 2004 1:46 PM

7.4 Role-Based Access Control 93

department. She has access to all departmental accounts. She moves to the univer-
sity’s Office of Admissions to become the head accountant (with a substantial raise).
Because she is no longer the bookkeeper for the Department of Mathematics, she no
longer has access to those accounts. When that department hires Sally as its new
bookkeeper, she will acquire full access to all those accounts. Access to the accounts
is a function of the job of bookkeeper, and is not tied to any particular individual.

This suggests associating access with the particular job of the user.

Definition 7–7. A role is a collection of job functions. Each role r is autho-
rized to perform one or more transactions (actions in support of a job func-
tion). The set of authorized transactions for r is written trans(r).

Definition 7–8. The active role of a subject s, written actr(s), is the role that s
is currently performing.

Definition 7–9. The authorized roles of a subject s, written authr(s), is the set
of roles that s is authorized to assume.

Definition 7–10. The predicate canexec(s, t) is true if and only if the subject s
can execute the transaction t at the current time.

Three rules reflect the ability of a subject to execute a transaction.

Axiom 7–1. Let S be the set of subjects and T the set of transactions. The rule
of role assignment is (∀s ∈ S)(∀t ∈ T)[canexec(s, t) → actr(s) ≠ ∅].

This axiom simply says that if a subject can execute any transaction, then that
subject has an active role. This binds the notion of execution of a transaction to the
role rather than to the user.

Axiom 7–2. Let S be the set of subjects. Then the rule of role authorization is
(∀s ∈ S)[actr(s) ⊆ authr(s)].

This rule means that the subject must be authorized to assume its active role.
It cannot assume an unauthorized role. Without this axiom, any subject could assume
any role, and hence execute any transaction.

Axiom 7–3. Let S be the set of subjects and T the set of transactions. The rule
of transaction authorization is (∀s ∈ S)(∀t ∈ T)[canexec(s, t) → t ∈
trans(actr(s))].

This rule says that a subject cannot execute a transaction for which its current
role is not authorized.

Bishop.book Page 93 Tuesday, September 28, 2004 1:46 PM

94 Chapter 7 Hybrid Policies

The forms of these axioms restrict the transactions that can be performed.
They do not ensure that the allowed transactions can be executed. This suggests that
role-based access control (RBAC) is a form of mandatory access control. The axioms
state rules that must be satisfied before a transaction can be executed. Discretionary
access control mechanisms may further restrict transactions.

EXAMPLE: Some roles subsume others. For example, a trainer can perform all
actions of a trainee, as well as others. One can view this as containment. This sug-
gests a hierarchy of roles, in this case the trainer role containing the trainee role. As
another example, many operations are common to a large number of roles. Instead of
specifying the operation once for each role, one specifies it for a role containing all
other roles. Granting access to a role R implies that access is granted for all roles
containing R. This simplifies the use of the RBAC model (and of its implementation).

If role ri contains role rj, we write ri > rj. Using our notation, the implications
of containment of roles may be expressed as

(∀s ∈ S)[ri ∈ authr(s) ∧ ri > rj → rj ∈ authr(s)]

EXAMPLE: RBAC can model the separation of duty rule. Our goal is to specify sep-
aration of duty centrally; then it can be imposed on roles through containment, as
discussed in the preceding example. The key is to recognize that the users in some
roles cannot enter other roles. That is, for two roles r1 and r2 bound by separation of
duty (so the same individual cannot assume both roles):

(∀s ∈ S) [r1 ∈ authr(s) → r2 ∉ authr(s)]

Capturing the notion of mutual exclusion requires a new predicate.

Definition 7–11. Let r be a role, and let s be a subject such that r ∈ authr(s).
Then the predicate meauth(r) (for mutually exclusive authorizations) is the set
of roles that s cannot assume because of the separation of duty requirement.

Putting this definition together with the above example, the principle of sepa-
ration of duty can be summarized as

(∀r1, r2 ∈ R) [r2 ∈ meauth(r1) → [(∀s ∈ S) [r1 ∈ authr(s) → r2 ∉ authr(s)]]]

7.5 Summary

The goal of this chapter was to show that policies typically combine features of both
integrity and confidentiality policies. The Chinese Wall model accurately captures
requirements of a particular business (brokering) under particular conditions (the

Bishop.book Page 94 Tuesday, September 28, 2004 1:46 PM

7.7 Exercises 95

British law). The Clinical Information Systems model does the same thing for medi-
cal records. Both models are grounded in current business and clinical practice.

ORCON and RBAC take a different approach, focusing on which entities will
access the data rather than on which entities should access the data. ORCON allows
the author (individual or corporate) to control access to the document; RBAC
restricts access to individuals performing specific functions. The latter approach can
be fruitfully applied to many of the models discussed earlier.

7.6 Further Reading

Meadows [616] discusses moving the Chinese Wall into a multilevel security context.
Lin [566] challenges an assumption of the model, leading to a different formulation.

Very little has been written about policy models that are useful for policies in
specific fields other than government. Anderson’s clinical model is an excellent
example of such a policy model, as is the Chinese Wall. Foley and Jacob discuss
computer-supported collaborative working confidentiality policies in the guise of
specification [329]. Wiemer and Murray discuss policy models in the context of shar-
ing information with foreign governments [941].

McCollum, Messing, and Notargiacomo [603] have suggested an interesting
variation of ORCON, called “Owner-Retained Access Control.” Unlike ORCON,
this model keeps a list of the originators and owners. Like ORCON, the intersection
of all sets controls access. Chandramouli [158] provides a framework for implement-
ing many access control policies in CORBA and discusses an RBAC policy as an
example. He also presents a little language for describing policies of interest.

7.7 Exercises

1. Develop a construction to show that a system implementing the Chinese
Wall model can support the Bell-LaPadula Model.

2. Show that the Clinical Information System model’s principles implement
the Clark-Wilson enforcement and certification rules.

3. Consider using mandatory access controls and compartments to
implement an ORCON control. Assume that there are k different
organizations. Organization i will produce n(i, j) documents to be shared
with organization j.

a. How many compartments are needed to allow any organization to
share a document with any other organization?

Bishop.book Page 95 Tuesday, September 28, 2004 1:46 PM

96 Chapter 7 Hybrid Policies

b. Now assume that organization i will need to share nm(i, i1, …, im)
documents with organizations i1, …, im. How many compartments
will be needed?

4. Someone once observed that “the difference between roles and groups is
that a user can shift into and out of roles, whereas that user has a group
identity (or identities) that are fixed throughout the session.”

a. Consider a system such as a Berkeley-based UNIX system, in which
users have secondary group identities that remain fixed during their
login sessions. What are the advantages of roles with the same
administrative functions as the groups?

b. Consider a system such as a System V-based UNIX system, in which
a process can have exactly one group identity. To change groups,
users must execute the newgrp command. Do these groups differ
from roles? Why or why not?

5. The models in this chapter do not discuss availability. What unstated
assumptions about that service are they making?

6. A physician who is addicted to a pain-killing medicine can prescribe the
medication for herself. Please show how RBAC in general, and Definition
7–11 specifically, can be used to govern the dispensing of prescription
drugs to prevent a physician from prescribing medicine for herself.

Bishop.book Page 96 Tuesday, September 28, 2004 1:46 PM

97

Chapter 8
Basic Cryptography

YORK: Then, York, be still awhile, till time do serve:
Watch thou and wake when others be asleep,

To pry into the secrets of the state;
—The Second Part of King Henry the Sixth, I, i, 249–260.

Cryptography is a deep mathematical subject. Because this book focuses on system
security, we view cryptography as a supporting tool. Viewed in this context, the
reader needs only a brief overview of the major points of cryptography relevant to
that use. This chapter provides such an overview.

Cryptographic protocols provide a cornerstone for secure communication.
These protocols are built on ideas presented in this chapter and are discussed at
length later on.

8.1 What Is Cryptography?

The word cryptography comes from two Greek words meaning “secret writing” and
is the art and science of concealing meaning. Cryptanalysis is the breaking of codes.
The basic component of cryptography is a cryptosystem.

Definition 8–1. A cryptosystem is a 5-tuple (E, D, M, K, C), where M is
the set of plaintexts, K the set of keys, C is the set of ciphertexts, E: M × K
→ C is the set of enciphering functions, and D: C × K → M is the set of
deciphering functions.

EXAMPLE: The Caesar cipher is the widely known cipher in which letters are
shifted. For example, if the key is 3, the letter A becomes D, B becomes E, and so
forth, ending with Z becoming C. So the word “HELLO” is enciphered as
“KHOOR.” Informally, this cipher is a cryptosystem with:

M = { all sequences of Roman letters }

Bishop.book Page 97 Tuesday, September 28, 2004 1:46 PM

98 Chapter 8 Basic Cryptography

K = { i | i an integer such that 0 ≤ i ≤ 25 }
E = { Ek | k ∈ K and for all m ∈ M, Ek(m) = (m + k) mod 26 }

Representing each letter by its position in the alphabet (with A in position 0),
“HELLO” is 7 4 11 11 14; if k = 3, the ciphertext is 10 7 14 14 17, or “KHOOR.”

D = { Dk | k ∈ K and for all c ∈ C, Dk(c) = (26 + c – k) mod 26 }

Each Dk simply inverts the corresponding Ek.

C = M

because E is clearly a set of onto functions.

The goal of cryptography is to keep enciphered information secret. Assume
that an adversary wishes to break a ciphertext. Standard cryptographic practice is to
assume that she knows the algorithm used to encipher the plaintext, but not the spe-
cific cryptographic key (in other words, she knows D and E). She may use three
types of attacks:

1. In a ciphertext only attack, the adversary has only the ciphertext. Her goal is
to find the corresponding plaintext. If possible, she may try to find the key, too.

2. In a known plaintext attack, the adversary has the ciphertext and the
plaintext that was enciphered. Her goal is to find the key that was used.

3. In a chosen plaintext attack, the adversary may ask that specific plaintexts
be enciphered. She is given the corresponding ciphertexts. Her goal is to
find the key that was used.

A good cryptosystem protects against all three types of attacks.
Attacks use both mathematics and statistics. The statistical methods make

assumptions about the statistics of the plaintext language and examine the ciphertext
to correlate its properties with those assumptions. Those assumptions are collectively
called a model of the language. Figure 8–1 presents a character-based, or 1-gram,
model of English text; others are 2-gram models (reflecting frequencies of pairs of
letters), Markov models, and word models. In what follows, we use the 1-gram
model and assume that the characters are chosen independently of one another.

8.2 Classical Cryptosystems

Classical cryptosystems (also called single-key or symmetric cryptosystems) are
cryptosystems that use the same key for encipherment and decipherment. In these
systems, for all Ek ∈ C and k ∈ K, there is a Dk ∈ D such that Dk = Ek

–1.

Bishop.book Page 98 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 99

EXAMPLE: The Caesar cipher discussed earlier had a key of 3, so the enciphering
function was E3. To decipher “KHOOR,” we used the same key in the decipherment
function D3. Hence, the Caesar cipher is a classical cipher.

There are two basic types of classical ciphers: transposition ciphers and sub-
stitution ciphers.

8.2.1 Transposition Ciphers

A transposition cipher rearranges the characters in the plaintext to form the cipher-
text. The letters are not changed.

EXAMPLE: The rail fence cipher is composed by writing the plaintext in two rows,
proceeding down, then across, and reading the ciphertext across, then down. For
example, the plaintext “HELLO, WORLD” would be written as:

HLOOL
ELWRD

resulting in the ciphertext “HLOOLELWRD.”

Mathematically, the key to a transposition cipher is a permutation function.
Because the permutation does not alter the frequency of plaintext characters, a trans-
position cipher can be detected by comparing character frequencies with a model of
the language. If, for example, character frequencies for 1-grams match those of a
model of English, but 2-gram frequencies do not match the model, then the text is
probably a transposition cipher.

Attacking a transposition cipher requires rearrangement of the letters of the
ciphertext. This process, called anagramming, uses tables of n-gram frequencies to iden-
tify common n-grams. The cryptanalyst arranges the letters in such a way that the

Figure 8–1 Table of character frequencies in the English language, from
Denning [242], Figure 2.3, p. 65.

a 0.080 h 0.060 n 0.070 t 0.090

b 0.015 i 0.065 o 0.080 u 0.030

c 0.030 j 0.005 p 0.020 v 0.010

d 0.040 k 0.005 q 0.002 w 0.015

e 0.130 l 0.035 r 0.065 x 0.005

f 0.020 m 0.030 s 0.060 y 0.020

g 0.015 z 0.002

Bishop.book Page 99 Tuesday, September 28, 2004 1:46 PM

100 Chapter 8 Basic Cryptography

characters in the ciphertext form some n-grams with highest frequency. This process is
repeated, using different n-grams, until the transposition pattern is found.

EXAMPLE: Consider the ciphertext “HLOOLELWRD.” According to a Konheim’s
digram table [527], the digram “HE” occurs with frequency 0.03051 in English. Of
the other possible digrams beginning with “H,” the frequency of “HO” is the next
highest, at 0.0043, and the digrams “HL,” “HW,” “HR,” and “HD” have frequencies
of less than 0.0010. Furthermore, the frequency of “WH” is 0.0026, and the digrams
“EH,” “LH,” “OH,” “RH,” and “DH” occur with frequencies of 0.0002 or less. This
suggests that “E” follows “H.” We arrange the letters so that each letter in the first
block of five letters (from “H” up to but not including the “E”) is adjacent to the cor-
responding letter in the second block of five letters, as follows.

HE
LL
OW
OR
LD

Reading the letters across and down produces “HELLOWORLD.” Note that the
shape of the arrangement is different from that in the previous example. However,
the two arrangements are equivalent, leading to the correct solution.

8.2.2 Substitution Ciphers

A substitution cipher changes characters in the plaintext to produce the ciphertext.

EXAMPLE: The Caesar cipher discussed earlier had a key of 3, altering each letter in
the plaintext by mapping it into the letter three characters later in the alphabet (and
circling back to the beginning of the alphabet if needed). This is a substitution cipher.

A Caesar cipher is susceptible to a statistical ciphertext-only attack.

EXAMPLE: Consider the ciphertext “KHOOR ZRUOG.” We first compute the fre-
quency of each letter in the ciphertext:

1 This means that in Konheim’s sample, 3.05% of the digrams were “HE.”

G 0.1 H 0.1 K 0.1 O 0.3 R 0.2 U 0.1 Z 0.1

Bishop.book Page 100 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 101

We now apply the character-based model. Let φ(i) be the correlation of the frequency
of each letter in the ciphertext with the character frequencies in English (see Figure
8–1). Let f(c) be the frequency of character c (expressed as a fraction). The formula
for this correlation for this ciphertext (with all arithmetic being mod 26) is

φ(i) = Σ0 ≤ c ≤ 25 f(c)p(c – i) = 0.1p(6 – i) + 0.1p(7 – i) + 0.1p(10 – i) +
 0.3p(14 – i) + 0.2p(17 – i) + 0.1p(20 – i) + 0.1p(25 – i)

This correlation should be a maximum when the key k translates the ciphertext into
English. Figure 8–2 shows the values of this function for the values of i. Trying the
most likely key first, we obtain as plaintext “EBIIL TLOIA” when i = 6, “AXEEH
PHKEW” when i = 10, “HELLO WORLD” when i = 3, and “WTAAD LDGAS”
when i = 14.

The example above emphasizes the statistical nature of this attack. The statis-
tics indicated that the key was most likely 6, when in fact the correct key was 3. So
the attacker must test the results. The statistics simply reduce the number of trials in
most cases. Only three trials were needed, as opposed to 13 (the expected number of
trials if the keys were simply tried in order).

EXAMPLE: Using Konheim’s model of single-character frequencies [527], the most
likely keys (in order) are i = 6, i = 10, i = 14, and i = 3. Konheim’s frequencies are
different than Denning’s, and this accounts for the change in the third most probable
key.

8.2.2.1 Vigenère Cipher
A longer key might obscure the statistics. The Vigenère cipher chooses a sequence of
keys, represented by a string. The key letters are applied to successive plaintext

Figure 8–2 The value of φ(i) for 0 ≤ i ≤ 25 using the model in Figure 8–1.

i φ(i) i φ(i) i φ(i) i φ(i)

0 0.0482 7 0.0442 13 0.0520 19 0.0315

1 0.0364 8 0.0202 14 0.0535 20 0.0302

2 0.0410 9 0.0267 15 0.0226 21 0.0517

3 0.0575 10 0.0635 16 0.0322 22 0.0380

4 0.0252 11 0.0262 17 0.0392 23 0.0370

5 0.0190 12 0.0325 18 0.0299 24 0.0316

6 0.0660 25 0.0430

Bishop.book Page 101 Tuesday, September 28, 2004 1:46 PM

102 Chapter 8 Basic Cryptography

characters, and when the end of the key is reached, the key starts over. The length of
the key is called the period of the cipher. Figure 8–3 shows a tableau, or table, to
implement this cipher efficiently. Because this requires several different key letters,
this type of cipher is called polyalphabetic.

Figure 8–3 The Vigenère tableau.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Bishop.book Page 102 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 103

EXAMPLE: The first line of a limerick is enciphered using the key “BENCH,” as follows.

Key B ENCHBENC HBENC HBENCH BENCHBENCH

Plaintext A LIMERICK PACKS LAUGHS ANATOMICAL

Ciphertext B PVOLSMPM WBGXU SBYTJZ BRNVVNMPCS

The index of coincidence measures the differences in the frequencies of the
letters in the ciphertext. It is defined as the probability that two randomly chosen let-
ters from the ciphertext will be the same. Let Fc be the frequency of cipher character
c, and let N be the length of the ciphertext. It can be shown (see Exercise 7) that the

index of coincidence IC is . Figure 8–4 shows the

expected values of IC for several periods. The lower the index of coincidence, the
less variation in the characters of the ciphertext and (from our model of English) the
longer the period of the cipher.

For many years, the Vigenère cipher was considered unbreakable. Then a
Prussian cavalry officer named Kasiski noticed that repetitions occur when charac-
ters of the key appear over the same characters in the ciphertext. The number of char-
acters between the repetitions is a multiple of the period.

EXAMPLE: Let the message be THE BOY HAS THE BAG and let the key be VIG.
Then:

Key VIGVIGVIGVIGVIG

Plaintext THEBOYHASTHEBAG

Ciphertext OPKWWECIYOPKWIM

In the ciphertext, the string OPK appears twice. Both are caused by the key sequence
VIG enciphering the same ciphertext, THE. The ciphertext repetitions are nine char-
acters apart. Hence, 9 is a multiple of the period (which is 3 here).

We examine the ciphertext for multiple repetitions and tabulate their length
and the number of characters between successive repetitions. The period is likely to

IC
1

N N 1–()
----------------------- Fi Fi 1–()

i 0=

25

∑=

Figure 8–4 Indices of coincidences for different periods. From Denning [242],
Table 2.2, p. 78.

Period 1 2 3 4 5 10 Large

Expected IC 0.066 0.052 0.047 0.045 0.044 0.041 0.038

Bishop.book Page 103 Tuesday, September 28, 2004 1:46 PM

104 Chapter 8 Basic Cryptography

be a factor of the number of characters between these repetitions. From the repeti-
tions, we establish the probable period, using the index of coincidence to check our
deduction. We then tabulate the characters for each key letter separately and solve
each as a Caesar cipher.

EXAMPLE: Consider the Vigenère cipher

Could this be a Caesar cipher (which is a Vigenère cipher with a key length of 1)? We
find that the index of coincidence is 0.043, which indicates a key of length 5 or more.
So we assume that the key is of length greater than 1, and apply the Kasiski method.
Repetitions of two letters or more are as follows.

The longest repetition is six characters long; this is unlikely to be a coincidence. The
gap between the repetitions is 30. The next longest repetition, MOC, is three charac-
ters long and has a gap of 72. The greatest common divisor of 30 and 72 is 6. Of the
11 repetitions, six have gaps with a factor of 6. The only factors that occur more in
the gaps are 2 (in eight gaps) and 3 (in seven gaps). As a first guess, let us try 6.

To verify that this is reasonable, we compute the index of coincidence for each
alphabet. We first arrange the message into six columns.

ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF

VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW

VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH

AJMOC HIUIX

Letters Start End Gap length
Factors of
gap length

MI 5 15 10 2, 5

OO 22 27 5 5

OEQOOG 24 54 30 2, 3, 5

FV 39 63 24 2, 2, 2, 3

AA 43 87 44 2, 2, 11

MOC 50 122 72 2, 2, 2, 3, 3

QO 56 105 49 7, 7

PC 69 117 48 2, 2, 2, 2, 3

NE 77 83 6 2, 3

SV 94 97 3 3

CH 118 124 6 2, 3

Bishop.book Page 104 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 105

Each column represents one alphabet. The indices of coincidence are as follows.

All indices of coincidence indicate a single alphabet except for the ICs associated
with alphabets #4 (period between 1 and 2) and #6 (period between 5 and 10). Given
the statistical nature of the measure, we will assume that these are skewed by the dis-
tribution of characters and proceed on the assumption that there are six alphabets,
and hence a key of length 6.

A D Q Y S M

I U S B O X

K K T M I B

H K I Z O O

O E Q O O G

I F B A G K

A U M F V V

T A A C I D

T W M O C I

O E Q O O G

B M B F V Z

G G W P C I

E K Q H S N

E W V E C N

E D L A A V

R W K X S V

N S V P H C

E U T Q O I

O F M E G J

S W T P C H

A J M O C H

I U I X

Alphabet #1: IC = 0.069 Alphabet #4: IC = 0.056

Alphabet #2: IC = 0.078 Alphabet #5: IC = 0.124

Alphabet #3: IC = 0.078 Alphabet #6: IC = 0.043

Bishop.book Page 105 Tuesday, September 28, 2004 1:46 PM

106 Chapter 8 Basic Cryptography

Counting characters in each column (alphabet) yields:

An unshifted alphabet has the following characteristics (L meaning low fre-
quency, M meaning moderate frequency, and H meaning high frequency).

We now compare the frequency counts in the six alphabets above with the fre-
quency count of the unshifted alphabet. The first alphabet matches the characteristics
of the unshifted alphabet (note the values for A, E, and I in particular). Given the gap
between B and I, the third alphabet seems to be shifted with I mapping to A. A simi-
lar gap occurs in the sixth alphabet between O and V, suggesting that V maps to A.
Substituting into the ciphertext (bold letters are plaintext) produces

In the last line, the group AJE suggests the word ARE. Taking this as a
hypothesis, the second alphabet maps A into S. Substituting back produces

The last block suggests MICAL, because AL is a common ending for adjec-
tives. This means that the fourth alphabet maps O into A, and the cipher becomes

Column A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

#1 3 1 0 0 4 0 1 1 3 0 1 0 0 1 3 0 0 1 1 2 0 0 0 0 0 0

#2 1 0 0 2 2 2 1 0 0 1 3 0 1 0 0 0 0 0 1 0 4 0 4 0 0 0

#3 1 2 0 0 0 0 0 0 2 0 1 1 4 0 0 0 4 0 1 3 0 2 1 0 0 0

#4 2 1 1 0 2 2 0 1 0 0 0 0 1 0 4 3 1 0 0 0 0 0 0 2 1 1

#5 1 0 5 0 0 0 2 1 2 0 0 0 0 0 5 0 0 0 3 0 0 2 0 0 0 0

#6 0 1 1 1 0 0 2 2 3 1 1 0 1 2 1 0 0 0 0 0 0 3 0 1 0 1

H M M M H M M H H M M M M H H M L H H H M L L L L L

ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG PAUEF

VATAS CIITW EOCNO EIOOL BMTFV EGGOP CNEKI HSSEW

NECSE DDAAA RWCXS ANSNP HHEUL QONOF EEGOS WLPCM

AJEOC MIUAX

ALIYS RICKB OCKSL MIGHS AZOTO MIOOL INTAG PACEF

VATIS CIITE EOCNO MIOOL BUTFV EGOOP CNESI HSSEE

NECSE LDAAA RECXS ANANP HHECL QONON EEGOS ELPCM

AREOC MICAX

Bishop.book Page 106 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 107

In English, a Q is always followed by a U, so the I in the second group of the
second line must map to U. The fifth alphabet maps M to A. The cipher is solved:

With proper spacing and punctuation, we have

A LIMERICK PACKS LAUGHS ANATOMICAL

INTO SPACE THAT IS QUITE ECONOMICAL

BUT THE GOOD ONES I’VE SEEN

SO SELDOM ARE CLEAN,

AND THE CLEAN ONES SO SELDOM ARE COMICAL.

The key is ASIMOV.

It is worth noting that the Vigenère cipher is easy to break by hand. However,
the principles of attack hold for more complex ciphers that can be implemented only
by computer. A good example is the encipherments that several older versions of
WordPerfect used [75, 78]. These allowed a user to encipher a file with a password.
Unfortunately, certain fields in the enciphered file contained information internal to
WordPerfect, and these fields could be predicted. This allowed an attacker to derive
the password used to encipher the file, and from that the plaintext file itself.

8.2.2.2 One-Time Pad
The one-time pad is a variant of the Vigenère cipher. The technique is the same. The
key string is chosen at random, and is at least as long as the message, so it does not
repeat. Technically, it is a threshold scheme [815], and is provably impossible to
break [115]. The implementation issues of the pad, including random generation of
the key and key distribution, do not concern us here (although a later chapter will
touch on them).

ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG PACET

VATIS QIITE ECCNO MICOL BUTTV EGOOD CNESI VSSEE

NSCSE LDOAA RECLS ANAND HHECL EONON ESGOS ELDCM

ARECC MICAL

ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET

HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE

NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM

ARECO MICAL

Bishop.book Page 107 Tuesday, September 28, 2004 1:46 PM

108 Chapter 8 Basic Cryptography

8.2.3 Data Encryption Standard

The Data Encryption Standard (DES) [662] was designed to encipher sensitive but
nonclassified data. It is bit-oriented, unlike the other ciphers we have seen. It uses
both transposition and substitution and for that reason is sometimes referred to as a
product cipher. Its input, output, and key are each 64 bits long. The sets of 64 bits are
referred to as blocks.

The cipher consists of 16 rounds, or iterations. Each round uses a separate key
of 48 bits. These round keys are generated from the key block by dropping the parity
bits (reducing the effective key size to 56 bits), permuting the bits, and extracting 48
bits. A different set of 48 bits is extracted for each of the 16 rounds (see Figure 8–5).
If the order in which the round keys is used is reversed, the input is deciphered.

The rounds are executed sequentially, the input of one round being the output
of the previous round. The right half of the input, and the round key, are run through
a function f that produces 32 bits of output; that output is then xor’ed into the left
half, and the resulting left and right halves are swapped (see Figure 8–6).

The function f provides the strength of the DES. The right half of the input (32
bits) is expanded to 48 bits, and this is xor’ed with the round key. The resulting 48
bits are split into eight sets of six bits each, and each set is put through a substitution

key

PC-1

C0 D0

LSH LSH

D1

PC-2 K1

K16
LSH LSH

Figure 8–5 DES key schedule generation. PC-1 and PC-2 are permutation
tables; LSH is a table of left shifts (rotations).

C1

PC-2

Bishop.book Page 108 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 109

table called the S-box. Each S-box produces four bits of output. They are catenated
into a single 32-bit quantity, which is permuted. The resulting 32 bits constitute the
output of the f function (see Figure 8–7).

When the DES was first announced, it was criticized as too weak. First, Diffie
and Hellman [268] argued that a key length of 56 bits was simply too short, and they
designed a machine that could break a DES-enciphered message in a matter of days.
Although their machine was beyond the technology of the time, they estimated that it
could soon be built for about $20,000,000. Second, the reasons for many of the deci-
sions in the design of the DES—most notably, those involving the S-boxes—were
classified. Many speculated that the classification hid “trapdoors,” or ways to invert
the cipher without knowing the key.

Some properties of the DES were worrisome. First, it had four weak keys
(keys that were their own inverses) and 12 semiweak keys (keys whose inverses were
other keys). Second, let k, m, and c be the complement of the key k, the plaintext m,
and the ciphertext c, respectively. Let DESk(m) be the encipherment of plaintext m
under key k. Then the complementation property states that

DESk(m) = c ⇒ DESk(m) = c

Third, some of the S-boxes exhibited irregular properties. The distribution of odd and
even numbers was nonrandom, raising concerns that the DES did not randomize the
input sufficiently. Several output bits of the fourth S-box seemed to depend on some

Figure 8–6 DES message encipherment and decipherment.

input

IP

L0 R0

⊕ f K1

L1 = R0 R1 = L0 ⊕ f(R0, K1)

R16 = L15 ⊕ f(R15, K16) L16 = R15

IP–1

output

Bishop.book Page 109 Tuesday, September 28, 2004 1:46 PM

110 Chapter 8 Basic Cryptography

of the output bits of the third S-box. This again suggested that there was a structure
to the S-boxes, and because some of the design decisions underlying the S-boxes
were unknown, the reasons for the structure were unknown. The structure made
hardware implementation of the DES simpler [907]. It distributed the dependence of
each output bit on each input bit rapidly, so that after five rounds each output bit
depended on every key and input bit [625]. It could have been needed to prevent the
cipher from being broken easily. It also could enable a trapdoor to allow the cipher to
be broken easily. There was considerable speculation that the NSA had weakened the
algorithm, although a congressional investigation did not reflect this [59].

In 1990, a breakthrough in cryptanalysis answered many of these questions.
Biham and Shamir applied a technique called differential cryptanalysis to the DES
[90, 91, 92]. This technique required them to generate 247 pairs of chosen plaintext
and ciphertext, considerably fewer than the trial-and-error approach others had used.
During the development of this technique, they found several properties of the DES
that appeared to answer some of the questions that had been raised.

First, for a known plaintext attack, differential cryptanalysis requires 256

plaintext and ciphertext pairs for a 15-round version of the DES. For the full 16
rounds, 258 known plaintext and ciphertext pairs are needed, which is more than suf-
ficient for a trial-and-error approach. (Matsui subsequently improved this using a
variant attack called linear cryptanalysis [596]; this attack requires 243 known plain-
text and ciphertext pairs on the average.) Second, small changes in the S-boxes
weakened the cipher (so that the required number of chosen plaintext and ciphertext
pairs was reduced). Third, making every bit of the round keys independent (for an

Figure 8–7 The f function.

Ri–1 (32 bits)

E

Ri–1 (48 bits)

Ki (48 bits)

⊕

S1 S2 S3 S4 S5 S6 S7 S8

6 bits into each

P

32 bits

4 bits out of each

Bishop.book Page 110 Tuesday, September 28, 2004 1:46 PM

8.2 Classical Cryptosystems 111

effective key length of 16 × 48 = 768 bits) did not make the DES resistant to differen-
tial cryptanalysis, which suggests that the designers of the DES knew about differen-
tial analysis. Coppersmith later confirmed this [209].

The DES is used in several modes [663]. Using it directly is called electronic code
book (ECB) mode, and is very rare. Modes in which it can be used to generate a pseudo-
one-time pad are cipher feed back (CFB) mode (see Section 10.2.1.2) and output feed
back (OFB) mode (see Section 10.2.1.1). Its most common modes of use are cipher block
chaining (CBC) mode (see Section 10.2.2), encrypt-decrypt-encrypt (EDE) mode, and
triple DES mode (the EDE and triple DES modes are described in Section 10.2.2.1).

The CBC mode is an iterative mode in which a block of ciphertext depends not
only on its input but also on the preceding ciphertext block. In addition to a 64-bit key, it
requires a 64-bit initialization vector. Figure 8–8 shows this mode. It has the self-healing
property. This property says that if one block of ciphertext is altered, the error propagates
for at most two blocks. Figure 8–9 shows how a corrupted block affects others.

init vec m1

DES DES

m0

c0 c1

⊕ ⊕

init vec c1

DES DES

c0

m0 m1

⊕ ⊕

Figure 8–8 Cipher block chaining mode. The left diagram shows
encipherment; each ciphertext is “fed back” into the cipher stream. The right
diagram shows decipherment.

Incorrect ciphertext: ef7c4cb2b4ce6f3b f6266e3a97af0e2c

746ab9a6308f4256 33e60b451b09603d

Corresponding plaintext: efca61e19f4836f1 3231333336353837

3231343336353837 3231343336353837

The real plaintext: 3231343336353837 3231343336353837

3231343336353837 3231343336353837

Figure 8–9 Example of the self-healing property. The ciphertext at the top was
stored incorrectly (the italicized 4c should be 4b). Its decipherment is shown
next, with the incorrect octets italicized. The plaintext used to create the
ciphertext is shown at the bottom.

Bishop.book Page 111 Tuesday, September 28, 2004 1:46 PM

112 Chapter 8 Basic Cryptography

The EDE mode is used by many financial institutions. It requires two
64-bit keys k and k´. The ciphertext c corresponding to some data m is c = DESk
(DESk´

–1(DESk(m))). Triple DES uses three keys k, k´, and k´´, and the second step is
an encipherment, not a decipherment: c = DESk(DESk´(DESk´´(m))).

In 1998, a design for a computer system and software that could break any
DES-enciphered message in a few days was published [358]. This design comple-
mented several challenges to break specific DES messages. Those challenges had
been solved using computers distributed throughout the Internet. By 1999, it was
clear that the DES no longer provided the same level of security as it had 10 years
earlier, and the search was on for a new, stronger cipher (to be called the Advanced
Encryption Standard, or AES) to fill the needs that the DES no longer filled.

The DES is one of the most important classical cryptosystems in the history of
cryptography. It provided the impetus for many advances in the field and laid the the-
oretical and practical groundwork for many other ciphers. While analyzing it,
researchers developed differential and linear cryptanalysis. Cryptographers devel-
oped other ciphers to avoid real, or perceived, weaknesses; cryptanalysts broke many
of these ciphers and found weaknesses in others. Many of the features of the DES are
used in other ciphers. Hence, even though it is nearing the end of its useful lifetime,
it is well worth understanding.

In late 2001, the National Institute of Standards and Technology announced
the selection of Rijndael as the Advanced Encryption Standard [672], the successor
to the DES. Like the DES, the AES is a product cipher. Unlike the DES, the AES can
use keys of 128, 192, or 256 bits and operates on blocks of 128 bits. It was specifi-
cally designed to withstand the attacks to which the DES showed weaknesses [228].
Time will show how rapidly it supplants the DES, but the lessons learned from the
DES have borne fruit.

8.2.4 Other Classical Ciphers

Several algorithms have been proposed to overcome the weaknesses in the DES.
NewDES (which, despite its name, is not a variant of DES but a new algorithm) has a
block size of 64 bits and a key length of 120 bits [803]. However, it can be broken
using an attack similar to differential cryptanalysis [796]. FEAL is another block
cipher, with a block size of 64 bits and a key size of 64 bits [642, 822]. FEAL-4
(FEAL with four rounds) and FEAL-8 (FEAL with eight rounds) fell to differential
cryptanalysis with 20 [658] and 10,000 [357] chosen plaintexts, respectively. Biham
and Shamir broke FEAL-N, which uses N rounds, for N < 32 by differential crypt-
analysis more quickly than by trial-and-error [91]. It was proposed that the key be
lengthened to 128 bits, but the 128-bit key proved as easy to break as FEAL-N with
the original 64-bit key. REDOC-II [226] has an 80-bit block and a 160-bit key. It has
10 rounds, and although a single round was successfully cryptanalyzed [89], the use
of 10 rounds appears to withstand differential cryptanalysis.

Bishop.book Page 112 Tuesday, September 28, 2004 1:46 PM

8.3 Public Key Cryptography 113

LOKI89 [137], proposed as an alternative to the DES, was vulnerable to differ-
ential cryptanalysis [89]. Its successor, LOKI91 [138], uses a 64-bit key and a 64-bit
block size. Differential cryptanalysis fails to break this cipher [516]. Khufu [623] has a
block size of 64 bits and a key size of 512 bits. When used with 24 or 32 rounds, it
resists chosen plaintext attacks. Its S-boxes are computed from the keys. Khafre [623],
similar in design to Khufu, uses fixed S-boxes, but it has been broken [89].

IDEA is an eight-round cipher that uses 64-bit blocks and 128-bit keys [541].
It uses three operations: exclusive or’s, addition modulo 216, and multiplication mod-
ulo 216 + 1. It appears to withstand known attacks but is too new for any definitive
statement to be made about its security [796]. It is used in noncommercial soft-
ware—notably, in the electronic mail program PGP [965]—but is patented and
requires licensing for use in commercial software.

8.3 Public Key Cryptography

In 1976, Diffie and Hellman [267] proposed a new type of cryptography that distinguished
between encipherment and decipherment keys.2 One of the keys would be publicly known;
the other would be kept private by its owner. Classical cryptography requires the sender
and recipient to share a common key. Public key cryptography does not. If the encipher-
ment key is public, to send a secret message simply encipher the message with the recip-
ient’s public key. Then send it. The recipient can decipher it using his private key.
(Chapter 9, “Key Management,” discusses how to make public keys available to others.)

Because one key is public, and its complementary key must remain secret, a
public key cryptosystem must meet the following three conditions.

1. It must be computationally easy to encipher or decipher a message given
the appropriate key.

2. It must be computationally infeasible to derive the private key from the
public key.

3. It must be computationally infeasible to determine the private key from a
chosen plaintext attack.

The RSA cipher provides both secrecy and authentication.

2 James Ellis, a cryptographer working for the British government’s Communications-
Electronics Security Group, said “he showed proof of concept in a January 1970 CESG report
titled ‘The Possibility of Secure Non-Secret Digital Encryption.’” Two of his colleagues found
practical implementations. This work remained classified until 1997 ([244], p. 299).

Bishop.book Page 113 Tuesday, September 28, 2004 1:46 PM

114 Chapter 8 Basic Cryptography

8.3.1 RSA

RSA [756] is an exponentiation cipher. Choose two large prime numbers p and q,
and let n = pq. The totient φ(n) of n is the number of numbers less than n with no fac-
tors in common with n.3

EXAMPLE: Let n = 10. The numbers that are less than 10 and are relatively prime to
(have no factors in common with) n are 1, 3, 7, and 9. Hence, φ(10) = 4. Similarly, if
n = 21, the numbers that are relatively prime to n are 1, 2, 4, 5, 8, 10, 11, 13, 16, 17,
19, and 20. So φ(21) = 12.

Choose an integer e < n that is relatively prime to φ(n). Find a second integer d
such that ed mod φ(n) = 1. The public key is (e, n), and the private key is d.

Let m be a message. Then:

c = me mod n

and

m = cd mod n

EXAMPLE: Let p = 7 and q = 11. Then n = 77 and φ(n) = 60. Alice chooses e = 17, so
her private key is d = 53. In this cryptosystem, each plaintext character is represented
by a number between 00 (A) and 25 (Z); 26 represents a blank. Bob wants to send
Alice the message “HELLO WORLD.” Using the representation above, the plaintext
is 07 04 11 11 14 26 22 14 17 11 03. Using Alice’s public key, the ciphertext is

0717 mod 77 = 28
0417 mod 77 = 16
1117 mod 77 = 44
...
0317 mod 77 = 75

or 28 16 44 44 42 38 22 42 19 44 75.

In addition to confidentiality, RSA can provide data and origin authentication.
If Alice enciphers her message using her private key, anyone can read it, but if any-
one alters it, the (altered) ciphertext cannot be deciphered correctly.

3 Our examples will use small numbers for pedagogical purposes. Actual RSA primes should be
at least 512 bits each, giving a modulus of at least 1,024 bits. In practice, RSA is combined with
cryptographic hash functions to prevent rearrangement of blocks (see Section 10.1.2).

Bishop.book Page 114 Tuesday, September 28, 2004 1:46 PM

8.3 Public Key Cryptography 115

EXAMPLE: Suppose Alice wishes to send Bob the message “HELLO WORLD” in
such a way that Bob will be sure that Alice sent it. She enciphers the message with
her private key and sends it to Bob. As indicated above, the plaintext is represented as
07 04 11 11 14 26 22 14 17 11 03. Using Alice’s private key, the ciphertext is

0753 mod 77 = 35
0453 mod 77 = 09
1153 mod 77 = 44
...
0353 mod 77 = 05

or 35 09 44 44 93 12 24 94 04 05. In addition to origin authenticity, Bob can be sure
that no letters were altered.

Providing both confidentiality and authentication requires enciphering with
the sender’s private key and the recipient’s public key.

EXAMPLE: Suppose Alice wishes to send Bob the message “HELLO WORLD” in
confidence and authenticated. Again, assume that Alice’s private key is 53. Take
Bob’s public key to be 37 (making his private key 13). The plaintext is represented as
07 04 11 11 14 26 22 14 17 11 03. The encipherment is

(0753 mod 77)37 mod 77 = 07
(0453 mod 77)37 mod 77 = 37
(1153 mod 77)37 mod 77 = 44
...
(0353 mod 77)37 mod 77 = 47

or 07 37 44 44 14 59 22 14 61 44 47.

The recipient uses the recipient’s private key to decipher the message and the
sender’s public key to authenticate it.

EXAMPLE: Bob receives the ciphertext above, 07 37 44 44 14 59 22 14 61 44 47.
The decipherment is

(0713 mod 77)17 mod 77 = 07
(3713 mod 77)17 mod 77 = 04
(4413 mod 77)17 mod 77 = 11
...
(4713 mod 77)17 mod 77 = 03

or 07 04 11 11 14 26 22 14 17 11 03. This corresponds to the message “HELLO
WORLD” from the preceding example.

Bishop.book Page 115 Tuesday, September 28, 2004 1:46 PM

116 Chapter 8 Basic Cryptography

The use of a public key system provides a technical type of nonrepudiation of
origin. The message is deciphered using Alice’s public key. Because the public key is
the inverse of the private key, only the private key could have enciphered the message.
Because Alice is the only one who knows this private key, only she could have enci-
phered the message. The underlying assumption is that Alice’s private key has not been
compromised, and that the public key bearing her name really does belong to her.

In practice, no one would use blocks of the size presented here. The issue is
that, even if n is very large, if one character per block is enciphered, RSA can be bro-
ken using the techniques used to break classical substitution ciphers (see Sections
8.2.2 and 10.1.3). Furthermore, although no individual block can be altered without
detection (because the attacker presumably does not have access to the private key),
an attacker can rearrange blocks and change the meaning of the message.

EXAMPLE: A general sends a message to headquarters asking if the attack is on.
Headquarters replies with the message “ON” enciphered using an RSA cipher with a
1,024-bit modulus, but each letter is enciphered separately. An attacker intercepts the
message and swaps the order of the blocks. When the general deciphers the message,
it will read “NO,” the opposite of the original plaintext.

Moreover, if the attacker knows that headquarters will send one of two mes-
sages (here, “NO” or “ON”), the attacker can use a technique called “forward
search” or “precomputation” to break the cipher (see Section 10.1.1). For this reason,
plaintext is usually padded with random data to make up a block. This can eliminate
the problem of forward searching, because the set of possible plaintexts becomes too
large to precompute feasibly.

A different general sends the same request as in the example above. Again,
headquarters replies with the message “ON” enciphered using an RSA cipher with a
1,024-bit modulus. Each letter is enciphered separately, but the first six bits of each
block contain the number of the block, the next eight bits contain the character, and
the remaining 1,010 bits contain random data. If the attacker rearranges the blocks,
the general will detect that block 2 arrived before block 1 (as a result of the number
in the first six bits) and rearrange them. The attacker also cannot precompute the
blocks to determine which contains “O,” because she would have to compute 21010

blocks, which is computationally infeasible.

8.4 Cryptographic Checksums

Alice wants to send Bob a message of n bits. She wants Bob to be able to verify that
the message he receives is the same one that was sent. So she applies a mathematical
function, called a checksum function, to generate a smaller set of k bits from the
original n bits. This smaller set is called the checksum or message digest. Alice then
sends Bob both the message and the checksum. When Bob gets the message, he

Bishop.book Page 116 Tuesday, September 28, 2004 1:46 PM

8.4 Cryptographic Checksums 117

recomputes the checksum and compares it with the one Alice sent. If they match, he
assumes that the message has not been changed.

EXAMPLE: The parity bit in the ASCII representation is often used as a single-bit
checksum. If odd parity is used, the sum of the 1-bits in the ASCII representation of
the character, and the parity bit, is odd. Assume that Alice sends Bob the letter “A.”
In ASCII, the representation of “A” using odd parity is p0111101 in binary, where p
represents the parity bit. Because five bits are set, the parity bit is 0 for odd parity.

When Bob gets the message 00111101, he counts the 1-bits in the message.
Because this number is odd, Bob knows that the message has arrived unchanged.

Definition 8–2. A cryptographic checksum function (also called a strong
hash function or a strong one-way function) h: A → B is a function that has the
following properties.

1. For any x ∈ A, h(x) is easy to compute.
2. For any y ∈ B, it is computationally infeasible to find x ∈ A such that h(x) = y.
3. It is computationally infeasible to find x, x´ ∈ A, such that x ≠ x´ and

h(x) = h(x´). (Such a pair is called a collision.)

The third requirement is often stated as:

4. Given any x ∈ A, it is computationally infeasible to find another x´ ∈ A
such that x ≠ x´ and h(x´) = h(x).

However, properties 3 and 4 are subtlely different. It is considerably harder to find an
x´ meeting the conditions in property 4 than it is to find a pair x and x´ meeting the
conditions in property 3. To explain why, we need to examine some basics of crypto-
graphic checksum functions.

Given that the checksum contains fewer bits than the message, several mes-
sages must produce the same checksum. The best checksum functions have the same
number of messages produce each checksum. Furthermore, given any message, the
checksum it produces can be determined only by computing the checksum. Such a
checksum function acts as a random function.

The size of the output of the cryptographic checksum is an important consid-
eration owing to a mathematical principle called the pigeonhole principle.

Definition 8–3. The pigeonhole principle states that if there are n containers
for n + 1 objects, at least one container will hold two objects. To understand
its application here, consider a cryptographic checksum function that com-
putes hashes of three bits and a set of files each of which contains five bits.
This yields 23 = 8 possible hashes for 25 = 32 files. Hence, at least four differ-
ent files correspond to the same hash.

Bishop.book Page 117 Tuesday, September 28, 2004 1:46 PM

118 Chapter 8 Basic Cryptography

Now assume that a cryptographic checksum function computes hashes of 128
bits. The probability of finding a message corresponding to a given hash is 2–128, but
the probability of finding two messages with the same hash (that is, with the value of
neither message being constrained) is 2–64 (see Exercise 20).

Definition 8–4. A keyed cryptographic checksum function requires a crypto-
graphic key as part of the computation. A keyless cryptographic checksum
does not.

EXAMPLE: The DES in CBC mode can be used as a message authentication code if
64 bits or fewer are required. The message is enciphered, and the last n bits of the last
output are the cryptographic hash. Because the DES requires a cryptographic key,
this checksum function (called DES-MAC) is a keyed cryptographic checksum func-
tion. Because the DES is vulnerable to attack, so is this checksum technique. Fur-
thermore, because the hash is at most 64 bits, finding two inputs that produce the
same output would require 232 messages.

Examples of keyless hash functions include MD2 [489]; MD4 [753]; MD5
[754]; the Secure Hash Algorithm (SHA-1) which produces 160-bit checksums [664,
663]; Snefru (either 128-bit or 256-bit checksums) [622]; and HAVAL, which produces
checksums of 128, 160, 192, 224, and 256 bits [963]. Of these, Snefru is vulnerable to
differential cryptanalysis if four rounds or fewer are used [92], so Merkle recommends
using at least eight passes. Dobbertin devised a method of generating collisions in
MD4 [274]; a similar method also works against MD5 but is slower [273].

8.4.1 HMAC

HMAC is a generic term for an algorithm that uses a keyless hash function and a
cryptographic key to produce a keyed hash function [531]. This mechanism enables
Alice to validate that data Bob sent to her is unchanged in transit. Without the key,
anyone could change the data and recompute the message authentication code, and
Alice would be none the wiser.

The need for HMAC arose because keyed hash functions are derived from
cryptographic algorithms. Many countries restrict the import and export of software
that implements such algorithms. They do not restrict software implementing keyless
hash functions, because such functions cannot be used to conceal information.
Hence, HMAC builds on a keyless hash function using a cryptographic key to create
a keyed hash function.

Let h be a keyless hash function that hashes data in blocks of b bytes to pro-
duce a hash l bytes long. Let k be a cryptographic key. We assume that the length of k
is no greater than b; if it is, use h to hash it to produce a new key of length b. Let k´ be
the key k padded with bytes containing 0 to make b bytes. Let ipad be a sequence of
bytes containing the bits 00110110 and repeated b times; let opad be a similar
sequence with the bits 01011100. The HMAC-h function with key k for message m is

Bishop.book Page 118 Tuesday, September 28, 2004 1:46 PM

8.6 Further Reading 119

HMAC-h(k, m) = h(k´ ⊕ opad || h(k´ ⊕ ipad || m))

where ⊕ is exclusive or and || is concatenation.
Bellare, Canetti, and Krawczyk [65] analyze the security of HMAC and con-

clude that the strength of HMAC depends on the strength of the hash function h. Var-
ious HMAC functions are used in Internet security protocols (see Chapter 10).

8.5 Summary

For our purposes, three aspects of cryptography require study. Classical cryptogra-
phy uses a single key shared by all involved. Public key cryptography uses two keys,
one shared and the other private. Both types of cryptosystems can provide secrecy
and origin authentication (although classical cryptography requires a trusted third
party to provide both). Cryptographic hash functions may or may not use a secret key
and provide data authentication.

All cryptosystems are based on substitution (of some quantity for another) and
permutation (scrambling of some quantity). Cryptanalysis, the breaking of ciphers,
uses statistical approaches (such as the Kasiski method and differential cryptanalysis)
and mathematical approaches (such as attacks on the RSA method). As techniques of
cryptanalysis improve, our understanding of encipherment methods also improves and
ciphers become harder to break. The same holds for cryptographic checksum func-
tions. However, as computing power increases, key length must also increase. A 56-bit
key was deemed secure by many in 1976; it is clearly not secure now.

8.6 Further Reading

Cryptography is a vast, rich subject. Kahn’s book The Codebreakers [482, 485] is
required reading for anyone interested in this field. Kahn has written other excellent
historical books on codebreaking during World War II [483, 484]. Helen Fouché
Gaines presents techniques for cryptanalysis of many classical ciphers using tradi-
tional, pencil-and-paper analysis [343]. Sinkov applies basic mathematics to many of
these classical ciphers [836]. Schneier describes many old, and new, algorithms in a
clear, easy-to-understand manner [796]; his book is excellent for implementers. The
underpinnings of these algorithms, and others, lie in statistics and mathematics. For
classical cryptography, Konheim’s book [527] is superb once the reader has mastered
his notation. Unlike other books, it focuses on cryptanalysis of classical ciphers
using statistical attacks. Meyer and Matyas [626] and Biham and Shamir [92] discuss
the strengths and weaknesses of the DES. Seberry and Pieprzyk [805] and Simmons
[834] discuss modern cryptography and its applications. Koblitz [521], Coutinho
[215], and Goldreich [365] discuss modern mathematics, cryptographic theory, and

Bishop.book Page 119 Tuesday, September 28, 2004 1:46 PM

120 Chapter 8 Basic Cryptography

cryptosystems. Menezes, Van Oorschot, and Vanstone’s book [619] is a valuable ref-
erence. Trapp and Washington [902] present a good overview of AES-128, the ver-
sion of the AES that uses 128-bit keys.

The Diffie-Hellman scheme [267] was the first public key cryptosystem pro-
posed, and it is still in use today.

8.7 Exercises

1. A cryptographer once stated that cryptography could provide complete
security, and that any other computer security controls were unnecessary.
Why is he wrong? (Hint: Think of an implementation of a cryptosystem,
and ask yourself what aspect(s) of the implementation can cryptography
not protect.)

2. Decipher the following ciphertext, which was enciphered using the Caesar
cipher: TEBKFKQEBZLROPBLCERJXKBSBKQP.

3. If one-time pads are provably secure, why are they so rarely used in
practice?

4. Prove that the DES key consisting of all 0-bits and the DES key consisting
of all 1-bits are both weak keys. What are the other two weak keys? (Note:
Differences in the parity bits, which the PC-1 permutation drops, do not
count; the keys must differ in the 56 bits that are used to generate the key
schedule.)

5. Prove that the DES cipher satisfies the complementation property (see
page 109).

6. Let k be the encipherment key for a Caesar cipher. The decipherment key
differs; it is 26 – k. One of the characteristics of a public key system is that
the encipherment and decipherment keys are different. Why then is the
Caesar cipher a classical cryptosystem, not a public key cryptosystem? Be
specific.

7. The index of coincidence was defined as “the probability that two
randomly chosen letters from the ciphertext will be the same.” Derive the
formula in Section 8.2.2.1 for the index of coincidence from this
definition.

8. The following message was enciphered with a Vigenère cipher. Find the
key and decipher it.

TSMVM MPPCW CZUGX HPECP RFAUE IOBQW PPIMS FXIPC TSQPK
SZNUL OPACR DDPKT SLVFW ELTKR GHIZS FNIDF ARMUE NOSKR
GDIPH WSGVL EDMCM SMWKP IYOJS TLVFA HPBJI RAQIW HLDGA
IYOUX

Bishop.book Page 120 Tuesday, September 28, 2004 1:46 PM

8.7 Exercises 121

9. In the example enciphering HELLO WORLD using the RSA cipher (the
second example in Section 8.3.1), the modulus was chosen as 77, even
though the magnitude of the cleartext blocks is at most 25. What problems
in transmission and/or representation might this cause?

10. Prove the following:

a. If p is a prime, φ(p) = p – 1.
b. If p and q are two distinct primes, φ(pq) = (p – 1)(q – 1).

11. Fermat’s Little Theorem says that, for integers a and n such that a and n
are relatively prime, aφ(n) mod n = 1. Use this to show that deciphering of
an enciphered message produces the original message with the RSA
cryptosystem. Does enciphering of a deciphered message produce the
original message also?

12. Consider the RSA cryptosystem. Show that the ciphertexts corresponding
to the messages 0, 1 and n – 1 are the messages themselves. Are there other
messages that produce the same ciphertext as plaintext?

13. It is often said that breaking RSA is equivalent to factoring the modulus, n.

a. Prove that if n can be factored, one can determine the private key d
from the modulus n and the public key e.

b. Show that it is not necessary to factor n in order to determine the
private key d from the modulus n and the public key e. (Hint: Look
closely at the equation for computing the private key from n and e.)

c. Show that it is not necessary to factor n in order to determine the
plaintext m from a given ciphertext c, the public key e, and the
modulus n. (Hint: Look closely at the equation for computing
the ciphertext c.)

14. Prove the fundamental laws of modular arithmetic:

a. (a + b) mod n = (a mod n + b mod n) mod n
b. ab mod n = ((a mod n)(b mod n)) mod n

15. How would you use the law ab mod n = ((a mod n)(b mod n)) mod n to
reduce to 13 the number of multiplications required to compute 3577 mod
83 from 76 multiplications? Can you reduce it any further?

16. The section on public key cryptosystems discussed nonrepudiation of
origin in the context of public key cryptosystems. Consider a secret key
system (in which a shared key is used). Bob has a message that he claims
came from Alice, and to prove it he shows both the cleartext message and
the ciphertext message. The ciphertext corresponds to the plaintext
enciphered under the secret key that Alice and Bob share. Explain why this
does not satisfy the requirements of nonrepudiation of origin. How might
you modify a classical cryptosystem to provide nonrepudiation?

Bishop.book Page 121 Tuesday, September 28, 2004 1:46 PM

122 Chapter 8 Basic Cryptography

17. Suppose Alice and Bob have RSA public keys in a file on a server. They
communicate regularly using authenticated, confidential messages. Eve
wants to read the messages but is unable to crack the RSA private keys of
Alice and Bob. However, she is able to break into the server and alter the
file containing Alice’s and Bob’s public keys.

a. How should Eve alter that file so that she can read confidential
messages sent between Alice and Bob, and forge messages from
either?

b. How might Alice and/or Bob detect Eve’s subversion of the public
keys?

18. Is the identity function, which outputs its own input, a good cryptographic
checksum function? Why or why not?

19. Is the sum program, which exclusive or’s all words in its input to generate
a one-word output, a good cryptographic checksum function? Why or why
not?

20. Assume that a cryptographic checksum function computes hashes of 128
bits. Prove that the probability of finding two messages with the same hash
(that is, with the value of neither message being constrained) is 2–64.

21. The example involving the DES-MAC cryptographic hash function stated
that a birthday attack would find collisions given 232 messages. Alice
wants to take advantage of this to swindle Bob. She draws up two
contracts, one that Bob has agreed to sign and the other that Bob would not
sign. She needs to generate a version of each that has the same checksum.
Suggest how she might do this. (Hint: Adding blank spaces, or inserting a
character followed by a backspace, will not affect the meaning of either
contract.)

Bishop.book Page 122 Tuesday, September 28, 2004 1:46 PM

123

Chapter 9
Key Management

VALENTINE: Why then, I would resort to her by night.
DUKE: Ay, but the doors be lock’d and keys kept safe,

That no man hath recourse to her by night.
VALENTINE: What lets but one may enter at her window?

—The Two Gentlemen of Verona, III, i, 110–113.

Key management refers to the distribution of cryptographic keys; the mechanisms
used to bind an identity to a key; and the generation, maintenance, and revoking of
such keys. We assume that identities correctly define principals—that is, a key bound
to the identity “Bob” is really Bob’s key. Alice did not impersonate Bob’s identity to
obtain it. Chapter 13, “Representing Identity,” discusses the problem of identifiers
naming principals; Chapter 11, “Authentication,” discusses a principal authenticating
herself to a single system. This chapter assumes that authentication has been com-
pleted and that identity is assigned. The problem is to propagate that authentication
to other principals and systems.

We first discuss authentication and key distribution. Next comes key genera-
tion and the binding of an identity to a key using certificates. Next, we discuss key
storage and revocation. We conclude with digital signatures.

A word about notation. The statement

X → Y : { Z } k

means that entity X sends entity Y a message Z enciphered with key k. Subscripts to
keys indicate to whom the keys belong, and are written where multiple keys are in use.
For example, kAlice and kBob refer to keys belonging to Alice and Bob, respectively. If
Alice and Bob share a key, that key will be written as kAlice,Bob when the sharers are not
immediately clear from the context. In general, k represents a secret key (for a classical
cryptosystem), e a public key, and d a private key (for a public key cryptosystem). If
multiple messages are listed sequentially, they are concatenated and sent. The operator
a || b means that the bit sequences a and b are concatenated.

Bishop.book Page 123 Tuesday, September 28, 2004 1:46 PM

124 Chapter 9 Key Management

9.1 Session and Interchange Keys

We distinguish between a session key and an interchange key [921].

Definition 9–1. An interchange key is a cryptographic key associated with a
principal to a communication. A session key is a cryptographic key associated
with the communication itself.

This distinction reflects the difference between a communication and a user
involved in that communication. Alice has a cryptographic key used specifically to
exchange information with Bob. This key does not change over interactions with
Bob. However, if Alice communicates twice with Bob (and “communication” can be
with, for example, an e-mail or a Web browser), she does not want to use the same
key to encipher the messages. This limits the amount of data enciphered by a single
key and reduces the likelihood of an eavesdropper being able to break the cipher. It
also hinders the effectiveness of replay attacks. Instead, she will generate a key for
that single session. That key enciphers the data only; it does not authenticate either
principal, and it is discarded when the session ends. Hence, the name “session key.”

Session keys also prevent forward searches [830]. A forward search attack
occurs when the set of plaintext messages is small. The adversary enciphers all plain-
texts using the target’s public key. When ciphertext is intercepted, it is compared
with the precomputed texts. This quickly gives the corresponding plaintext. A ran-
domly generated session key, used once, would prevent this attack. (See Exercise 1
for another approach.)

EXAMPLE: Suppose Alice is a client of Bob’s stockbrokering firm. She needs to send
Bob one of two messages: BUY or SELL. The attacker, Cathy, enciphers both mes-
sages with Bob’s public key. When Alice sends her message, Cathy compares it with
her messages and sees which one it matches.

An interchange key is associated with a principal. Alice can use the key she
shares with Bob to convince Bob that the sender is Alice. She uses this key for all
sessions. It changes independently of session initiation and termination.

9.2 Key Exchange

The goal of key exchange is to enable Alice to communicate secretly to Bob, and
vice versa, using a shared cryptographic key. Solutions to this problem must meet the
following criteria.

Bishop.book Page 124 Tuesday, September 28, 2004 1:46 PM

9.2 Key Exchange 125

1. The key that Alice and Bob are to share cannot be transmitted in the clear.
Either it must be enciphered when sent, or Alice and Bob must derive it
without an exhange of data from which the key can be derived. (Alice and
Bob can exchange data, but a third party cannot derive the key from the
data exchanged.)

2. Alice and Bob may decide to trust a third party (called “Cathy” here).
3. The cryptosystems and protocols are publicly known. The only secret data

is to be the cryptographic keys involved.

Classical cryptosystems and public key cryptosystems use different protocols.

9.2.1 Classical Cryptographic Key Exchange
and Authentication

Suppose Alice and Bob wish to communicate. If they share a common key, they can
use a classical cryptosystem. But how do they agree on a common key? If Alice
sends one to Bob, Eve the eavesdropper will see it and be able to read the traffic
between them.

To avoid this bootstrapping problem, classical protocols rely on a trusted third
party, Cathy. Alice and Cathy share a secret key, and Bob and Cathy share a (differ-
ent) secret key. The goal is to provide a secret key that Alice and Bob share. The fol-
lowing simple protocol provides a starting point [796].

1. Alice → Cathy: { request for session key to Bob }kAlice

2. Cathy → Alice: { ksession }kAlice || { ksession }kBob

3. Alice → Bob: { ksession }kBob

Bob now deciphers the message and uses ksession to communicate with Alice.
This particular protocol is the basis for many more sophisticated protocols.

However, Bob does not know to whom he is talking. Assume that Alice sends Bob a
message (such as “Deposit $500 in Dan’s bank account today”) enciphered under
ksession. If Eve records the second message in the exchange above, and the message
enciphered under ksession, she can send Bob the message { ksession }kBob followed by
the message enciphered under ksession. Bob will not know who is sending it.

Avoiding problems such as this replay attack adds considerable complexity.
Key exchange protocols typically add, at a minimum, some sort of authentication
and defense against replay attack. One of the best-known such protocols is the
Needham-Schroeder protocol [682].

1. Alice → Cathy : { Alice || Bob || rand1 }
2. Cathy → Alice : { Alice || Bob || rand1 || ksession || {Alice || ksession} kBob }

kAlice

Bishop.book Page 125 Tuesday, September 28, 2004 1:46 PM

126 Chapter 9 Key Management

3. Alice → Bob : { Alice || ksession } kBob

4. Bob → Alice : { rand2 } ksession

5. Alice → Bob : { rand2 – 1 }ksession

In this protocol, rand1 and rand2 are two numbers generated at random, except that
they cannot repeat between different protocol exchanges. These numbers are called
nonces. (If Alice begins the protocol anew, her rand1 in the first exchange will not
have been used there before.) The basis for the security of this protocol is that both
Alice and Bob trust Cathy.

When Bob receives the third message and deciphers it, he sees that the mes-
sage names Alice. Since he could decipher the message, the message was enciphered
using a key he shares only with Cathy. Because he trusts Cathy not to have shared the
key kBob with anyone else, the message must have been enciphered by Cathy. This
means that Cathy is vouching that she generated ksession so Bob could communicate
with Alice. So Bob trusts that Cathy sent the message to Alice, and that Alice for-
warded it to him.

However, if Eve recorded the message, she could have replayed it to Bob. In
that case, Eve would not have known the session key, so Bob sets out to verify that
his unknown recipient does know it. He sends a random message enciphered by
ksession to Alice. If Eve intercepts the message, she will not know what to return;
should she send anything, the odds of her randomly selecting a message that is correct
is very low and Bob will detect the attempted replay. But if Alice is indeed initiating
the communication, when she gets the message she can decipher it (because she knows
ksession), apply some fixed function to the random data (here, decrement it by 1), and
encipher the result and return it to Bob. Then Bob will be sure he is talking to Alice.

Alice needs to convince herself that she is talking to Bob, also. When she receives
the second message from Cathy, she deciphers it and checks that Alice, Bob, and
rand1 are present. This tells her that Cathy sent the second message (because it was
enciphered with kAlice, which only she and Cathy know) and that it was a response to
the first message (because rand1 is in both the first and second messages). She obtains
the session key and forwards the rest to Bob. She knows that only Bob has ksession,
because only she and Bob can read the messages containing that key. So when she
receives messages enciphered with that key, she will be sure that she is talking to Bob.

The Needham-Schroeder protocol assumes that all cryptographic keys are
secure. In practice, session keys will be generated pseudorandomly. Depending on
the algorithm used, it may be possible to predict such keys. Denning and Sacco [250]
assumed that Eve could obtain a session key and subverted the protocol. Assume that
the protocol above took place. Then:

1. Eve → Bob : { Alice || ksession } kBob

2. Bob → Alice : { rand3 } ksession [intercepted by Eve]
3. Eve → Bob : { rand3 – 1 }ksession

Now Bob thinks he is talking to Alice. He is really talking to Eve.

Bishop.book Page 126 Tuesday, September 28, 2004 1:46 PM

9.2 Key Exchange 127

Denning and Sacco suggest using timestamps to enable Bob to detect this
replay. Applying their method to the Needham-Schroeder protocol yields

1. Alice → Cathy : { Alice || Bob || rand1 }
2. Cathy → Alice : { Alice || Bob || rand1 || ksession ||

{Alice || T || ksession} kBob } kAlice

3. Alice → Bob : { Alice || T || ksession } kBob

4. Bob → Alice : { rand2 } ksession

5. Alice → Bob : { rand2 – 1 }ksession

where T is a timestamp. When Bob gets the message in step 3, he rejects it if the
timestamp is too old (too old being determined from the system in use). This modifi-
cation requires synchronized clocks. Denning and Sacco note that a principal with a
slow clock is vulnerable to a replay attack. Gong [368] adds that a party with a fast
clock is also vulnerable, and simply resetting the clock does not eliminate the vulner-
ability.

The Otway-Rees protocol [706] corrects these problems1 by avoiding the use
of timestamps.

1. Alice → Bob : num || Alice || Bob || { rand1 || num || Alice || Bob }kAlice

2. Bob → Cathy : num || Alice || Bob, || { rand1 || num || Alice || Bob }kAlice ||
{rand2 || num || Alice || Bob }kBob

3. Cathy → Bob : num || { rand1 || ksession }kAlice || { rand2 || ksession } kBob

4. Bob → Alice : num || { rand1 || ksession }kAlice

The purpose of the integer num is to associate all messages with a particular
exchange. Again, consider the elements of the protocol.

When Alice receives the fourth message from Bob, she checks that the num
agrees with the num in the first message that she sent to Bob. If so, she knows that
this is part of the exchange. She also trusts that Cathy generated the session key
because only Cathy and Alice know kAlice, and the random number rand1 agrees with
what Alice put in the enciphered portion of the message. Combining these factors,
Alice is now convinced that she is talking to Bob.

When Bob receives the message from Cathy, he determines that the num cor-
responds to the one he received from Alice and sent to Cathy. He deciphers that por-
tion of the message enciphered with his key, and checks that rand2 is what he sent.
He then knows that Cathy sent the reply, and that it applies to the exchange with
Alice.

Because no timestamps are used, the synchronization of the system clocks is
irrelevant. Now suppose that Eve acquired an old session key and the message in 3.

1 Needham and Schroeder also supply a modification [683]; see Exercise 5.

Bishop.book Page 127 Tuesday, September 28, 2004 1:46 PM

128 Chapter 9 Key Management

She forwards that message to Alice. Alice immediately rejects it if she has no ongo-
ing key exchanges with Bob. If she does, and num does not match, she rejects Eve’s
message. The only way Eve could impersonate Bob is if she acquired ksession for an
ongoing exchange, recorded the third message, and resent the relevant portion to
Alice before Bob could do so. In that case, however, Eve could simply listen to the
traffic, and no replay would be involved.

9.2.2 Kerberos

Kerberos [526, 872] uses the Needham-Schroeder protocol as modified by Denning
and Sacco. A client, Alice, wants to use a server S. Kerberos requires her to use two
servers to obtain a credential that will authenticate her to S. First, Alice must authen-
ticate herself to the Kerberos system; then she must obtain a ticket to use S (see next
paragraph). (This separates authentication of the user to the issuer of tickets and the
vouching of identity to S.)

The basis of Kerberos is a credential known as the ticket. It contains2

TAlice,Barnum = Barnum || {Alice || Alice address || valid time || kAlice,Barnum}kBarnum

In this ticket, kBarnum is the key that Barnum shares with the authentication server,
and kAlice,Barnum is the session key that Alice and Barnum will share. The valid time
is the time interval during which the ticket is valid, which is typically several hours.
The ticket is the issuer’s voucher for the identity of the requester of the service.

The authenticator contains the identity of the sender of a ticket and is used
when Alice wants to show Barnum that the party sending the ticket is the same as the
party to whom the ticket was issued. It contains3

AAlice,Barnum = {Alice || generation time || kt}kAlice,Barnum

where kAlice,Barnum is the session key that Alice and Barnum share, kt is an alternative
session key, and the authenticator was created at generation time. Alice generates an
authenticator whenever she sends a ticket. She sends both the ticket and the authenti-
cator in the same message.

Alice’s goal is to print a file using the service Guttenberg. The authentication
server is Cerberus and the ticket-granting server is Barnum. The Kerberos (Version
5) protocol proceeds as follows.

1. Alice → Cerberus: Alice || Barnum
2. Cerberus → Alice : { kAlice,Barnum} kAlice || TAlice,Barnum

2 See Kohl and Neuman [526], Section 5.3.1, for a complete description of a ticket. We include
only the parts that are relevant to our discussion.
3 See Kohl and Neuman [526], Section 5.3.2, for a complete description of an authenticator. We
include only the parts that are relevant to our discussion.

Bishop.book Page 128 Tuesday, September 28, 2004 1:46 PM

9.2 Key Exchange 129

At this point, Alice deciphers the first part of the message to obtain the key she will
use to communicate with Barnum. Kerberos uses the user’s password as the key, so if
Alice enters her password incorrectly, the decipherment of the session key will fail.
These steps occur only at login; once Alice has the ticket for the ticket-granting
server Barnum, she caches it and uses it:

3. Alice → Barnum : Guttenberg || AAlice,Barnum || TAlice,Barnum

4. Barnum → Alice : Alice || {kAlice,Guttenberg} kAlice,Barnum || TAlice,Guttenberg

5. Alice → Guttenberg : AAlice,Guttenberg || TAlice,Guttenberg

6. Guttenberg → Alice : { t + 1} kAlice,Guttenberg

In these steps, Alice first constructs an authenticator and sends it, with the ticket and
the name of the server, to Barnum. Barnum validates the request by comparing the
data in the authenticator with the data in the ticket. Because the ticket is enciphered
using the key Barnum shares with Cerberus, he knows that it came from a trusted
source. He then generates an appropriate session key and sends Alice a ticket to pass
on to Guttenberg. Step 5 repeats step 3, except that the name of the service is not
given (because Guttenberg is the desired service). Step 6 is optional; Alice may ask
that Guttenberg send it to confirm the request. If it is sent, t is the timestamp.

Bellovin and Merritt [72] discuss several potential problems with the Ker-
beros protocol. In particular, Kerberos relies on clocks being synchronized to prevent
replay attacks. If the clocks are not synchronized, and if old tickets and authentica-
tors are not cached, replay is possible. In Kerberos 5, authenticators are valid for 5
minutes, so tickets and authenticators can be replayed within that interval. Also,
because the tickets have some fixed fields, a dictionary attack can be used to deter-
mine keys shared by services or users and the ticket-granting service or the authenti-
cation service, much as the WordPerfect cipher was broken (see the end of Section
8.2.2.1). Researchers at Purdue University used this technique to show that the ses-
sion keys generated by Kerberos 4 were weak; they reported deciphering tickets, and
finding session keys, within minutes [277].

9.2.3 Public Key Cryptographic Key Exchange
and Authentication

Conceptually, public key cryptography makes exchanging keys very easy.

1. Alice → Bob : { ksession } eBob

where eBob is Bob’s public key. Bob deciphers the message and obtains the session
key ksession. Now he and Alice can communicate securely, using a classical crypto-
system.

As attractive as this protocol is, it has a similar flaw to our original classical
key exchange protocol. Eve can forge such a message. Bob does not know who the
message comes from.

Bishop.book Page 129 Tuesday, September 28, 2004 1:46 PM

130 Chapter 9 Key Management

One obvious fix is to sign the session key.

1. Alice → Bob : Alice, { { ksession } dAlice } eBob

where dAlice is Alice’s private key. When Bob gets the message, uses his private key
to decipher the message. He sees the key is from Alice. Alice uses her public key to
obtain the session key. Schneier [796] points out that Alice could also include a mes-
sage enciphered with ksession.

These protocols assume that Alice has Bob’s public key eBob. If not, she must
get it from a public server, Peter. With a bit of ingenuity, Eve can arrange to read
Bob’s messages to Alice, and vice versa.

1. Alice → Peter : { send me Bob’s public key } [intercepted by Eve]
2. Eve → Peter : { send me Bob’s public key }
3. Peter → Eve : eBob

4. Eve → Alice : eEve

5. Alice → Bob : { ksession } eEve [intercepted by Eve]
6. Eve → Bob : { ksession } eBob

Eve now has the session key and can read any traffic between Alice and Bob.
This is called a man-in-the-middle attack and illustrates the importance of identifica-
tion and authentication in key exchange protocols. The man-in-the-middle attack
works because there is no binding of identity to a public key. When presented with a
public key purportedly belonging to Bob, Alice has no way to verify that the public
key in fact belongs to Bob. This issue extends beyond key exchange and authentica-
tion. To resolve it, we need to look at the management of cryptographic keys.

9.3 Cryptographic Key Infrastructures

Because classical cryptosystems use shared keys, it is not possible to bind an identity
to a key. Instead, two parties need to agree on a shared key. Section 9.2, “Key
Exchange,” presents protocols that do this.

Public key cryptosystems use two keys, one of which is to be available to all.
The association between the cryptographic key and the principal is critical, because
it determines the public key used to encipher messages for secrecy. If the binding is
erroneous, someone other than the intended recipient could read the message.

For purposes of this discussion, we assume that the principal is identified by a
name of some acceptable sort (Chapter 13, “Representing Identity,” discusses this
issue in more detail) and has been authenticated to the entity that generates the cryp-
tographic keys. The question is how some (possibly different) principal can bind the
public key to the representation of identity.

Bishop.book Page 130 Tuesday, September 28, 2004 1:46 PM

9.3 Cryptographic Key Infrastructures 131

An obvious idea is for the originator to sign the public key with her private
key, but this merely pushes the problem to another level, because the recipient would
only know that whoever generated the public key also signed it. No identity is
present.

Kohnfelder [517] suggests creating a message containing a representation of
identity, the corresponding public key, and a timestamp, and having a trusted author-
ity sign it.

CAlice = { eAlice || Alice || T } dCathy

This type of structure is called a certificate.

Definition 9–2. A certificate is a token that binds an identity to a crypto-
graphic key.

When Bob wants to communicate with Alice, he obtain’s Alice’s certificate
CAlice. Assuming that he knows Cathy’s public key, he can decipher the certificate.
He first checks the timestamp T to see when the certificate was issued. (From this, he
can determine if the certificate is too old to be trusted; see below.) He looks at the
subject entity (Alice, to whom the certificate was issued). The public key in the cer-
tificate belongs to that subject, so Bob now has Alice’s public key. He knows that
Cathy signed the certificate and therefore that Cathy is vouching to some degree that
the public key belongs to Alice. If he trusts Cathy to make such a determination, he
accepts the public key as valid and belonging to Alice.

One immediate problem is that Bob must know Cathy’s public key to validate
the certificate. Two approaches deal with this problem. The first, by Merkle, elimi-
nates Cathy’s signature; the second structures certificates into signature chains.

9.3.1 Certificate Signature Chains

The usual form of certification is for the issuer to encipher a hash of the identity of the
subject (to whom the certificate is issued), the public key, and information such as time
of issue or expiration using the issuer’s private key. To validate the certificate, a user
uses the issuer’s public key to decipher the hash and check the data in the certificate.
The user trying to validate the certificate must obtain the issuer’s public key. If the
issuer has a certificate, the user can get that key from the issuer’s certificate. This
pushes the problem to another level: how can the issuer’s certificate be validated?

Two approaches to this problem are to construct a tree-like hierarchy, with the
public key of the root known out of band, or to allow an arbitrary arrangement of cer-
tifiers and rely on each individual’s knowledge of the certifiers. First, we examine
X.509, which describes certificates and certification in general. We then look at the
PGP certification structure.

Bishop.book Page 131 Tuesday, September 28, 2004 1:46 PM

132 Chapter 9 Key Management

9.3.1.1 X.509: Certification Signature Chains
X.509—the Directory Authentication Framework [460] is the basis for many other pro-
tocols. It defines certificate formats and certification validation in a generic context.
Soon after its original issue in 1988, I’Anson and Mitchell [454] found problems with
both the protocols and the certificate structure. These problems were corrected in the
1993 version, referred to as X.509v3.

The X.509v3 certificate has the following components [865].

1. Version. Each successive version of the X.509 certificate has new fields
added. If fields 8, 9, and 10 (see below) are present, this field must be 3; if
fields 8 and 9 are present, this field is either 2 or 3; and if none of fields 8,
9, and 10 are present, the version number can be 1, 2, or 3.

2. Serial number. This must be unique among the certificates issued by this
issuer. In other words, the pair (issuer’s Distinguished Name, serial
number) must be unique.

3. Signature algorithm identifier. This identifies the algorithm, and any
parameters, used to sign the certificate.

4. Issuer’s Distinguished Name. This is a name that uniquely identifies the
issuer. See Chapter 13, “Representing Identity,” for a discussion.

5. Validity interval. This gives the times at which the certificate becomes
valid and expires.

6. Subject’s Distinguished Name. This is a name that uniquely identifies the
subject to whom the certificate is issued. See Chapter 13, “Representing
Identity,” for a discussion.

7. Subject’s public key information. This identifies the algorithm, its
parameters, and the subject’s public key.

8. Issuer’s unique identifier (Version 2 and 3 certificates only). Under some
circumstances, issuer Distinguished Names may be recycled (for example,
when the Distinguished Name refers to a role, or when a company closes
and a second company with the same Distinguished Name opens). This field
allows the issuer to disambiguate among entities with the same issuer name.

9. Subject’s unique identifier (Version 2 and 3 certificates only). This field is
like field 8, but for the subject.

10. Extensions (Version 3 certificates only). X.509v3 defines certain
extensions in the areas of key and policy information, certification path
constraints, and issuer and subject information. For example, if an issuer
has multiple certification keys, the “authority key identifier” allows the
certificate to indicate which key should be used. The “basic constraints”
extension indicates if the certificate holder can issue certificates.

11. Signature. This field identifies the algorithm and parameters used to sign
the certificate, followed by the signature (an enciphered hash of fields 1 to
10) itself.

Bishop.book Page 132 Tuesday, September 28, 2004 1:46 PM

9.3 Cryptographic Key Infrastructures 133

To validate the certificate, the user obtains the issuer’s public key for the particular
signature algorithm (field 3) and deciphers the signature (field 11). She then uses the
information in the signature field (field 11) to recompute the hash value from the
other fields. If it matches the deciphered signature, the signature is valid if the
issuer’s public key is correct. The user then checks the period of validity (field 5) to
ensure that the certificate is current.

Definition 9–3. A certification authority (CA) is an entity that issues cer-
tificates.

If all certificates have a common issuer, then the issuer’s public key can be
distributed out of band. However, this is infeasible. For example, it is highly unlikely
that France and the United States could agree on a single issuer for their organiza-
tions’ and citizens’ certificates. This suggests multiple issuers, which complicates
the process of validation.

Suppose Alice has a certificate from her local CA, Cathy. She wants to com-
municate with Bob, whose local CA is Dan. The problem is for Alice and Bob to val-
idate each other’s certificates.

Assume that X<<Y>> represents the certificate that X generated for the subject
Y (X is the CA that issued the certificate). Bob’s certificate is Dan<<Bob>>. If Cathy
has issued a certificate to Dan, Dan has a certificate Cathy<<Dan>>; similarly, if Dan
has issued a certificate to Cathy, Cathy has a certificate Dan<<Cathy>>. In this case,
Dan and Cathy are said to be cross-certified.

Definition 9–4. Two CAs are cross-certified if each has issued a certificate
for the other.

Because Alice has Cathy’s (trusted) public key, she can obtain Cathy<<Dan>>
and form the signature chain

Cathy<<Dan>> Dan<<Bob>>

Because Alice can validate Dan’s certificate, she can use the public key in that certif-
icate to validate Bob’s certificate. Similarly, Bob can acquire Dan<<Cathy>> and
validate Alice’s certificate.

Dan<<Cathy>> Cathy<<Alice>>

Signature chains can be of arbitrary length. The only requirement is that each
certificate can be validated by the one before it in the chain. (X.509 suggests organiz-
ing CAs into a hierarchy to minimize the lengths of certificate signature chains, but
this is not a requirement.)

Certificates can be revoked, or canceled. A list of such certificates enables a
user to detect, and reject, invalidated certificates. Section 9.4.2 discusses this.

Bishop.book Page 133 Tuesday, September 28, 2004 1:46 PM

134 Chapter 9 Key Management

9.3.1.2 PGP Certificate Signature Chains
PGP is an encipherment program widely used to provide privacy for electronic mail
throughout the Internet, and to sign files digitally. It uses a certificate-based key man-
agement infrastructure for users’ public keys. Its certificates and key management
structure differ from X.509’s in several ways. Here, we describe OpenPGP’s struc-
ture [150]; but much of this discussion also applies to other versions of PGP.

An OpenPGP certificate is composed of packets. A packet is a record with a tag
describing its purpose. A certificate contains a public key packet followed by zero or
more signature packets. An OpenPGP public key packet has the following structure.

1. Version. This is either 3 or 4. Version 3 is compatible with all versions of
PGP; Version 4 is not compatible with old (Version 2.6) versions of PGP.

2. Time of creation. This specifies when the certificate was created.
3. Validity period (Version 3 only). This gives the number of days that the

certificate is valid. If it is 0, the certificate does not expire.
4. Public key algorithm and parameters. This identifies the algorithm used

and gives the parameters for the cryptosystem used. Version 3 packets
contain the modulus for RSA (see Section 9.3.2). Version 4 packets
contain the parameters appropriate for the cryptosystem used.

5. Public key. This gives the public key. Version 3 packets contain the
exponent for RSA. Version 4 packets contain the public key for the
cryptosystem identified in field 4.

The information in an OpenPGP signature packet is different for the two ver-
sions. Version 3 contains the following.

1. Version. This is 3.
2. Signature type. This describes the specific purpose of the signature and

encodes a level of trust (see Section 13.5.2, “Trust”). For example,
signature type 0x11 says that the signer has not verified that the public key
belongs to the named subject.

3. Creation time. This specifies the time at which the fields following were
hashed.

4. Key identifier of the signer. This specifies the key used to generate the
signature.

5. Public key algorithm. This identifies the algorithm used to generate the
signature.

6. Hash algorithm. This identifies the algorithm used to hash the signature
before signing.

7. Part of signed hash value. After the data is hashed, field 2 is given the time
at which the hash was computed, and that field is hashed and appended to
the previous hash. The first two bytes are placed into this field. The idea is

Bishop.book Page 134 Tuesday, September 28, 2004 1:46 PM

9.3 Cryptographic Key Infrastructures 135

that the signature can be rejected immediately if the first two bytes hashed
during the validation do not match this field.

8. Signature. This contains the encipherment of the hash using the signer’s
private key.

A Version 4 signature packet is considerably more complex, but as a Version 3 signa-
ture packet does, it binds a signature to an identifier and data. The interested reader is
referred to the OpenPGP specifications [150].

PGP certificates differ from X.509 certificates in several important ways.
Unlike X.509, a single key may have multiple signatures. (All Version 4 PGP keys
are signed by the owner; this is called self-signing.) Also unlike X.509, a notion of
“trust” is embedded in each signature, and the signatures for a single key may have
different levels of trust. The users of the certificates can determine the level of trust
for each signature and act accordingly.

EXAMPLE: Suppose Alice needs to communicate with Bob. She obtains Bob’s pub-
lic key PGP certificate, Ellen,Fred,Giselle,Bob<<Bob>> (where the X.509 notation
is extended in the obvious way). Alice knows none of the signers, so she gets
Giselle’s PGP certificate, Henry,Irene,Giselle<<Giselle>>, from a certificate server.
She knows Henry vaguely, so she obtains his certificate, Ellen,Henry<<Henry>>,
and verifies Giselle’s certificate. She notes that Henry’s signature is at the “casual”
trust level, so she decides to look elsewhere for confirmation. She obtains Ellen’s
certificate, Jack,Ellen<<Ellen>>, and immediately recognizes Jack as her husband.
She has his certificate and uses it to validate Ellen’s certificate. She notes that his sig-
nature is at the “positive” trust level, so she accepts Ellen’s certificate as valid and
uses it to validate Bob’s. She notes that Ellen signed the certificate with “positive”
trust also, so she concludes that the certificate, and the public key it contains, are
trustworthy.

In the example above, Alice followed two signature chains:

Henry<<Henry>> Henry<<Giselle>> Giselle<<Bob>>

and

Jack<<Ellen>> Ellen<<Bob>>

(where the unchecked signatures have been dropped). The trust levels affected how
Alice checked the certificate.

A subtle distinction arises here between X.509 and PGP certificates. X.509
certificates include an element of trust, but the trust is not indicated in the certificate.
PGP certificates indicate the level of trust, but the same level of trust may have dif-
ferent meanings to different signers. Chapter 13, “Representing Identity,” will exam-
ine this issue in considerable detail.

Bishop.book Page 135 Tuesday, September 28, 2004 1:46 PM

136 Chapter 9 Key Management

9.3.2 Summary

The deployment and management of public keys is complex because of the different
requirements of various protocols. Most protocols use some form of the X.509v3
certificates, although the extensions vary. The infrastructure that manages public
keys and certification authorities is called a public key infrastructure. Several such
infrastructures are in place, such as the PGP Certificate Servers and the commercial
certificate issuers for World Wide Web browsers.

9.4 Storing and Revoking Keys

Key storage arises when a user needs to protect a cryptographic key in a way other
than by remembering it. If the key is public, of course, any certificate-based mecha-
nism will suffice, because the goal is to protect the key’s integrity. But secret keys
(for classical cryptosystems) and private keys (for public key cryptosystems) must
have their confidentiality protected as well.

9.4.1 Key Storage

Protecting cryptographic keys sounds simple: just put the key into a file, and use
operating system access control mechanisms to protect it. Unfortunately, as we will
discuss in Chapter 20, operating system access control mechanisms can often be
evaded or defeated, or may not apply to some users. On a single-user system, this
consideration is irrelevant, because no one else will have access to the system while
the key is on the system. On a multiuser system, other users have access to the sys-
tem. On a networked system, an attacker could trick the owner into downloading a
program that would send keystrokes and files to the attacker, thereby revealing the
confidential cryptographic key. We consider these systems.

On such systems, enciphering the file containing the keys will not work,
either. When the user enters the key to decipher the file, the key and the contents of
the file will reside in memory at some point; this is potentially visible to other users
on a multiuser system. The keystrokes used to decipher the file could be recorded
and replayed at a later date. Either will compromise the key.

A feasible solution is to put the key onto one or more physical devices, such
as a special terminal, ROM, or smart card [241, 291, 598]. The key never enters the
computer’s memory. Instead, to encipher a message, the user inserts the smart card
into a special device that can read from, and write to, the computer. The computer
sends it the message to be protected, and the device uses the key on the smart card to
encipher the message and send it back to the computer. At no point is the crypto-
graphic key exposed.

A variant relies on the observation that if the smart card is stolen, the thief
has the cryptographic key. Instead of having it on one card, the key is split over

Bishop.book Page 136 Tuesday, September 28, 2004 1:46 PM

9.5 Digital Signatures 137

multiple devices (two cards, a card and the physical card reader, and so on.) Now,
if a thief steals one of the cards, the stolen card is useless because it does not con-
tain the entire key.

9.4.2 Key Revocation

Certificate formats contain a key expiration date. If a key becomes invalid before that
date, it must be revoked. Typically, this means that the key is compromised, or that
the binding between the subject and the key has changed.

We distinguish this from an expired certificate. An expired certificate has
reached a predesignated period after which it is no longer valid. That the lifetime has
been exceeded is the only reason. A revoked certificate has been canceled at the
request of the owner or issuer for some reason other than expiration.

There are two problems with revoking a public key. The first is to ensure that the
revocation is correct—in other words, to ensure that the entity revoking the key is
authorized to do so. The second is to ensure timeliness of the revocation throughout the
infrastructure. This second problem depends on reliable and highly connected servers
and is a function of the infrastructure as well as of the locations of the certificates and
the principals who have copies of those certificates. Ideally, notice of the revocation
will be sent to all parties when received, but invariably there will be a time lag.

The X.509 and Internet public key infrastructures (PKIs) use lists of certificates.

Definition 9–5. A certificate revocation list is a list of certificates that are no
longer valid.

A certificate revocation list contains the serial numbers of the revoked certifi-
cates and the dates on which they were revoked. It also contains the name of the
issuer, the date on which the list was issued, and when the next list is expected to be
issued. The issuer also signs the list [865]. Under X.509, only the issuer of a certifi-
cate can revoke it.

PGP allows signers of certificates to revoke their signatures as well as allow-
ing owners of certificates, and their designees, to revoke the entire certificates. The
certificate revocation is placed into a PGP packet and is signed just like a regular
PGP certificate. A special flag marks it as a revocation message.

9.5 Digital Signatures

As electronic commerce grows, so does the need for a provably high degree of authen-
tication. Think of Alice’s signature on a contract with Bob. Bob not only has to know
that Alice is the other signer and is signing it; he also must be able to prove to a disin-
terested third party (called a judge) that Alice signed it and that the contract he presents
has not been altered since Alice signed it. Such a construct is called a digital signature.

Bishop.book Page 137 Tuesday, September 28, 2004 1:46 PM

138 Chapter 9 Key Management

Definition 9–6. A digital signature is a construct that authenticates both the
origin and contents of a message in a manner that is provable to a disinterested
third party.

The “proof” requirement introduces a subtlety. Let m be a message. Suppose
Alice and Bob share a secret key k. Alice sends Bob m || { m }k (that is, the message
and its encipherment under k). Is this a digital signature?

First, Alice has authenticated the contents of the message, because Bob deci-
phers { m }k and can check that the message matches the deciphered one. Because
only Bob and Alice know k, and Bob knows that he did not send the message, he con-
cludes that it has come from Alice. He has authenticated the message origin and
integrity. However, based on the mathematics alone, Bob cannot prove that he did
not create the message, because he knows the key used to create it. Hence, this is not
a digital signature.

Public key cryptography solves this problem. Let dAlice and eAlice be Alice’s
private and public keys, respectively. Alice sends Bob the message m || { m }dAlice.
As before, Bob can authenticate the origin and contents of m, but in this situation a
judge must determine that Alice signed the message, because only Alice knows the
private key with which the message was signed. The judge merely obtains eAlice and
computes { { m }dAlice } eAlice. If the result is m, Alice signed it. This is in fact a dig-
ital signature.

A digital signature provides the service of nonrepudiation. If Alice claims she
never sent the message, the judge points out that the originator signed the message
with her private key, which only she knew. Alice at that point may claim that her pri-
vate key was stolen, or that her identity was incorrectly bound in the certificate (see
Chapter 13, “Representing Identity”). The notion of “nonrepudiation” provided here
is strictly abstract. In fact, Alice’s key might have been stolen, and she might not
have realized this before seeing the digital signature. Such a claim would require
ancillary evidence, and a court or other legal agency would need to handle it. For the
purposes of this section, we consider the service of nonrepudiation to be the inability
to deny that one’s cryptographic key was used to produce the digital signature.

9.5.1 Classical Signatures

All classical digital signature schemes rely on a trusted third party. The judge must
trust the third party. Merkle’s scheme is typical [621].

Let Cathy be the trusted third party. Alice shares a cryptographic key kAlice
with Cathy. Likewise, Bob shares kBob with Cathy. When Alice wants to send Bob a
contract m, she computes { m }kAlice and sends it to Bob. Bob sends it to Cathy, who
deciphers m, enciphers it with kBob, and returns { m }kBob to Bob. He can now deci-
pher it. To verify that Alice sent the message, the judge takes the disputed messages
{ m }kAlice and { m }kBob and has Cathy decipher them using Alice’s and Bob’s keys.
If they match, the sending is verified; if not, one of them is a forgery.

Bishop.book Page 138 Tuesday, September 28, 2004 1:46 PM

9.5 Digital Signatures 139

9.5.2 Public Key Signatures

In our earlier example, we had Alice encipher the message with her private key to
produce a digital signature. We now examine a specific digital signature scheme
based on the RSA system (see Section 8.3.1).

We observe that using RSA to authenticate a message produces a digital sig-
nature. However, we also observe that the strength of the system relies on the proto-
col describing how RSA is used as well as on the RSA cryptosystem itself.

First, suppose that Alice wants to trick Bob into signing a message m. She
computes two other messages m1 and m2 such that m1m2 mod nBob = m. She has Bob
sign m1 and m2. Alice then multiplies the two signatures together and reduces mod
nBob, and she has Bob’s signature on m. (See Exercise 6.) The defense is not to sign
random documents and, when signing, never sign the document itself; sign a crypto-
graphic hash of the document [796].

EXAMPLE: Let nAlice = 95, eAlice = 59, dAlice = 11, nBob = 77, eBob = 53, and dBob =
17. Alice and Bob have 26 possible contracts, from which they are to select and sign
one. Alice first asks Bob to sign contract F (05):

0517 mod 77 = 3

She then asks him to sign contract R (17):

1717 mod 77 = 19

Alice now computes 05 × 17 mod 77 = 08. She then claims that Bob agreed to con-
tract I (08), and as evidence presents the signature 3 × 19 mod 77 = 57. Judge Janice
is called, and she computes

5753 mod 77 = 08

Naturally, she concludes that Bob is lying, because his public key deciphers the sig-
nature. So Alice has successfully tricked Bob.

A second problem [31] demonstrates that messages that are both enciphered
and signed should be signed first, then enciphered. Suppose Alice is sending Bob her
signature on a confidential contract m. She enciphers it first, then signs it:

c m
eBob mod nBob

dAlice

 mod nAlice=

Bishop.book Page 139 Tuesday, September 28, 2004 1:46 PM

140 Chapter 9 Key Management

and sends the result to Bob. However, Bob wants to claim that Alice sent him the
contract M. Bob computes a number r such that Mr mod nBob = m. He then repub-
lishes his public key as (reBob, nBob). Note that the modulus does not change. Now,
he claims that Alice sent him M. The judge verifies this using his current public key.
The simplest way to fix this is to require all users to use the same exponent but vary
the moduli.

EXAMPLE: Smarting from Alice’s trick, Bob seeks revenge. He and Alice agree to
sign the contract G (06). Alice first enciphers it, then signs it:

(0653 mod 77)11 mod 95 = 63

and sends it to Bob. Bob, however, wants the contract to be N (13). He computes an r
such that 13r mod 77 = 6; one such r is r = 59. He then computes a new public key
reBob mod φ(nBob) = 59 × 53 mod 60 = 7. He replaces his current public key with
(7, 77), and resets his private key to 43. He now claims that Alice sent him contract
N, signed by her.

Judge Janice is called. She takes the message 63 and deciphers it:

(6359 mod 95)43 mod 77 = 13

and concludes that Bob is correct.

This attack will not work if one signs first and then enciphers. The reason is
that Bob cannot access the information needed to construct a new public key,
because he would need to alter Alice’s public key. (See Exercise 7.)

9.6 Summary

Cryptographic infrastructure provides the mechanisms needed to use cryptography.
The infrastructure sees to the distribution of keys and the security of the procedures
and mechanisms implementing cryptographic algorithms and protocols.

Key exchange and authentication protocols, although distinct in principle, are
often combined because the first step in most communications is to prove identity.
Exchanging a session key in the process saves another exchange. Both public key
and classical cryptosystems can provide authentication and key exchange, provided
that the appropriate infrastructure is present.

A key element of such an infrastructure is a mechanism for binding crypto-
graphic keys to identity. This mechanism leads to the distinction between session
keys (generated once per session, and associated with that session) and interchange
keys (generated once per principal, and associated with that principal). It also leads
to certification, in which a representation of identity, along with other information

Bishop.book Page 140 Tuesday, September 28, 2004 1:46 PM

9.7 Further Reading 141

such as expiration time, is cryptographically signed and distributed as a unit. The
name of the signer (issuer) is included so that the certificate can be verified.

The mechanism used to sign certificates and other documents is a digital signa-
ture. A disinterested third party, called a judge, must be able to confirm or disprove that
the (alleged) sender computed the digital signature of the (alleged) signed message.

Session keys require pseudorandom number generation. Of the many algo-
rithms in use, the best are mixing algorithms in which every bit of the output depends
on every bit of the input, and no bit can be predicted even if all previous bits are known.

The management of keys involves storing them and revoking them, both of
which involve system issues as well as cryptographic ones. Another aspect is the idea
of key recovery.

9.7 Further Reading

Ellison explores methods of binding an identity to a public key without using certifi-
cates [297].

The Internet Security Association and Key Management Protocol [599] deals
with key exchange and authentication on the Internet. Several key exchange proto-
cols are based on classical cryptosystems [146, 686]. Protocols based on public key
methods abound (see, for example, [682, 705, 895, 951]).

Key generation is based on random numbers generated from physical phe-
nomena [12, 234, 289, 307, 539, 740]. Generating keys pseudorandomly is tricky
[711]; the most common method, using polynomial congruential generators, is not
safe [128, 129, 532, 746]. Rabin [738] and Adleman, Pomerance, and Rumley [10]
discuss generating large prime numbers for use in RSA; their method relies upon
pseudorandom number generation.

Several papers discuss issues in public key infrastructure, including interoper-
ation [451, 452, 761], organization [558, 579], requirements [37, 762], and models
[207, 714]. Park and Sandhu [710] have proposed extensions for X.509v3 certifi-
cates. Adams and Lloyd [7] discuss many aspects of public key infrastructures.

Merkle [621] notes that certificates can be kept as data in a file. Changing any
certificate changes the file. This reduces the problem of substituting faked certificates
to a data integrity problem.

Key escrowing allows the recovery of data if the cryptographic key is not
accessible. The best known such system is the U.S. government’s Escrowed Encryp-
tion Standard (EES) [116, 251, 665, 667, 678] Beth, Knobloch, Otten, Simmons, and
Wichmann [86] identify five desirable properties of such a system; Ganesan [346]
developed Yaksha, which meets all of these. Denning and Branstad [246] discuss the
architecture of key escrow systems.

Several key escrow schemes explore different ways to control access. Burm-
ester et al. [145] present a protocol with a limited time span. Several authors discuss
the nontechnical aspects of the proposed U.S. key escrow system (for example, see
[628, 794, 866]). Clark [176] and Walker et al. [929] discuss the relationship

Bishop.book Page 141 Tuesday, September 28, 2004 1:46 PM

142 Chapter 9 Key Management

between key recovery and key escrow. Others have proposed enhancements and
extensions of various Internet protocols for key recovery [53, 593, 798].

Translucent cryptography [66, 67] allows some fraction of the messages to be
read. This is not a key escrow system, because the keys are not available, but it does
serve the ends of such a system in that the messages can be read with a specified
probability.

Digital signature protocols abound. One standard, the DSS [666], uses a vari-
ant of El Gamal [294]; Rivest and others have criticized some of its features [755].
Others, especially those associated with the ITU’s X.500 series of recommendations,
recommend (but do not require) RSA. Grant’s book [372] discusses digital signa-
tures in general and presents many case studies.

The electronic commerce protocol SET [812, 813, 814] uses dual digital sig-
natures to tie components of messages together in such a way that neither the mes-
sages nor their association can be repudiated. Ford and Baum [330] discuss SET and
the supporting infrastructure. Ghosh [353] provides a balanced view of the dangers
of Internet commerce using the Web.

9.8 Exercises

1. Reconsider the case of Alice and her stockbroker, Bob. Suppose they
decide not to use a session key. Instead, Alice pads the message (BUY or
SELL) with random data. Explain under what conditions this approach
would be effective. Discuss how the length of the block affects your
answer.

2. Modify Kohnfelder’s scheme (see page 131) to allow a principal to issue
its own certificate. Identify one or more problems other principals might
have in relying on such a certificate. In particular, under what conditions
would this solve the problem of an imposter spoofing the sender?

3. An X.509 certificate revocation list contains a field specifying when the
next such list is expected to be issued. Why is that field present?

4. Consider the following authentication protocol, which uses a classical
cryptosystem. Alice generates a random message r, enciphers it with the
key k she shares with Bob, and sends the enciphered message {r}k to Bob.
Bob deciphers it, adds 1 to r, and sends {r + 1}k back to Alice. Alice
deciphers the message and compares it with r. If the difference is 1, she
knows that her correspondent shares the same key k and is therefore Bob.
If not, she assumes that her correspondent does not share the key k and so
is not Bob. Does this protocol authenticate Bob to Alice? Why or why not?

5. Needham and Schroeder suggest the following variant of their protocol:

1. Alice → Bob : Alice

Bishop.book Page 142 Tuesday, September 28, 2004 1:46 PM

9.8 Exercises 143

2. Bob →Alice : { Alice, rand3 } kBob

3. Alice → Cathy : { Alice, Bob, rand1, { Alice, rand3 } kBob }
4. Cathy → Alice : { Alice, Bob, rand1, ksession, {Alice, rand3, ksession}

kBob } kAlice

5. Alice → Bob : { Alice, rand3, ksession } kBob

6. Bob → Alice : { rand2 } ksession

7. Alice → Bob : { rand2 – 1 }ksession

Show that this protocol solves the problem of replay as a result of stolen
session keys.

6. Consider an RSA digital signature scheme (see Section 9.5.2). Alice tricks
Bob into signing messages m1 and m2 such that m = m1m2 mod nBob. Prove
that Alice can forge Bob’s signature on m.

7. Return to the example on page 140. Bob and Alice agree to sign the
contract G (06). This time, Alice signs the message first and then enciphers
the result. Show that the attack Bob used when Alice enciphered the
message and then signed it will now fail.

Bishop.book Page 143 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 144 Tuesday, September 28, 2004 1:46 PM

145

Chapter 10
Cipher Techniques

IAGO: So will I turn her virtue into pitch,
And out of her own goodness make the net

That shall enmesh them all.
—The Tragedy of Othello, II, iii, 361–363.

Cryptographic systems are sensitive to environment. Using cryptosystems over a net-
work introduces many problems. This chapter presents examples of these problems
and discusses techniques for dealing with them. First comes a description of stream
and block ciphers, followed by a review of the organization of the network layers.
We then present several network protocols to show how these techniques are used in
practice.

The key point of this chapter is that the strength of a cryptosystem depends in
part on how it is used. A mathematically strong cryptosystem is vulnerable when
used incorrectly.

10.1 Problems

The use of a cipher without consideration of the environment in which it is to be used
may not provide the security that the user expects. Three examples will make this
point clear.

10.1.1 Precomputing the Possible Messages

Simmons discusses the use of a “forward search” to decipher messages enciphered
for confidentiality using a public key cryptosystem [830]. His approach is to focus on
the entropy (uncertainty) in the message. To use an example from Section 9.1
(page 124), Cathy knows that Alice will send one of two messages—BUY or
SELL—to Bob. The uncertainty is which one Alice will send. So Cathy enciphers
both messages with Bob’s public key. When Alice sends the message, Cathy intercepts

Bishop.book Page 145 Tuesday, September 28, 2004 1:46 PM

146 Chapter 10 Cipher Techniques

it and compares the ciphertext with the two he computed. From this, she knows
which message Alice sent.

Simmons’ point is that if the plaintext corresponding to intercepted ciphertext
is drawn from a (relatively) small set of possible plaintexts, the cryptanalyst can
encipher the set of possible plaintexts and simply search that set for the intercepted
ciphertext. Simmons demonstrates that the size of the set of possible plaintexts may
not be obvious. As an example, he uses digitized sound. The initial calculations sug-
gest that the number of possible plaintexts for each block is 232. Using forward
search on such a set is clearly impractical, but after some analysis of the redundancy
in human speech, Simmons reduces the number of potential plaintexts to about
100,000. This number is small enough so that forward searches become a threat.

This attack is similar to attacks to derive the cryptographic key of symmetric
ciphers based on chosen plaintext (see, for example, Hellman’s time-memory
tradeoff attack [416]). However, Simmons’ attack is for public key cryptosystems
and does not reveal the private key. It only reveals the plaintext message.

10.1.2 Misordered Blocks

Denning [242] points out that in certain cases, parts of a ciphertext message can be
deleted, replayed, or reordered.

EXAMPLE: Consider RSA. As in the example on page 114, take p = 7 and q = 11.
Then n = 77 and φ(n) = 60. Bob chooses e = 17, so his private key d = 53. In this
cryptosystem, each plaintext character is represented by a number from 00 (A) to 25
(Z), and 26 represents a blank.

Alice wants to send Bob the message LIVE (11 08 21 04). She enciphers this
message using his public key, obtaining 44 57 21 16, and sends the message. Cathy
intercepts it and rearranges the ciphertext: 16 21 57 44. When Bob receives it, he
deciphers the message and obtains EVIL.

Even if Alice digitally signed each part, Bob could not detect this attack. The
problem is that the parts are not bound to one another. Because each part is indepen-
dent, there is no way to tell when one part is replaced or added, or when parts are
rearranged.

One solution is to generate a cryptographic checksum of the entire message
(see Section 8.4) and sign that value.

10.1.3 Statistical Regularities

The independence of parts of ciphertext can give information relating to the structure
of the enciphered message, even if the message itself is unintelligible. The regularity
arises because each part is enciphered separately, so the same plaintext always pro-

Bishop.book Page 146 Tuesday, September 28, 2004 1:46 PM

10.2 Stream and Block Ciphers 147

duces the same ciphertext. This type of encipherment is called code book mode,
because each part is effectively looked up in a list of plaintext-ciphertext pairs.

10.1.4 Summary

Despite the use of sophisticated cryptosystems and random keys, cipher systems may
provide inadequate security if not used carefully. The protocols directing how these
cipher systems are used, and the ancillary information that the protocols add to mes-
sages and sessions, overcome these problems. This emphasizes that ciphers and
codes are not enough. The methods, or protocols, for their use also affect the security
of systems.

10.2 Stream and Block Ciphers

Some ciphers divide a message into a sequence of parts, or blocks, and encipher each
block with the same key.

Definition 10–1. Let E be an encipherment algorithm, and let Ek(b) be the
encipherment of message b with key k. Let a message m = b1b2 …, where
each bi is of a fixed length. Then a block cipher is a cipher for which Ek(m) =
Ek(b1)Ek(b2) ….

EXAMPLE: The DES is a block cipher. It breaks the message into 64-bit blocks and
uses the same 56-bit key to encipher each block.

Other ciphers use a nonrepeating stream of key elements to encipher charac-
ters of a message.

Definition 10–2. Let E be an encipherment algorithm, and let Ek(b) be the
encipherment of message b with key k. Let a message m = b1b2 …, where
each bi is of a fixed length, and let k = k1k2…. Then a stream cipher is a cipher
for which Ek(m) = Ek1(b1)Ek2(b2) ….

If the key stream k of a stream cipher repeats itself, it is a periodic cipher.

EXAMPLE: The Vigenère cipher (see Section 8.2.2.1) is a stream cipher. Take bi to be
a character of the message and ki to be a character of the key. This cipher is periodic,
because the key is of finite length, and should the key be shorter than the message,
the key is repeated.

The one-time pad is also a stream cipher but is not periodic, because the key
stream never repeats.

Bishop.book Page 147 Tuesday, September 28, 2004 1:46 PM

148 Chapter 10 Cipher Techniques

10.2.1 Stream Ciphers

The one-time pad is a cipher that can be proven secure (see Section 8.2.2.2, “One-
Time Pad”). Bit-oriented ciphers implement the one-time pad by exclusive-oring
each bit of the key with one bit of the message. For example, if the message is 00101
and the key is 10010, the ciphertext is 0⊕1||0⊕0||1⊕0||0⊕1||1⊕0 or 10111. But how
can one generate a random, infinitely long key?

10.2.1.1 Synchronous Stream Ciphers
To simulate a random, infinitely long key, synchronous stream ciphers generate bits
from a source other than the message itself. The simplest such cipher extracts bits
from a register to use as the key. The contents of the register change on the basis of
the current contents of the register.

Definition 10–3. An n-stage linear feedback shift register (LFSR) consists of
an n-bit register r = r0…rn–1 and an n-bit tap sequence t = t0…tn–1. To obtain
a key bit, rn–1 is used, the register is shifted one bit to the right, and the new
bit r0t0⊕…⊕rn–1tn–1 is inserted.

EXAMPLE: Let the tap sequence for a four-stage LFSR be 1001, and let the initial
value of the register be 0010. The key bits extracted, and the values in the register, are

Current register Key New bit New register
0010 0 01⊕00⊕10⊕01 = 0⊕0⊕0⊕0 = 0 0001
0001 1 01⊕00⊕00⊕11 = 0⊕0⊕0⊕1 = 1 1000
1000 0 11⊕00⊕00⊕01 = 1⊕0⊕0⊕0 = 1 1100
1100 0 11⊕10⊕00⊕01 = 1⊕0⊕0⊕0 = 1 1110
1110 0 11⊕10⊕10⊕01 = 1⊕0⊕0⊕0 = 1 1111
1111 1 11⊕10⊕10⊕11 = 1⊕0⊕0⊕1 = 0 0111
0111 1 01⊕10⊕10⊕11 = 0⊕0⊕0⊕1 = 1 1011
1011 1 11⊕00⊕10⊕11 = 1⊕0⊕0⊕1 = 0 0101
0101 1 01⊕10⊕00⊕11 = 0⊕0⊕0⊕1 = 1 1010
1010 0 11⊕00⊕10⊕01 = 1⊕0⊕0⊕0 = 1 1101
1101 1 11⊕10⊕00⊕11 = 1⊕0⊕0⊕1 = 0 0110
0110 0 01⊕10⊕10⊕01 = 0⊕0⊕0⊕0 = 0 0011
0011 1 01⊕00⊕10⊕11 = 0⊕0⊕0⊕1 = 1 1001
1001 1 11⊕00⊕00⊕11 = 1⊕0⊕0⊕1 = 0 0100
0100 0 01⊕10⊕00⊕01 = 0⊕0⊕0⊕0 = 0 0010
0010 0 01⊕00⊕10⊕01 = 0⊕0⊕0⊕0 = 0 0001

Bishop.book Page 148 Tuesday, September 28, 2004 1:46 PM

10.2 Stream and Block Ciphers 149

and the cycle repeats. The key stream that this LFSR produces has a period of 15 and
is 010001111010110.

The LFSR method is an attempt to simulate a one-time pad by generating a
long key sequence from a little information. As with any such attempt, if the key is
shorter than the message, breaking part of the ciphertext gives the cryptanalyst infor-
mation about other parts of the ciphertext. For an LFSR, a known plaintext attack can
reveal parts of the key sequence. If the known plaintext is of length 2n, the tap
sequence for an n-stage LFSR can be determined completely.

Nonlinear feedback shift registers do not use tap sequences; instead, the new
bit is any function of the current register bits.

Definition 10–4. An n-stage nonlinear feedback shift register (NLFSR) con-
sists of an n-bit register r = r0…rn–1. To obtain a key bit, rn–1 is used, the
register is shifted one bit to the right, and the new bit is set to f(r0…rn–1),
where f is any function of n inputs.

EXAMPLE: Let the function f for a four-stage NLFSR be f (r0…rn–1) = (r0 and r2) or
r3, and let the initial value of the register be 1100. The key bits extracted, and the val-
ues in the register, are

Current register Key New bit New register
1100 0 f(1, 1, 0, 0) = (1 and 0) or 0 = 0 0110
0110 0 f(0, 1, 1, 0) = (0 and 1) or 0 = 0 0011
0011 1 f(0, 0, 1, 1) = (0 and 1) or 1 = 1 1001
1001 1 f(1, 0, 0, 1) = (1 and 0) or 1 = 1 1100
1100 0 f(1, 1, 0, 0) = (1 and 0) or 0 = 0 0110
0110 0 f(0, 1, 1, 0) = (0 and 1) or 0 = 0 0011
0011 1 f(0, 0, 1, 1) = (0 and 1) or 1 = 1 1001
1001 1 f(1, 0, 0, 1) = (1 and 0) or 1 = 1 1100
1100 0 f(1, 1, 0, 0) = (1 and 0) or 0 = 0 0110
0110 0 f(0, 1, 1, 0) = (0 and 1) or 0 = 0 0011

and the cycle repeats. The key stream that this NLFSR produces has a period of 4
and is 0011.

NLFSRs are not common because there is no body of theory about how to
build NLFSRs with long periods. By contrast, it is known how to design n-stage
LFSRs with a period of 2n – 1, and that period is maximal.

A second technique for eliminating linearity is called output feedback mode.
Let E be an encipherment function. Define k as a cryptographic key, and define r as a
register. To obtain a bit for the key, compute Ek(r) and put that value into the register.
The rightmost bit of the result is exclusive-or’ed with one bit of the message. The

Bishop.book Page 149 Tuesday, September 28, 2004 1:46 PM

150 Chapter 10 Cipher Techniques

process is repeated until the message is enciphered. The key k and the initial value in
r are the keys for this method. This method differs from the NLFSR in that the regis-
ter is never shifted. It is repeatedly enciphered.

A variant of output feedback mode is called the counter method. Instead of
using a register r, simply use a counter that is incremented for every encipherment.
The initial value of the counter replaces r as part of the key. This method enables one
to generate the ith bit of the key without generating the bits 0…i – 1. If the initial
counter value is i0, set the register to i + i0. In output feedback mode, one must gen-
erate all the preceding key bits.

10.2.1.2 Self-Synchronous Stream Ciphers
Self-synchronous ciphers obtain the key from the message itself. The simplest self-
synchronous cipher is called an autokey cipher and uses the message itself for the key.

EXAMPLE: The following is an autokey version of the Vigenère cipher, with the key
drawn from the plaintext.

key XTHEBOYHASTHEBA

plaintext THEBOYHASTHEBAG

ciphertext QALFPNFHSLALFCT

Contrast this with the example on page 103. The key there is VIG, and the resulting
ciphertext contains two three-character repetitions.

The problem with this cipher is the selection of the key. Unlike a one-time
pad, any statistical regularities in the plaintext show up in the key. For example, the
last two letters of the ciphertext associated with the plaintext word THE are always
AL, because H is enciphered with the key letter T and E is enciphered with the key
letter H. Furthermore, if the analyst can guess any letter of the plaintext, she can
determine all successive plaintext letters.

An alternative is to use the ciphertext as the key stream. A good cipher will
produce pseudorandom ciphertext, which approximates a random one-time pad bet-
ter than a message with nonrandom characteristics (such as a meaningful English
sentence).

EXAMPLE: The following is an autokey version of the Vigenère cipher, with the key
drawn from the ciphertext.

key XQXBCQOVVNGNRTT

plaintext THEBOYHASTHECAT

ciphertext QXBCQOVVNGNRTTM

This eliminates the repetition (ALF) in the preceding example.

Bishop.book Page 150 Tuesday, September 28, 2004 1:46 PM

10.2 Stream and Block Ciphers 151

This type of autokey cipher is weak, because plaintext can be deduced from
the ciphertext. For example, consider the first two characters of the ciphertext, QX.
The X is the ciphertext resulting from enciphering some letter with the key Q. Deci-
phering, the unknown letter is H. Continuing in this fashion, the analyst can recon-
struct all of the plaintext except for the first letter.

A variant of the autokey method, cipher feedback mode, uses a shift register.
Let E be an encipherment function. Define k as a cryptographic key and r as a
register. To obtain a bit for the key, compute Ek(r). The rightmost bit of the result is
exclusive-or’ed with one bit of the message, and the other bits of the result are dis-
carded. The resulting ciphertext is fed back into the leftmost bit of the register, which
is right shifted one bit. (See Figure 10–1.)

Cipher feedback mode has a self-healing property. If a bit is corrupted in trans-
mission of the ciphertext, the next n bits will be deciphered incorrectly. But after n
uncorrupted bits have been received, the shift register will be reinitialized to the value
used for encipherment and the ciphertext will decipher properly from that point on.

As in the counter method, one can decipher parts of messages enciphered in
cipher feedback mode without deciphering the entire message. Let the shift register
contain n bits. The analyst obtains the previous n bits of ciphertext. This is the value
in the shift register before the bit under consideration was enciphered. The decipher-
ment can then continue from that bit on.

10.2.2 Block Ciphers

Block ciphers encipher and decipher multiple bits at once, rather than one bit at a
time. For this reason, software implementations of block ciphers run faster than soft-
ware implementations of stream ciphers. Errors in transmitting one block generally
do not affect other blocks, but as each block is enciphered independently, using the
same key, identical plaintext blocks produce identical ciphertext blocks. This allows
the analyst to search for data by determining what the encipherment of a specific

... ...

k
r

E

Ek(r) mi

⊕
ci

Figure 10–1 Diagram of cipher feedback mode. The register r is enciphered
with key k and algorithm E. The rightmost bit of the result is exclusive-or’ed
with one bit of the plaintext mi to produce the ciphertext bit ci. The register r
is right shifted one bit, and ci is fed back into the leftmost bit of r.

Bishop.book Page 151 Tuesday, September 28, 2004 1:46 PM

152 Chapter 10 Cipher Techniques

plaintext block is. For example, if the word INCOME is enciphered as one block, all
occurrences of the word produce the same ciphertext.

EXAMPLE: Consider a banking database with two records:

MEMBER: HOLLY INCOME $100,000
MEMBER: HEIDI INCOME $100,000

Suppose the encipherment of this data under a block cipher is

ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

If an attacker determines who these records refer to, and that CTXUVYSS is the
encipherment of the INCOME keyword, he will know that Holly and Heidi have the
same income.

To prevent this type of attack, some information related to the block’s position
is inserted into the plaintext block before it is enciphered. The information can be
bits from the preceding ciphertext block [311] or a sequence number [502]. The dis-
advantage is that the effective block size is reduced, because fewer message bits are
present in a block.

Cipher block chaining does not require the extra information to occupy bit
spaces, so every bit in the block is part of the message. Before a plaintext block is
enciphered, that block is exclusive-or’ed with the preceding ciphertext block. In
addition to the key, this technique requires an initialization vector with which to
exclusive-or the initial plaintext block. Taking Ek to be the encipherment algorithm
with key k, and I to be the initialization vector, the cipher block chaining technique is

c0 = Ek(m0 ⊕ I)
ci = Ek(mi ⊕ ci–1) for i > 0

10.2.2.1 Multiple Encryption
Other approaches involve multiple encryption. Using two keys k and k´ to encipher a
message as c = Ek´(Ek(m)) looks attractive because it has an effective key length of
2n, whereas the keys to E are of length n. However, Merkle and Hellman [624] have
shown that this encryption technique can be broken using 2n+1 encryptions, rather
than the expected 22n (see Exercise 3).

Using three encipherments improves the strength of the cipher. There are sev-
eral ways to do this. Tuchman [908] suggested using two keys k and k´:

c = Ek(Dk´(Ek(m)))

Bishop.book Page 152 Tuesday, September 28, 2004 1:46 PM

10.3 Networks and Cryptography 153

This mode, called Encrypt-Decrypt-Encrypt (EDE) mode, collapses to a single enci-
pherment when k = k´. The DES in EDE mode is widely used in the financial com-
munity and is a standard (ANSI X9.17 and ISO 8732). It is not vulnerable to the
attack outlined earlier. However, it is vulnerable to a chosen plaintext and a known
plaintext attack. If b is the block size in bits, and n is the key length, the chosen plain-
text attack takes O(2n) time, O(2n) space, and requires 2n chosen plaintexts. The
known plaintext attack requires p known plaintexts, and takes O(2n+b/p) time and
O(p) memory.

A second version of triple encipherment is the triple encryption mode [624].
In this mode, three keys are used in a chain of encipherments.

c = Ek(Ek´(Ek´´(m)))

The best attack against this scheme is similar to the attack on double encipherment,
but requires O(22n) time and O(2n) memory. If the key length is 56 bits, this attack is
computationally infeasible.

10.3 Networks and Cryptography

Before we discuss Internet protocols, a review of the relevant properties of networks is
in order. The ISO/OSI model [894] provides an abstract representation of networks
suitable for our purposes. Recall that the ISO/OSI model is composed of a series of
layers (see Figure 10–2). Each host, conceptually, has a principal at each layer that
communicates with a peer on other hosts. These principals communicate with princi-
pals at the same layer on other hosts. Layer 1, 2, and 3 principals interact only with
similar principals at neighboring (directly connected) hosts. Principals at layers 4, 5, 6,
and 7 interact only with similar principals at the other end of the communication. (For
convenience, “host” refers to the appropriate principal in the following discussion.)

Each host in the network is connected to some set of other hosts. They
exchange messages with those hosts. If host nob wants to send a message to host
windsor, nob determines which of its immediate neighbors is closest to windsor
(using an appropriate routing protocol) and forwards the message to it. That host,
baton, determines which of its neighbors is closest to windsor and forwards the mes-
sage to it. This process continues until a host, sunapee, receives the message and
determines that windsor is an immediate neighbor. The message is forwarded to
windsor, its endpoint.

Definition 10–5. Let hosts C0, …, Cn be such that Ci and Ci+1 are directly
connected, for 0 ≤ i < n. A communications protocol that has C0 and Cn as its
endpoints is called an end-to-end protocol. A communications protocol that
has Cj and Cj+1 as its endpoints is called a link protocol.

Bishop.book Page 153 Tuesday, September 28, 2004 1:46 PM

154 Chapter 10 Cipher Techniques

The difference between an end-to-end protocol and a link protocol is that the
intermediate hosts play no part in an end-to-end protocol other than forwarding mes-
sages. On the other hand, a link protocol describes how each pair of intermediate
hosts processes each message.

EXAMPLE: The telnet protocol is an applications layer protocol that allows users to
obtain a virtual terminal on a remote host. Thus, it is an end-to-end protocol. IP is a
network layer protocol that guides messages from a host to one of its immediate
neighbors. Thus, it is a link protocol.

The protocols involved can be cryptographic protocols. If the cryptographic pro-
cessing is done only at the source and at the destination, the protocol is an end-to-end
protocol. If cryptographic processing occurs at each host along the path from source
to destination, the protocol is a link protocol. When encryption is used with either
protocol, we use the terms end-to-end encryption and link encryption, respectively.

EXAMPLE: If the messages between the telnet client and server are enciphered [915],
the encipherment and decipherment occur at the client and the server only. The pro-
tocol uses end-to-end encryption. The PPP Encryption Control Protocol [627] enci-

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Network layer

Data link layer

Physical layer

Figure 10–2 The ISO/OSI model. The dashed arrows indicate peer-to-peer
communication. For example, the transport layers are communicating with
each other. The solid arrows indicate the actual flow of bits. For example, the
transport layer invokes network layer routines on the local host, which invoke
data link layer routines, which put the bits onto the network. The physical layer
passes the bits to the next “hop,” or host, on the path. When the message
reaches the destination, it is passed up to the appropriate level.

Bishop.book Page 154 Tuesday, September 28, 2004 1:46 PM

10.3 Networks and Cryptography 155

phers messages between intermediate hosts. When a host gets the message, it
deciphers the message, determines which neighbor to send it to, reenciphers the mes-
sage using the key appropriate for that neighbor, and sends it to that neighbor. This
protocol uses link encryption.

In link encryption, each host shares a cryptographic key with its neighbor. (If
public key cryptography is used, each host has its neighbor’s public key. Link
encryption based on public keys is rare.) The keys may be set on a per-host basis or a
per-host-pair basis. Consider a network with four hosts called windsor, stripe, facer,
and seaview. Each host is directly connected to the other three. With keys distributed
on a per-host basis, each host has its own key, making four keys in all. Each host has
the keys for the other three neighbors, as well as its own. All hosts use the same key
to communicate with windsor. With keys distributed on a per-host-pair basis, each
host has one key per possible connection, making six keys in all. Unlike the per-host
situation, in the per-host-pair case, each host uses a different key to communicate with
windsor. The message is deciphered at each intermediate host, reenciphered for the
next hop, and forwarded. Attackers monitoring the network medium will not be able
to read the messages, but attackers at the intermediate hosts will be able to do so.

In end-to-end encryption, each host shares a cryptographic key with each des-
tination. (Again, if the encryption is based on public key cryptography, each host
has—or can obtain—the public key of each destination.) As with link encryption, the
keys may be selected on a per-host or per-host-pair basis. The sending host enciphers
the message and forwards it to the first intermediate host. The intermediate host for-
wards it to the next host, and the process continues until the message reaches its des-
tination. The destination host then deciphers it. The message is enciphered throughout
its journey. Neither attackers monitoring the network nor attackers on the intermedi-
ate hosts can read the message. However, attackers can read the routing information
used to forward the message.

These differences affect a form of cryptanalysis known as traffic analysis. A
cryptanalyst can sometimes deduce information not from the content of the message
but from the sender and recipient. For example, during the Allied invasion of Nor-
mandy in World War II, the Germans deduced which vessels were the command
ships by observing which ships were sending and receiving the most signals. The
content of the signals was not relevant; their source and destination were. Similar
deductions can reveal information in the electronic world.

EXAMPLE: ARS&C is an engineering firm developing the next generation of net-
work protocols. Each employee of ARS&C has his or her own workstation. All net-
work traffic is enciphered using end-to-end encryption. A competitor of the company
appears to be obtaining proprietary data. ARS&C has hired Alice to figure out who is
leaking the information.

Alice begins by monitoring all network traffic. She notices that the worksta-
tions are grouped into three different divisions: corporate management, sales, and
engineering. The leaks are coming from the engineering systems. She looks at the
sources and destinations of all connections to and from the engineering systems and

Bishop.book Page 155 Tuesday, September 28, 2004 1:46 PM

156 Chapter 10 Cipher Techniques

notices that the connections from corporate management center on three systems:
curly, larry, and moe. The connections from larry always occur between midnight
and four in the morning; those from the other two occur during the day. Alice then
looks at the events of the days on which the connections take place. The connections
from curly and moe occur on the days of management reviews and are invariably to
the ftp or www port. The connections from larry are more infrequent and are to the
telnet port. A few days after each connection, the competitor seems to have acquired
new proprietary information.

From this analysis, Alice suggests that the host larry is somehow involved in
the problem. She needs to check the systems that larry connects to and see if the pro-
prietary data is on those systems. At no time has Alice read any of the traffic, because
it is encrypted; but from the traffic analysis, she has determined the system involved
in the compromise.

10.4 Example Protocols

Several widely used Internet protocols illustrate different facets of cryptographic
techniques. This section examines three such protocols, each at a different layer.
PEM is a privacy-enhanced electronic mail protocol at the applications layer and
demonstrates the considerations needed when designing such a protocol. Its tech-
niques are similar to those of PGP, another widely used security-enhanced electronic
mail protocol. SSL provides transport layer security. Application layer protocols
such as HTTP can use SSL to ensure secure connections. IPsec provides security
mechanisms at the network, or IP, layer.

10.4.1 Secure Electronic Mail: PEM

Electronic mail is a widely used mechanism for communication over the Internet. It
is also a good example of how practical considerations affect the design of security-
related protocols. We begin by describing the state of electronic mail and then show
how security services can be added.

Figure 10–3 shows a typical network mail service. The UA (user agent) inter-
acts directly with the sender. When the message is composed, the UA hands it to the
MTA (message transport, or transfer, agent). The MTA transfers the message to its
destination host, or to another MTA, which in turn transfers the message further. At
the destination host, the MTA invokes a user agent to deliver the message.

An attacker can read electronic mail at any of the computers on which MTAs
handling the message reside, as well as on the network itself. An attacker could also
modify the message without the recipient detecting the change. Because authentica-
tion mechanisms are minimal and easily evaded, a sender could forge a letter from
another and inject it into the message handling system at any MTA, from which it

Bishop.book Page 156 Tuesday, September 28, 2004 1:46 PM

10.4 Example Protocols 157

would be forwarded to the destination. Finally, a sender could deny having sent a let-
ter, and the recipient could not prove otherwise to a disinterested party. These four
types of attacks (violation of confidentiality, authentication, message integrity, and
nonrepudiation) make electronic mail nonsecure.

In 1985, the Internet Research Task Force on Privacy (also called the Privacy
Research Group) began studying the problem of enhancing the privacy of electronic
mail. The goal of this study was to develop electronic mail protocols that would pro-
vide the following services.

1. Confidentiality, by making the message unreadable except to the sender
and recipient(s)

2. Origin authentication, by identifying the sender precisely
3. Data integrity, by ensuring that any changes in the message are easy to detect
4. Nonrepudiation of origin (if possible)

The protocols were christened Privacy-enhanced Electronic Mail (or PEM).

10.4.1.1 Design Principles
Creating a viable protocol requires the developers to consider several design aspects.
Otherwise, acceptance and use of the protocol will be very limited.

Related protocols should not be changed. A protocol is designed to provide
specific services (in this case, the privacy enhancements discussed in the preceding
section). It should not require alteration of other protocols (such as those that transmit
electronic mail). The Privacy Research Group developed new protocols rather than

Figure 10–3 Message handling system. The user composes mail on the UA
(user agent). When she sends it, the message is passed to the MTA (message
transport, or transfer, agent). The MTA passes the message to other MTAs,
until it reaches the MTA associated with the destination host. That host
transfers it to the appropriate UA for delivery.

UA

MTA MTA MTA

UA UA User Agents

Message Transfer
Agents

Bishop.book Page 157 Tuesday, September 28, 2004 1:46 PM

158 Chapter 10 Cipher Techniques

modifying the mail transfer protocols. This also requires development of new soft-
ware rather than modification of existing software to implement the protocol
(although existing software can be modified to support it).

A corollary is compatibility. A general protocol (such as PEM) must be com-
patible with as many other protocols and programs as possible. The protocols must
work with a wide range of software, including software in all environments that con-
nect to the Internet.

Another important principle is independence. The privacy enhancements
should be available if desired but should not be mandatory. If a new protocol pro-
vides specific services, the user should be able to use the services desired, which may
(or may not) be all the ones that the protocol provides. For example, a sender might
care about sender authentication but not confidentiality. This also enables some users
to send privacy-enhanced electronic mail, and others to send unprotected electronic
mail, on the same system. Recipients can also read either type of mail.

Finally, two parties should be able to use the protocol to communicate without
prearrangement. Arranging a communications key out of band (such as in person or
over the telephone) can be time-consuming and prone to error. Furthermore, callers
must authenticate themselves to the recipients. This is difficult and is another error-
prone operation.

To summarize, the design goals of PEM were as follows.

1. Not to redesign existing mail system or protocols
2. To be compatible with a range of MTAs, UAs, and other computers
3. To make privacy enhancements available separately, so they are not required
4. To enable two parties to use the protocol to communicate without

prearrangement

10.4.1.2 Basic Design
PEM defines two types of keys. The message to be sent is enciphered with a data
encipherment key (DEK), corresponding to a session key. This key is generated ran-
domly and is used only once. It must be sent to the recipient, so it is enciphered with
an interchange key. The interchange keys of the sender and recipient must be
obtained in some way other than through the message.

This requires several assumptions. First, the interchange key must be available
to the respective parties. If symmetric ciphers are used, the keys must be exchanged
out of bands—for example, by telephone or courier. If public keys are used, the
sender needs to obtain the certificate of the recipient.

If Alice wants to send a confidential message to Bob, she obtains Bob’s inter-
change key kBob. She generates a random DEK ksession and enciphers the message m.
She then enciphers the DEK using the interchange key. She sends both to Bob.

Alice → Bob: { m }ksession{ ksession }kBob

Bob can then decipher the session key and from it obtain the message.

Bishop.book Page 158 Tuesday, September 28, 2004 1:46 PM

10.4 Example Protocols 159

If Alice wants to send an authenticated, integrity-checked message to Bob, she
first computes a cryptographic hash h(m) of the message, possibly using a random
session key (if the hash function requires one). The value that the hash function com-
putes is called a message integrity check (MIC). She then enciphers the MIC (and the
session key, if one was used) with her interchange key kAlice and sends it to Bob:

Alice → Bob: m { h(m) }kAlice

Bob uses Alice’s interchange key to decipher the MIC, recomputes it from m, and
compares the two. If they do not match, either the message or the value of the hash
has been changed. In either case, the message cannot be trusted.

To send an enciphered, authenticated, integrity-checked message, combine the
operations discussed above, as follows.

Alice → Bob: { m }ksession{ h(m) }kAlice{ ksession }kBob

The nonrepudiation service comes from the use of public key cryptography. If
Alice’s interchange key is her private key, a third party can verify that she signed the
message by deciphering it with her public key. Alice cannot refute that her private
key was used to sign the message. (She can dispute that she signed it by claiming her
private key was compromised. Preventing this is beyond the scope of technical proto-
cols. In this context, “nonrepudiation” refers only to the inability to deny that the pri-
vate key was used to sign the message.)

10.4.1.3 Other Considerations
When the interchange keys are for public key cryptosystems, PEM suggests the use
of a certificate-based key management scheme (see Section 13.5, “Naming and Cer-
tificates”). However, it is not a requirement.

A major problem is the specification of Internet electronic mail. Among the
restrictions placed on it, the requirements that the letter contain only ASCII charac-
ters and that the lines be of limited length are the most onerous. Related to this is the
difference among character sets. A letter typed on an ASCII-based system will be
unreadable on an EBCDIC-based system.

A three-step encoding procedure overcomes these problems.

1. The local representations of the characters making up the letter are
changed into a canonical format. This format satisfies the requirements of
RFC 822–compliant mailers (specifically, all characters are seven-bit
ASCII characters, lines are less than 1,000 characters long, and lines end
with a carriage return followed by a newline [221]1).

1 The dot stuffing convention (so that a line containing a single “.” is not seen as a message
terminator) is not used (see Section 4.3.2.2 of RFC 1421 [569]).

Bishop.book Page 159 Tuesday, September 28, 2004 1:46 PM

160 Chapter 10 Cipher Techniques

2. The message integrity check is computed and enciphered with the sender’s
interchange key. If confidentiality is required, the message is enciphered as
described above.

3. The message is treated as a stream of bits. Every set of six bits is mapped
into a character,2 and after every 64 characters, a newline is inserted.

The resulting ASCII message has PEM headers (indicating algorithms and key)
prepended. PEM headers and body are surrounded by lines indicating the start and
end of the PEM message.

If the recipient has PEM-compliant software, she can read the message. Oth-
erwise, she cannot. If the message is authenticated and integrity-checked (but not
encrypted), she should be able to read the message even if she does not have PEM-
compliant software (remember that one of the design components is compatibility
with existing mail programs). The special mode MIC-CLEAR handles this case. In
this mode, the message check is computed and added, but the message is not trans-
formed into the representation of step 3. On receipt, the authentication and message
integrity check may fail because some MTAs add blank lines, change the end-of-line
character, or delete terminating white space from lines. Although this does not alter
the meaning of the message, it does change the content. Hence, PEM-compliant soft-
ware will report that the message has been altered in transit. But people can use nor-
mal mail reading programs to read the letter. (Whether they should trust it is another
matter. Given that the PEM software has reported changes, the recipients should at
least verify the contents in some way before trusting the letter.)

10.4.1.4 Conclusion
PEM demonstrates how system factors influence the use of cryptographic protocols.
While central to the design and implementation of PEM systems, the cryptographic
protocols require a supporting infrastructure. The need for compatibility guides
many design choices for this infrastructure. The environment of development also
affects the infrastructure.

Comparing PGP and PEM illustrates this. Both use the same cryptographic
protocols, but by default, PGP uses the IDEA cipher instead of the DES. PGP also
uses a different, nonhierarchical certificate management scheme described in Sec-
tions 9.3.1.2 and 13.5. Finally, PGP handles line termination characters differently.
Messages are labeled binary or text. If binary, line terminators are untransformed. If
text, they are canonicalized (if enciphering) or mapped into the end-of-line character
sequence for the current host (if deciphering).

2 The character set is drawn from parts of the international alphabet IA5 common to most other
alphabets.

Bishop.book Page 160 Tuesday, September 28, 2004 1:46 PM

10.4 Example Protocols 161

10.4.2 Security at the Network Layer: IPsec

IPsec is a collection of protocols and mechanisms that provide confidentiality,
authentication, message integrity, and replay detection at the IP layer. Because cryp-
tography forms the basis for these services, the protocols also include a key manage-
ment scheme, which we will not discuss here.

Conceptually, think of messages being sent between two hosts as following a
path between the hosts. The path also passes through other intermediate hosts. IPsec
mechanisms protect all messages sent along a path. If the IPsec mechanisms reside
on an intermediate host (for example, a firewall or gateway), that host is called a
security gateway.

IPsec has two modes. Transport mode encapsulates the IP packet data area
(which is the upper layer packet) in an IPsec envelope, and then uses IP to send the
IPsec-wrapped packet. The IP header is not protected. Tunnel mode encapsulates
an entire IP packet in an IPsec envelope and then forwards it using IP. Here, the IP
header of the encapsulated packet is protected. (Figure 10–4 illustrates these
modes.) Transport mode is used when both endpoints support IPsec. Tunnel mode
is used when either or both endpoints do not support IPsec but two intermediate
hosts do.

EXAMPLE: Secure Corp. and Guards Inc. wish to exchange confidential information
about a pending fraud case. The hosts main.secure.com and fraud.guards.com both
support IPsec. The messages between the systems are encapsulated using transport
mode at the sender and processed into cleartext at the receiver.

Red Dog LLC is a third corporation that needs access to the data. The data is
to be sent to gotcha.reddog.com. Red Dog’s systems do not support IPsec, with one
exception. That exception is the host, firewall.reddog.com, that is connected to both
Red Dog’s internal network and the Internet. Because none of Red Dog’s other hosts
is connected to the Internet, all traffic to gotcha from Secure Corp. must pass through
firewall.reddog.com. So main.secure.com uses tunnel mode to send its IPsec packets
to Red Dog. When the packets arrive at firewall, the IPsec information is removed
and validated, and the enclosed IP packet is forwarded to gotcha. In this context,
firewall.reddog.com is a security gateway.

IP
header

IP
header

Figure 10–4 The packet on the left is in transport mode, because the body of
the packet is encrypted but its header is not. The packet on the right is in
tunnel mode, because the packet header and the packet body are both
encrypted. The unencrypted IP header is used to deliver the encrypted packet
to a system on which it can be decrypted and forwarded.

Encrypted
data body

Encrypted
data body

Encrypted
IP

header

Bishop.book Page 161 Tuesday, September 28, 2004 1:46 PM

162 Chapter 10 Cipher Techniques

Two protocols provide message security. The authentication header (AH) pro-
tocol provides message integrity and origin authentication and can provide antireplay
services. The encapsulating security payload (ESP) protocol provides confidentiality
and can provide the same services as those provided by the AH protocol. Both proto-
cols are based on cryptography, with key management supplied by the Internet Key
Exchange (IKE) protocol (although other key exchange protocols, including manual
keying, may be used).

10.4.2.1 IPsec Architecture
IPsec mechanisms use a security policy database (SPD) to determine how to handle
messages. Legal actions are discarding the message, applying security services to the
message, and forwarding the message with no change. The action taken depends on
information in the IP and transport layer headers.

IPsec mechanisms determine the security services needed on the basis of the
SPD and the path that the packet takes.

When a packet arrives, the IPsec mechanism consults the SPD for the relevant
network interface. The SPD determines which entry applies on the basis of the
attributes of the packet. These attributes include the source and destination port and
address, the transport layer protocol involved, and other data.

EXAMPLE: An SPD has two entries for destination addresses 10.1.2.3 to 10.1.2.103.
The first applies to packets with destination port 25. The second applies to packets
transporting the protocol HTTP. If a packet arrives with destination address
10.1.2.50, and its destination port is 25, the first entry applies; if its destination port
is 80, the second entry applies.

Entries are checked in order. If one has a different policy for securing elec-
tronic mail depending on its destination, the more specific entries are placed where
they will be searched first. If no entry matches the incoming packet, it is discarded.

EXAMPLE: In the example above, the administrator wants to discard SMTP packets
coming from host 192.168.2.9 and forward packets from host 192.168.19.7 without
applying IPsec services. Assuming that the SPD entries are searched from first to
last, the SPD would have these three entries:

source 192.168.2.9, destination 10.1.2.3 to 10.1.2.103, port 25, discard
source 192.168.19.7, destination 10.1.2.3 to 10.1.2.103, port 25, bypass
destination 10.1.2.3 to 10.1.2.103, port 25, apply IPsec

The heart of applying IPsec is the security association.

Definition 10–6. A security association (SA) is an association between peers
for security services. The security association is unidirectional.

Bishop.book Page 162 Tuesday, September 28, 2004 1:46 PM

10.4 Example Protocols 163

A security association is a set of security enhancements to a channel along
which packets are sent. It is defined uniquely by the destination address, the security
protocol (AH or ESP), and a unique 32-bit security parameter index (SPI). It defines
the security protocol that is to be applied to packets sent over that association.

Each SA uses either ESP or AH, but not both. If both are required, two SAs
are created. Similarly, if IPsec is to provide security between two peers in both direc-
tions, two SAs are needed.

When IPsec services are to be applied, the SPD entry identifies one or more
security associations and parameters. The parameters describe how to determine
which security association(s) to use to process the packet. This leads to the security
association database (SAD), which consists of a set of selectors and corresponding
security associations.

EXAMPLE: Continuing the example above, focus on the case in which IPsec is to be
applied. The SPD entry for 10.1.2.101 could take the selector for the SAD from the
packet (so the selector might be the SA with the destination address 10.1.2.101) or
from the SPD entry (so the selector might be the SA with the destination addresses in
the range 10.1.2.3 to 10.1.2.103).

Each SAD entry contains information about the SA. Key fields are as follows.

• The AH algorithm identifier and keys are used when the SA uses the AH
protocol.

• The ESP encipherment algorithm identifier and keys are used when the SA
uses the confidentiality service of the ESP protocol.

• The ESP authentication algorithm identifier and keys are used when the
SA uses the authentication and data integrity services of the ESP protocol.

• The lifetime of the SA is either the time at which the SA must be deleted
and a new one formed or a count of the maximum number of bytes
allowed over this SA.

• The IPsec protocol mode is tunnel mode, transport mode, or a wildcard. If
it is a wildcard, either protocol mode is acceptable. Security gateways
need to support only tunnel mode, but host implementations must support
both modes.

An additional field checks for replay in inbound packets.

• The antireplay window field is used to detect replay (see Section 10.4.2.2).
If the SA does not use the antireplay feature, this field is not used.

Outbound packets have sequence numbers.

• The sequence number counter generates the AH or ESP sequence number.

Bishop.book Page 163 Tuesday, September 28, 2004 1:46 PM

164 Chapter 10 Cipher Techniques

• The sequence counter overflow field stops further traffic over the SA if the
sequence counter overflows.

• Path Maximum Transmission Unit and aging variables detect time-outs.

When inbound traffic arrives, the destination address, security protocol, and
SPI are used to find the associated SA in the SAD. This verifies the properties that
the packet should have and enables the replay check (if desired). If the packet is to be
forwarded, the SPD determines the relevant services, the appropriate services are
supplied, and the packet is forwarded.

In some situations, multiple SAs may protect packets.

Definition 10–7. A security association bundle (SA bundle) is a sequence of
security associations that the IPsec mechanisms apply to packets.

Tunnel mode SAs can be nested. This is called iterated tunneling and occurs
when multiple hosts build tunnels through which they send traffic. The endpoints
may be the same, although support for iterated tunneling is required only when at
least one endpoint of the two tunnels is different. The tunnels may be entirely
nested.

EXAMPLE: Return to Secure Corp. and Red Dog LLC. The fraud group within
Secure has a host, frauds, that has IPsec mechanisms. The Red Dog fraud group has
a new system, equity, that also has IPsec mechanisms. Both Secure’s gateway to the
internet, gateway, and Red Dog’s gateway to the Internet, firewall, have IPsec mech-
anisms. Because the data is so sensitive, the fraud groups decide that they need to
protect their data within each company. The SA between the gateways is not enough.

The data transfer now has two SAs. The first goes from gateway.secure.com to
firewall.reddog.com and is in tunnel mode. The second, also in tunnel mode, begins
at frauds.secure.com, tunnels through the SA from gateway.secure.com to
firewall.reddog.com, and terminates at equity.reddog.com.

Iteration of transport mode SAs occurs when both the AH and ESP protocols
are used. This is called transport adjacency, and when it is used, application of the
ESP protocol should precede application of the AH protocol. The idea is that the ESP
protocol protects the higher-layer (transport) protocol and the AH protocol protects
the IP packet. Were the AH protocol to be applied first, the ESP protocol would not
protect the IP packet headers.

It is instructive to examine the appearance of the packets in the example above.
Figure 10–5 shows the packet layout as it travels between the two companies. Notice
that the packet generated by frauds is encapsulated in another IP packet with the IPsec
services applied to the inner packet. Both headers identify equity as the destination.
When the packet arrives at gateway, the original IP header is (probably) not visible to
gateway. In this case, the SAD and SPD use a special identifier to indicate that the
source is obscured. (See Exercise 8.) The appropriate SA directs the packet to be

Bishop.book Page 164 Tuesday, September 28, 2004 1:46 PM

10.4 Example Protocols 165

encapsulated and forwarded to firewall, so the added IP header identifies firewall as the
destination IP address. When the packet arrives at firewall, it uses the incoming
packet’s destination IP address (firewall), security protocol, and SPI to locate the SA.
This bundle tells firewall to authenticate and decrypt the contents of the packet. The
inner IP packet is then used to look up the appropriate action in the SPD, which (in this
case) is to bypass IPsec. The packet is then forwarded to equity, which repeats the pro-
cessing. The innermost IP packet is then forwarded to equity and processed.

We now examine the AH and ESP protocols.

10.4.2.2 Authentication Header Protocol
The goal of the authentication header (AH) protocol is to provide origin authentica-
tion, message integrity, and protection against replay, if desired. It protects static
fields of the IP packet header as well as the contents of the packet.

The important parameters included in the AH header are an indication of the
length of the header, the SPI of the SA under which this protocol is applied, a
sequence number used to prevent replay, and an Integrity Value Check (IVC)3 pad-
ded to a multiple of 32 bits (for IPv4) or 64 bits (for IPv6).

The AH protocol has two steps. The first checks that replay is not occurring.
The second checks the authentication data.

When a packet is sent, the sender assumes that antireplay is used unless it is
told otherwise. The sender first checks that the sequence number will not cycle. (If it
will, a new SA must be created; see the discussion above.) It adds 1 to the current
sequence number. The sender then calculates the IVC of the packet. The IVC includes
all fields in the IP header that will not change in transit or that can be predicted (such

3 This is another term for a message integrity check (MIC); we use the AH protocol
specification term here for consistency.

Transport
layer

protocol
headers
and data

from
frauds

ESP
from

frauds

AH
from

frauds

IP

from
frauds

IP
from
ESP

from
AH

from
IP

gatewaygatewaygateway

Figure 10–5 An IPsec-protected packet going through nested tunnels. The
filled rectangles represent headers. The rightmost IP header and the following
data constitute the original packet. The IPsec mechanisms add the ESP, AH,
and IP headers of frauds and forward the packet to gateway. This is the first SA
and is in tunnel mode. The host gateway adds the ESP, AH, and IP headers
shown, putting the packet into the second tunnel mode SA.

Bishop.book Page 165 Tuesday, September 28, 2004 1:46 PM

166 Chapter 10 Cipher Techniques

as the destination field), the AH header (with the authentication data field set to 0 for
this computation), and any encapsulated or higher-layer data. Mutable fields in the IP
header (such as the type of service, flags, fragment offset, time to live, and header
checksum fields) are set to 0 for this computation.

When a packet arrives, the IPsec mechanism determines if the packet contains
an authentication header. If so, it uses the SPI and destination address to find the
associated SA in the SAD. If no such SA exists, the packet is discarded. Otherwise,
the key, IVC algorithm, and antireplay settings are obtained from the SAD entry.

If the antireplay service is desired, a “sliding window” mechanism checks that
the packet is new. Think of the SA as operating on a stream of packets. Conceptually,
the window contains slots for at least 32 packets. Each slot has the sequence number
of the packet for that slot. When a packet arrives, the mechanism checks that the
packet’s sequence number is at least that of the leftmost slot in the window. If the
packet’s sequence number is to the left of the window, the packet is discarded. The IVC
of the packet is then verified, and if it is incorrect, the packet is discarded. Otherwise,
if the packet’s sequence number lies within the window, but the slot with that
sequence number is occupied, the packet is discarded. If the slot is empty, the packet
is inserted into the slot. Finally, if the packet lies to the right of the window, the win-
dow is advanced to create a slot for the packet. The packet is then placed in that slot,
which is the rightmost slot in the window.

If the antireplay service is not used, the IVC is verified. The IVC is computed
in the same way as the sender (that is, appropriate fields are replaced by zeros) and is
compared with the IVC in the AH. If the two differ, the packet is discarded.

All implementations of the AH protocol must support HMAC_MD5 and
HMAC_SHA-1. They may support others as well.

10.4.2.3 Encapsulating Security Payload Protocol
The goal of the encapsulating security payload (ESP) protocol is to provide confi-
dentiality, origin authentication, message integrity, protection against replay if
desired, and a limited form of traffic flow confidentiality. It protects only the trans-
port data or encapsulated IP data; it does not protect the IP header.

The important parameters included in the ESP header are the SPI of the SA
under which this protocol is applied, a sequence number used to prevent replay, a
generic “payload data” field, padding, the length of the padding, and an optional
authentication data field.

The data in the payload data field depends on the ESP services enabled. For
example, if an SA needs to resynchronize a cryptographic algorithm used in chaining
mode, the sender could include an initialization vector here. As more algorithms for
the ESP are defined, they may specify data to be included in this field.

Because the ESP protocol begins enciphering with the payload data field and
protects both header fields and data, the IPsec mechanism may need to pad the
packet in order to have the number of bits or bytes required by the cryptographic
algorithm. The padding field allows for this adjustment. The padding length field
contains the number of padding bytes; no more than 255 bytes of padding are allowed.

Bishop.book Page 166 Tuesday, September 28, 2004 1:46 PM

10.4 Example Protocols 167

At least one of the confidentiality and authentication services must be
selected. Furthermore, because packets may not arrive in order, any synchronization
material must be carried in the payload field. Otherwise, the packets that follow a
missing packet may be unintelligible.

When a packet is sent, the sender adds an ESP header, including any required
padding, to the payload (either the transport data or an encapsulated IP packet). The
sender enciphers the result (except for the SPI and sequence numbers). If authentica-
tion is desired, the authentication is computed as for the AH protocol, except that it is
over the ESP header and payload. It does not include the IP header that encapsulates
the ESP header and payload. The relevant SA dictates the cryptographic keys and
algorithms that are used.

When a packet arrives, the IPsec mechanism determines if the packet contains
an ESP header. If so, it uses the SPI and destination address to find the associated SA
in the SAD. If no such SA exists, the packet is discarded. Otherwise, the SA parame-
ters are obtained from the SAD entry.

If the authentication service is used, the antireplay feature and the MAC veri-
fication proceed as for the AH, again except that only the ESP and the payload are
used. Because the authentication data is inserted after encipherment, it is not enci-
phered and so can be used directly.

If the confidentiality service is used, the IPsec mechanisms decipher the enci-
phered portion of the ESP header. Any padding is processed, and the payload is
deciphered. If the SA specifies transport mode, the IP header and payload are treated
as the original IP packet. If the SA specifies tunnel mode, the encapsulated IP packet
is treated as the original IP packet.

Typical implementations of public key cryptosystems are far slower than
implementations of classical cryptosystems. Hence, implementations of ESP assume
a classical cryptosystem, although this is not required.

All implementations of ESP must support DES in CBC mode and the NULL
encipherment algorithms, as well as the HMAC_MD5, HMAC_SHA-1, and NULL
MACs. (The NULL encipherment algorithm and MAC mean that those algorithms
are not used. Both should never be NULL at the same time.) Implementations may
support other algorithms.

10.4.3 Conclusion

Each of the three protocols adds security to network communications. The “best”
protocol to use depends on a variety of factors.

To what do the requisite security services apply? If they are specific to one
particular application, such as remote logins, then using a program with application
layer security is appropriate. When a program that requires security services is used
in an environment that does not supply those services, or that the user does not trust
to supply the requisite services, the application should supply its own security.

If more generic services are needed, lower-layer security protocols can supply
security services to multiple applications and can do so whether or not the application

Bishop.book Page 167 Tuesday, September 28, 2004 1:46 PM

168 Chapter 10 Cipher Techniques

has its own mechanisms for security services. Transport layer protocols such as SSL
are end-to-end security mechanisms. They are appropriate when the intermediate
hosts are not trusted, when the end hosts support the transport protocol, and when the
application uses a connection-oriented (transport) protocol. Network layer mecha-
nisms such as IPsec may provide security services on either an end-to-end or a link
basis. They are appropriate when securing connectionless channels or when the
infrastructure supports the network layer security mechanisms.

The application layer security protocol PEM provides security services for
electronic mail messages. Consider using SSL for this goal. SSL does not authenti-
cate the message to the recipient; it merely authenticates the transport connection.
Specifically, if Alice sends Bob a message, PEM will authenticate that Alice com-
posed the message and that Bob received it unaltered (and possibly that the message
was kept confidential). SSL can authenticate that Alice sent the message to Bob, that
it arrived as sent, and possibly that it was confidential in transit. SSL does not verify
that Alice composed the message or that the message was confidential and
unchanged on Alice’s system or Bob’s system. In other words, SSL secures the con-
nection; PEM secures the electronic mail (the contents of the connection). Similarly,
IPsec protects the packets and their contents in transit, but authentication is of the
hosts and not of Alice or Bob.

10.5 Summary

If one uses a cryptosystem without considering the protocols directing its use, the secu-
rity service that the cryptosystem is to provide can be deficient. Precomputation attacks,
assumptions about message sizes, and statistical attacks can all compromise messages.

Stream and block ciphers have different orientations (bits and blocks, respec-
tively) that affect solutions to these problems. Stream ciphers emulate a one-time pad
either through an externally keyed source (such as an LFSR, which generates a
stream of key bits from an initial seed) or internally (such as the autokey ciphers or
through feedback modes). Block ciphers emulate “code books” in which a set of bits
maps to a different set of bits. (In practice, the mapping is algorithmic.)

Over a network, cryptographic protocols and cryptosystems are the basis for
many security services, including confidentiality, authentication, integrity, and non-
repudiation. These services can be provided at different layers, depending on the
assumptions about the network and the needs of the servers and clients.

10.6 Further Reading

Seberry and Pieprzyk [805] and Denning [242] discuss the theory of linear feedback
shift registers. Schneier [796] presents a variant called Feedback Carry Shift Registers.

Bishop.book Page 168 Tuesday, September 28, 2004 1:46 PM

10.7 Exercises 169

Beker and Piper [62] discuss stream ciphers. Rueppel analyzes design criteria for
stream ciphers [766]. Several papers discuss the RC4 keystream generator’s strength
[326, 366, 640].

Bellovin [68] discusses security problems in many Internet protocols; Kent
[503] provides a different perspective. Two groups use different techniques to ana-
lyze the security of SSL [641, 924]. Oppliger [702], Stallings [865], and Doraswamy
and Harkins [279] present overviews of IPsec. Bellovin [70] discusses the crypto-
graphic security of IPsec. Bishop [105] examines the Network Time Protocol
NTPv2. Netscape Corporation’s SSL protocol [340] and the TLS protocol [265] pro-
vide security at the transport layer using a variety of cryptographic mechanisms
including Fortezza [676, 677]. Ylönen presents SSH, a protocol for secure remote
logins [959]. Vincenzetti, Taino, and Bolognesi add security mechanisms to Telnet
[915]. Vixie [917] and Bellovin [69] discuss issues related to the Directory Name
Services.

10.7 Exercises

1. Let the function f for a four-stage NLFSR be f(r0…rn–1) = (r0 and r1) or r3,
and let the initial value of the register be 1001. Derive the initial sequence
and cycle.

2. An n-stage LFSR produces a sequence with a period of length at most
2n – 1, but the register has n bits and thus may assume 2n values. Why
can the length of the period never be 2n? Which register value is
excluded from the cycle, and why?

3. Consider double encryption, where c = Ek´(Ek(m)) and the keys k and k´
are each n bits long. Assume that each encipherment takes one time unit. A
cryptanalyst will use a known plaintext attack to determine the key from
two messages m0 and m1 and their corresponding ciphertexts c0 and c1.

a. The cryptanalyst computes Ex(m0) for each possible key x and stores
each in a table. How many bits of memory does the table require?
How many time units does it take to compute the entry?

b. The cryptanalyst computes y = Dx´(c0), where D is the decipherment
function corresponding to E, for each possible key x´, and then
checks the table to see if y is in it. If so, (x, x´) is a candidate for
the key pair. How should the table be organized to allow the
cryptographer to find a match for y in time O(1)? How many time
units will pass before a match must occur?

c. How can the cryptographer confirm that (x, x´) is in fact the desired
key pair?

d. What are the maximum amounts of time and memory needed for the
attack? What are the expected amounts of time and memory?

Bishop.book Page 169 Tuesday, September 28, 2004 1:46 PM

170 Chapter 10 Cipher Techniques

4. A network consists of n hosts. Assuming that cryptographic keys are
distributed on a per-host-pair basis, compute how many different keys are
required.

5. One cryptographic checksum is computed by applying the DES in CBC
mode to the message or file and using the last n bits of the final enciphered
block as the checksum. (This is a keyed hash; the parties must agree on the
key and the initalization vector used.) Analyze this hash function. In
particular, how difficult is it to find two different messages that hash to the
same value? How difficult is it to generate a second message that produces
the same hash value as the first message?

6. A variant of the autokey cipher is to pick a well-known book and use its
text, starting at some agreed-upon location. For example, the plaintext
THEBO YHAST HECAT might be enciphered as the phrase AVARI ANTOF
THEAU, with the sender and recipient agreeing that the first sentence in
Exercise 6 in Chapter 10 in this book is the initial key. Describe a problem
with this approach that could lead to a successful decipherment.

7. Unlike PEM, PGP requires the user to set a flag to indicate whether the file
being protected is text or binary data. Explain why such a flag is necessary.
Why does PEM not require such a flag?

8. Redraw Figure 10–5 assuming that the SA between frauds and equity is a
transport mode SA rather than a tunnel mode SA.

9. When the IVC for the AH protocol is computed, why are mutable fields set
to 0 rather than omitted?

Bishop.book Page 170 Tuesday, September 28, 2004 1:46 PM

171

Chapter 11
Authentication

ANTIPHOLUS OF SYRACUSE: To me she speaks; she moves me for her theme!
What, was I married to her in my dream?

Or sleep I now and think I hear all this?
What error drives our eyes and ears amiss?

Until I know this sure uncertainty,
I’ll entertain the offer’d fallacy

—The Comedy of Errors, II, ii, 185–190.

Authentication is the binding of an identity to a principal. Network-based authentica-
tion mechanisms require a principal to authenticate to a single system, either local or
remote. The authentication is then propagated. This chapter explores the question of
authentication to a single system.

11.1 Authentication Basics

Subjects act on behalf of some other, external entity. The identity of that entity con-
trols the actions that its associated subjects may take. Hence, the subjects must bind
to the identity of that external entity.

Definition 11–1. Authentication is the binding of an identity to a subject.

The external entity must provide information to enable the system to confirm
its identity. This information comes from one (or more) of the following.

1. What the entity knows (such as passwords or secret information)
2. What the entity has (such as a badge or card)
3. What the entity is (such as fingerprints or retinal characteristics)
4. Where the entity is (such as in front of a particular terminal)

Bishop.book Page 171 Tuesday, September 28, 2004 1:46 PM

172 Chapter 11 Authentication

The authentication process consists of obtaining the authentication informa-
tion from an entity, analyzing the data, and determining if it is associated with that
entity. This means that the computer must store some information about the entity. It
also suggests that mechanisms for managing the data are required. We represent
these requirements in an authentication system [106] consisting of five components.

1. The set A of authentication information is the set of specific information
with which entities prove their identities.

2. The set C of complementary information is the set of information that the
system stores and uses to validate the authentication information.

3. The set F of complementation functions that generate the complementary
information from the authentication information. That is, for f ∈ F,
f: A → C.

4. The set L of authentication functions that verify identity. That is, for l ∈ L,
l: A × C→{ true, false }.

5. The set S of selection functions that enable an entity to create or alter the
authentication and complementary information.

EXAMPLE: A user authenticates himself by entering a password, which the system
compares with the cleartext passwords stored online. Here, A is the set of strings
making up acceptable passwords, C = A, F = { I }, and L = { eq }, where I is the
identity function and eq is true if its arguments are the same and false if they are not.

11.2 Passwords

Passwords are an example of an authentication mechanism based on what people
know: the user supplies a password, and the computer validates it. If the password is
the one associated with the user, that user’s identity is authenticated. If not, the pass-
word is rejected and the authentication fails.

Definition 11–2. A password is information associated with an entity that
confirms the entity’s identity.

The simplest password is some sequence of characters. In this case, the pass-
word space is the set of all sequences of characters that can be passwords.

EXAMPLE: One installation requires each user to choose a sequence of 10 digits as a
password. Then A has 1010 elements (from “0000000000” to “9999999999”).

The set of complementary information may contain more, or fewer, elements
than A, depending on the nature of the complementation function. Originally, most

Bishop.book Page 172 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 173

systems stored passwords in protected files. However, the contents of such files
might be accidentally exposed. Morris and Thompson [651] recount an amusing
example in which a Multics system editor swapped pointers to the temporary files
being used to edit the password file and the message of the day file (printed whenever
a user logged in); the result was that whenever a user logged in, the cleartext pass-
word file was printed.

The solution is to use a one-way hash function to hash the password into a
complement [943].

EXAMPLE: The original UNIX password mechanism does not store the passwords
online in the clear. Instead, one of 4,096 functions hashes the password into an
11-character string, and two characters identifying the function used are prepended
[651]. The 13-character string is then stored in a file.

A UNIX password is composed of up to eight ASCII characters; for imple-
mentation reasons, the ASCII NUL (0) character is disallowed. Hence, A is the set of
strings of up to eight characters, each chosen from a set of 127 possible characters.1

A contains approximately 6.9 × 1016 passwords. However, the set C contains strings
of exactly 13 characters chosen from an alphabet of 64 characters. C contains
approximately 3.0 × 1023 strings. The subset of C corresponding to selected pass-
words may or may not be readable. Many UNIX systems store these strings in the
file /etc/passwd, which all users can read. Many other versions of the UNIX system,
however, store these strings in shadow password files that only the superuser can
read [347, 406].

The UNIX hashing functions f ∈ F are based upon a permutation of the Data
Encryption Standard. F consists of 4,096 such functions fi, 0 ≤ i < 4,096.

The UNIX authentication functions are login, su, and other programs that
confirm a user’s password during execution. This system supplies the proper element
of C; that information may not be available to the user. Some of these functions may
be accessible over a network—for example, through the telnet or FTP protocols.

Finally, the selection functions are programs such as passwd and nispasswd,
which change the password associated with an entity.

The goal of an authentication system is to ensure that entities are correctly
identified. If one entity can guess another’s password, then the guesser can imperson-
ate the other. The authentication model provides a systematic way to analyze this
problem. The goal is to find an a ∈ A such that, for f ∈ F, f(a) = c ∈ C and c is asso-
ciated with a particular entity (or any entity). Because one can determine whether a
is associated with an entity only by computing f(a) or by authenticating via l(a), we
have two approaches for protecting the passwords, used simultaneously.

1 In practice, some characters (such as the erase character) have special meanings and are rarely
used.

Bishop.book Page 173 Tuesday, September 28, 2004 1:46 PM

174 Chapter 11 Authentication

1. Hide enough information so that one of a, c, or f cannot be found.

EXAMPLE: Many UNIX systems make the files containing complementation infor-
mation readable only by root. These schemes, which use shadow password files,
make the set of complements c in actual use unknown. Hence, there is insufficient
information to determine whether or not f(a) is associated with a user. Similarly,
other systems make the set of complementation functions F unknown; again, the
computation of the value f(a) is not possible.

2. Prevent access to the authentication functions L.

EXAMPLE: One site does not allow the root user to log in from a network. The login
functions exist but always fail. Hence, one cannot test authentication of root with
access to these functions over a network.

Each of these approaches leads to different types of attacks and defenses.

11.2.1 Attacking a Password System

The simplest attack against a password-based system is to guess passwords.

Definition 11–3. A dictionary attack is the guessing of a password by
repeated trial and error.

The name of this attack comes from the list of words (a “dictionary”) used for
guesses. The dictionary may be a set of strings in random order or (more usually) a
set of strings in decreasing order of probability of selection.

If the complementary information and complementation functions are avail-
able, the dictionary attack takes each guess g and computes f(g) for each f ∈ F. If f(g)
corresponds to the complementary information for entity E, then g authenticates E
under f. This is a dictionary attack type 1. If either the complementary information or
the complementation functions are unavailable, the authentication functions l ∈ L
may be used. If the guess g results in l returning true, g is the correct password. This
is a dictionary attack type 2.

EXAMPLE: Attackers often obtain a UNIX system’s password file and use the (known)
complementation function to test guesses. (Many programs such as crack automate this
process.) This is a type 1 attack. But the attackers need access to the system to obtain
the complementation data in the password file. To gain access, they may try to guess a
password using the authentication function. They use a known account name (such as
root) and guess possible passwords by trying to log in. This is a type 2 attack.

The issue of efficiency controls how well an authentication system withstands
dictionary attacks.

Bishop.book Page 174 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 175

11.2.2 Countering Password Guessing

Password guessing requires either the set of complementation functions and comple-
mentary information or access to the authentication functions. In both approaches,
the goal of the defenders is to maximize the time needed to guess the password. A
generalization of Anderson’s Formula [24] provides the fundamental basis.

Let P be the probability that an attacker guesses a password in a specified
period of time. Let G be the number of guesses that can be tested in one time unit.
Let T be the number of time units during which guessing occurs. Let N be the num-

ber of possible passwords. Then .

EXAMPLE: Let R be the number of bytes per minute that can be sent over a commu-
nication line, let E be the number of characters exchanged when logging in, let S be
the length of the password, and let A be the number of characters in the alphabet
from which the characters of the password are drawn. The number of possible pass-
words is N = AS, and the number of guesses per minute is G = R/E. If the period of
guessing extends M months, this time in minutes is T = 4.32 × 104 M. Then

, or , the original statement of Anderson’s

Formula.

EXAMPLE: Let passwords be composed of characters drawn from an alphabet of 96
characters. Assume that 104 guesses can be tested each second. We wish the proba-
bility of a successful guess to be 0.5 over a 365-day period. What is the minimum
password length that will give us this probability?

From the formulas above, we want

. Thus, we must choose an integer S such that .

This holds when S ≥ 6. So, to meet the desired conditions, passwords of at least
length 6 must be required.

Several assumptions underlie these examples. First, the time required to test a
password is constant. Second, all passwords are equally likely to be selected. The
first assumption is reasonable, because the algorithms used to validate passwords are
fixed, and either the algorithms are independent of the password’s length or the vari-
ation is negligible. The second assumption is a function of the password selection
mechanism. We will now elaborate on these mechanisms.

P
TG
N

--------≥

P

4.32 10
4× M

R
E

A
S

---≥ A
S 4.32 10

4× MR
PE

-----------------------------------≥

N
TG
P

--------≥ 365 24 60 60×××()10
4

0.5
--= =

6.31 10
11× 96

i

i 0=

S

∑ N≥ 6.31 10
11×=

Bishop.book Page 175 Tuesday, September 28, 2004 1:46 PM

176 Chapter 11 Authentication

11.2.2.1 Random Selection of Passwords
The following theorem from probability theory states a maximum on the expected
time to guess a password.

Theorem 11–1. Let the expected time required to guess a password be T.
Then T is a maximum when the selection of any of a set of possible passwords
is equiprobable.

Proof See Exercise 1.

Theorem 11–1 guides selection of passwords in the abstract. In practice, sev-
eral other factors mediate the result. For example, passwords selected at random
include very short passwords. Attackers try short passwords as initial guesses
(because there are few enough of them so that all can be tried). This suggests that
certain classes of passwords should be eliminated from the space of legal passwords
P. The danger, of course, is that by eliminating those classes, the size of P becomes
small enough for an exhaustive search.

Complicating these considerations is the quality of the random (or pseudoran-
dom) number generator. If the period of the password generator is too small, the size
of P allows every potential password to be tested. This situation can be obvious,
although more often it is not.

EXAMPLE: Morris and Thompson [651] tell about a PDP-11 system that randomly
generated passwords composed of eight capital letters and digits, so to all appear-
ances, |P| = (26 + 10)8 = 368. Taking 0.00156 second per encryption meant that try-
ing all possible passwords would require 140 years. The attacker noticed that the
pseudorandom number generator was run on the PDP-11, and it had a period of 216 – 1
(because the PDP-11 is a 16-bit machine). This meant that there were 216 – 1, or
65,535, possible passwords, requiring 102 seconds to try them all. It actually took
less than 41 seconds to find all the passwords.

Human factors also play a role in this problem. Psychological studies have
shown that humans can repeat with perfect accuracy about eight meaningful items,
such as digits, letters, or words [206]. If random passwords are eight characters long,
humans can remember one such password. So a person who is assigned two random
passwords must write them down. Although most authorities consider this to be poor
practice, the vulnerabilities of written passwords depend on where a written pass-
word is kept. If it is kept in a visible or easily accessed place (such as taped to a ter-
minal or a keyboard or pinned to a bulletin board), writing down the password indeed
compromises system security. However, if wallets and purses are rarely stolen by
thieves with access to the computer systems, writing a password down and keeping it
in a wallet or purse is often acceptable.

Michele Crabb describes a clever method of obscuring the written password
[218]. Let X be the set of all strings over some alphabet. A site chooses some simple

Bishop.book Page 176 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 177

transformation algorithm t: X → A. Elements of X are distributed on pieces of paper.
Before being used as passwords, they must be transformed by applying t. Typically, t
is very simple; it must be memorized, and it must be changed periodically.

EXAMPLE: The transformation algorithm is: “Capitalize the third letter in the word,
and append the digit 2.” The word on the paper is “Swqgle3”. The password will be
“SwQgle32”.

This scheme is most often used when system administrators need to remem-
ber many different passwords to access many different systems. Then, even if the
paper is lost, the systems will not be compromised.

11.2.2.2 Pronounceable and Other Computer-Generated Passwords
A compromise between using random, unmemorizable passwords and writing pass-
words down is to use pronounceable passwords. Gasser [350] did a detailed study of
such passwords for the Multics system and concluded that they were viable on that
system.

Pronounceable passwords are based on the unit of sound called a phoneme. In
English, phonemes for constructing passwords are represented by the character
sequences cv, vc, cvc, or vcv, where v is a vowel and c a consonant.

EXAMPLE: The passwords “helgoret” and “juttelon” are pronounceable passwords;
“przbqxdf” and “zxrptglfn” are not.

The advantage of pronounceable passwords is that fewer phonemes need to be
used to reach some limit, so that the user must memorize “chunks” of characters
rather than the individual characters themselves. In effect, each phoneme is mapped
into a distinct character, and the number of such characters is the number of legal
phonemes. In general, this means that the number of pronounceable passwords of
length n is considerably lower than the number of random passwords of length n.
Hence, a type 1 dictionary attack is expected to take less time for pronounceable
passwords than for random passwords.

Assume that passwords are to be at most eight characters long. Were these
passwords generated at random from a set of 96 printable characters, there would be
7.3 × 1015 possible passwords. But if there are 440 possible phonemes, generating pass-
words with up to six phonemes produces approximately the same number of possible
passwords. One can easily generalize this from phonemes to words, with similar results.

One way to alleviate this problem is through key crunching [373].

Definition 11–4. Let n and k be two integers, with n ≥ k. Key crunching is the
hashing of a string of length n or less to another string of length k or less.

Conventional hash functions, such as MD5 and SHA-1, are used for key
crunching.

Bishop.book Page 177 Tuesday, September 28, 2004 1:46 PM

178 Chapter 11 Authentication

11.2.2.3 User Selection of Passwords
Rather than selecting passwords for users, one can constrain what passwords users
are allowed to select. This technique, called proactive password selection [107],
enables users to propose passwords they can remember, but rejects any that are
deemed too easy to guess.

The set of passwords that are easy to guess is derived from experience cou-
pled with specific site information and prior studies [423, 651, 656, 859]. Klein’s
study [512] is very comprehensive. He took 15,000 password hashes and used a set
of dictionaries to guess passwords. Figure 11–1 summarizes his results. Some cate-
gories of passwords that researchers have found easy to guess are as follows.

1. Passwords based on account names

a. Account name followed by a number
b. Account name surrounded by delimiters

2. Passwords based on user names

a. Initials repeated 0 or more times
b. All letters lower- or uppercase
c. Name reversed
d. First initial followed by last name reversed

3. Passwords based on computer names
4. Dictionary words
5. Reversed dictionary words
6. Dictionary words with some or all letters capitalized

Type of password Percent Length Percent
Dictionary words 8%
Common names 4% 1 0.03%
User/account names 3% 2 0.03%
Phrases, patterns 2% 3 0.48%
Male names 1% 4 1.36%
Female names 1% 5 2.30%
Uncommon names 1% 6 8.41%
Machine names 1% 7 5.89%
Place names 1% 8 5.65%
King James Bible 1%

Figure 11–1 Results of Klein’s password guessing experiments. The
percentages are from 15,000 potential passwords selected from approximately
50 different sites.

Bishop.book Page 178 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 179

7. Reversed dictionary words with some or all letters capitalized
8. Dictionary words with arbitrary letters turned into control characters
9. Dictionary words with any of the following changes: a → 2 or 4, e → 3,

h → 4, i → 1, l → 1, o → 0, s → 5 or $, z → 5.
10. Conjugations or declensions of dictionary words
11. Patterns from the keyboard
12. Passwords shorter than six characters
13. Passwords containing only digits
14. Passwords containing only uppercase or lowercase letters, or letters and

numbers, or letters and punctuation
15. Passwords that look like license plate numbers
16. Acronyms (such as “DPMA,” “IFIPTC11,” “ACM,” “IEEE,” “USA,” and

so on)
17. Passwords used in the past
18. Concatenations of dictionary words
19. Dictionary words preceded or followed by digits, punctuation marks, or

spaces
20. Dictionary words with all vowels deleted
21. Dictionary words with white spaces deleted
22. Passwords with too many characters in common with the previous

(current) password

EXAMPLE: The strings “hello” and “mycomputer” are poor passwords because they
violate criteria 4 and 18, respectively. The strings “1PLK107” and “311t3$p32k” are
also poor (the first is a California licence plate number and violates criterion 15, and
the second is the word “elitespeak” modified as in criterion 9).

Good passwords can be constructed in several ways. A password containing at
least one digit, one letter, one punctuation symbol, and one control character is usu-
ally quite strong. A second technique is to pick a verse from an obscure poem (or an
obscure verse from a well-known poem) and pick the characters for the string from
its letters.

EXAMPLE: The string “LlMm*2^Ap” (where ^A represents control-a) is a good pass-
word. The letters are chosen from the names of various members of two families, and
the combination of characters is unlikely to be guessed even by those who know
the families. As a more complex example, few people can recite the third verse of
“The Star-Spangled Banner” (the national anthem of the United States of America):

And where is that band who so vauntingly swore
That the havoc of war and the battle’s confusion

Bishop.book Page 179 Tuesday, September 28, 2004 1:46 PM

180 Chapter 11 Authentication

A home and a country should leave us no more?
Their blood has wiped out their foul footsteps’ pollution.
No refuge could save the hireling and slave
From the terror of flight, or the gloom of the grave:
And the star-spangled banner in triumph doth wave
O'er the land of the free and the home of the brave

Choose the second letter of each word of length 4 or greater in the third line, alternating
case, and add a “/” followed by the initials of the author of the poem: “OoHeO/FSK.”
This is also a password that is hard to guess. But see Exercise 5.

Definition 11–5. A proactive password checker is software that enforces spe-
cific restrictions on the selection of new passwords.

Proactive password checkers must meet several criteria [111]:

1. It must always be invoked. Otherwise, users could bypass the proactive
mechanism.

2. It must be able to reject any password in a set of easily guessed passwords
(such as in the list above).

3. It must discriminate on a per-user basis. For example, “^AHeidiu’” (^A
being control-a) is a reasonable password (modulo Exercise 5) for most
people, but not for the author, whose oldest daughter is named “Heidi
Tinúviel.”

4. It must discriminate on a per-site basis. For example, “^DHMC^DCNH” is
a reasonable password at most places, but not at the Dartmouth Hitchcock
Medical Center at Dartmouth College, New Hampshire.

5. It should have a pattern-matching facility. Many common passwords, such
as “aaaaa,” are not in dictionaries but are easily guessed. A pattern-
matching language makes detecting these patterns simple. For example, in
one pattern-matching language, the pattern “^\(.\)\1*$” will detect all
strings composed of a single character repeated one or more times.

6. It should be able to execute subprograms and accept or reject passwords
based on the results. This allows the program to handle spellings that are
not in dictionaries. For example, most computer dictionaries do not
contain the word “waters” (because it is the plural of a word, “water,” in
that dictionary). A spelling checker would recognize “waters” as a word.
Hence, the program should be able to run a spelling checker on proposed
passwords, to detect conjugations and declensions of words in the
dictionary.

7. The tests should be easy to set up, so administrators do not erroneously
allow easily guessed passwords to be accepted.

Bishop.book Page 180 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 181

EXAMPLE: The proactive password checker OPUS [860] addresses the sizes of dic-
tionaries. Its goal is to find a compact representation for very large dictionaries.
Bloom filters provide the mechanism. Each word in the dictionary is run through a
hash function that produces an integer hi of size less than some parameter n. This is
repeated for k different hash functions, producing k integers h1, ..., hk. The OPUS
dictionary is represented as a bit vector of length n. To put the word into the OPUS
dictionary, bits h1, ..., hk are set.

When a user proposes a new password, that word is run through the same hash
functions. Call the output h1´, ..., hk´. If any of the bits h1´, ..., hk´ are not set in the
OPUS dictionary, the word is not in the OPUS dictionary and is accepted. If all are
set, then to some degree of probability the word is in a dictionary fed to OPUS and
should be rejected.

EXAMPLE: Ganesan and Davies [345] propose a similar approach. They generate a
Markov model of the dictionary, extract information about trigrams, and normalize
the results. Given a proposed password, they test to see if the word was generated by
the Markov model extracted from the dictionary. If so, it is deemed too easy to guess
and is rejected.

Both these methods are excellent techniques for reducing the space required
to represent a dictionary. However, they do not meet all the requirements of a proac-
tive password checker and should be seen as part of such a program rather than as
sufficient on their own.

EXAMPLE: A “little language” designed for proactive password checking [108] was
based on these requirements. The language includes functions for checking whether
or not words are in a dictionary (a task that could easily use the techniques of OPUS
or Ganesan and Davies). It also included pattern matching and the ability to run sub-
programs, as well as the ability to compare passwords against previously chosen
passwords.

The keyword set sets the values of variables. For example,

set gecos “Matt Bishop, 3085 EU-II”

assigns the variable gecos to the value Matt Bishop, 3085 EU-II. Pattern assign-
ment is available through setpat:

setpat “$gecos” “^\([^,]\), \(.*\)$” name office

This matches the pattern with the value of gecos (obtained by prefixing a “$” to the
variable name). The strings matched by the subpatterns in “\(” and “\)” are assigned
to the variables name and office (so name is Matt Bishop and office is 3085 EU-II).
Equality and inequality operators work as string operators. All integers are translated
to strings before any operations take place. Other functions are available; see Figure
11–2 for some examples.

Bishop.book Page 181 Tuesday, September 28, 2004 1:46 PM

182 Chapter 11 Authentication

The basic component of the little language is the password test block:

test length(“$p”) < 6
true “Your password contains fewer than 6 characters.”
endtest

This block says to compare the length of the proposed password, stored in the vari-
able p earlier, and compare it with 6 (the test). If the test is true (that is, if the pass-
word is less than six characters long), the message in the second line is printed and
the password is rejected. As another example, the test

infile(“/usr/dict/words”, “$p”)

is true if the value of p is a string in the file “/usr/dict/words.” The test

!inprog(“spell”, “$p”, “$p”)

is true if the output of the program spell, given the value of p as input, produces that
same value as output. Because spell prints all misspelled input words, if the input and
output match, then the value of p is not a correctly spelled word.

The language contains many other functions, including one for testing for cat-
enated words and another for hashing passwords using the UNIX password hashing
function.

11.2.2.4 Reusable Passwords and Dictionary Attacks
As discussed earlier, reusable passwords are quite susceptible to dictionary attacks of
type 1. The goal of random passwords, pronounceable passwords, and proactive
password checking is to maximize the time needed to guess passwords.

If a type 1 dictionary attack is aimed at finding any user’s password (as
opposed to a particular user’s password), a technique known as salting increases the
amount of work required [651]. Salting makes the choice of complementation func-

Function Action Example
length($p) Length of value length(“gueSS/This1!”) = 12
alpha($p) Number of letters alpha(“gueSS/This1!”) = 9
substr($p,2,3) Return substring substr(“gueSS/This1!”,2,3) = “ue”
lcase($p) Make all letters lowercase lcase(“gueSS/This1!”) = “guess/this1!”
rev($p) Reverse the string rev(“gueSS/This1!”) = “!1sihT/SSeug”
reflect($p) Reflect the string reflect(“hello”) = “hellolleh”
trans($p, a, b) Change all a’s to b’s trans(“ax-ya”) = “bx-yb”

Figure 11–2 Examples of functions.

Bishop.book Page 182 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 183

tion a function of randomly selected data. Ideally, the random data is different for
each user. Then, to determine if the string s is the password for any of a set of n users,
the attacker must perform n complementations, each of which generates a different
complement. Thus, salting increases the work by the order of the number of users.

EXAMPLE: Most versions of the UNIX system use salts. The salt is chosen ran-
domly, when the password is set, and is an integer from 0 to 4,095, inclusive. The
specific complementation function depends on the salt. Specifically, the E table in
the DES is perturbed in one of 4,096 possible ways,2 and the message of all 0 bits is
enciphered using the password as a key. The resulting 64 bits are mapped into 11
characters chosen from a set of 64 characters. The salt is split into two sets of six
bits, and those sets are mapped to printable characters using the same alphabet. The
11-character representation of output is appended to the two-character representation
of the salt. The authentication function is chosen on the basis of the salt also; hence,
the salt must be available to all programs that need to verify passwords.

11.2.2.5 Guessing Through Authentication Functions
If the actual complements, or the complementation functions, are not publicly avail-
able, the only way to try to guess a password is to use the authentication function
systems provide for authorized users to log in. Although this sounds difficult, the
patience of some attackers is amazing. One group of attackers guessed passwords in
this manner for more than two weeks before gaining access to one target system.

Unlike a type 1 dictionary attack, this attack cannot be prevented, because the
authentication functions must be available to enable legitimate users to access the
system. The computer has no way of distinguishing between authorized and unau-
thorized users except by knowledge of the password.

Defending against such attacks requires that the authentication functions be
made difficult for attackers to use, or that the authentication functions be made to
react in unusual ways. Four types of techniques are common.

Techniques of the first type are collectively called backoff techniques. The most
common, exponential backoff, begins when a user attempts to authenticate and fails.
Let x be a parameter selected by the system administrator. The system waits x0 = 1 sec-
ond before reprompting for the name and authentication data. If the user fails again, the
system reprompts after x1 = x seconds. After n failures, the system waits xn–1 seconds.
Other backoff techniques use arithmetic series rather than geometric series (reprompt-
ing immediately, then waiting x seconds, then waiting 2x seconds, and so forth).

Techniques of the second type involve disconnection. After some number of
failed authentication attempts, the connection is broken and the user must reestablish
it. This technique is most effective when connection setup requires a substantial
amount of time, such as redialing a telephone number. It is less effective when con-
nections are quick, such as over a network.

2 Specifically, if bit i in the salt is set, table entries i and i + 24 are exchanged [651].

Bishop.book Page 183 Tuesday, September 28, 2004 1:46 PM

184 Chapter 11 Authentication

EXAMPLE: If a user fails to supply a valid name and the corresponding password in
three tries, FreeBSD (a variant of the UNIX operating system) breaks the connection.

Techniques of the third type use disabling. If n consecutive attempts to log in
to an account fail, the account is disabled until a security manager can reenable it.
This prevents an attacker from trying too many passwords. It also alerts security per-
sonnel to an attempted attack. They can take appropriate action to counter the threat.

One should consider carefully whether to disable accounts and which
accounts to disable. A (possibly apocryphal) story concerns one of the first UNIX
vendors to implement account disabling. No accounts were exempt. An attacker
broke into a user account, and then attempted to log in as root three times. The sys-
tem disabled that account. The system administrators had to reboot the system to
regain root access.

EXAMPLE: Both UNIX systems and Windows NT systems have the ability to disable
accounts after failed logins. Typically, the UNIX root account cannot be disabled.
The Windows administrator account can be locked out (the equivalent of “disabled”
in this context) from network logins, but not from local logins.

The final, fourth type of technique is called jailing. The unauthenticated user
is given access to a limited part of the system and is gulled into believing that he or
she has full access. The jail then records the attacker’s actions. This technique is used
to determine what the attacker wants or simply to waste the attacker’s time.

EXAMPLE: An attacker was breaking into the computers of AT&T Bell Laboratories.
Bill Cheswick detected the attack and simulated a slow computer system. He fed the
attacker bogus files and watched what the attacker did. He concluded that keeping
the jail was not an effective way to discover the attacker’s goals [171].

One form of the jailing technique is to plant bogus data on a running system,
so that after breaking in the attacker will grab the data. (This technique, called honey-
pots, is often used in intrusion detection. See Section 22.6.2.1, “Containment
Phase.”) Clifford Stoll used this technique to help trap an attacker who penetrated
computers at the Lawrence Berkeley Laboratory. The time required to download the
bogus file was sufficient to allow an international team to trace the attacker through
the international telephone system [878, 880].

11.2.3 Password Aging

Guessing of passwords requires that access to the complement, the complementation
functions, and the authentication functions be obtained. If none of these have
changed by the time the password is guessed, then the attacker can use the password
to access the system.

Bishop.book Page 184 Tuesday, September 28, 2004 1:46 PM

11.2 Passwords 185

Consider the last sentence’s conditional clause. The techniques discussed in
Section 11.2 attempt to negate the part saying “the password is guessed” by making
that task difficult. The other part of the conditional clause, “if none of these have
changed,” provides a different approach: ensure that, by the time a password is
guessed, it is no longer valid.

Definition 11–6. Password aging is the requirement that a password be
changed after some period of time has passed or after some event has
occurred.

Assume that the expected time to guess a password is 180 days. Then changing
the password more frequently than every 180 days will, in theory, reduce the probabil-
ity that an attacker can guess a password that is still being used. In practice, aging by
itself ensures little, because the estimated time to guess a password is an average; it bal-
ances those passwords that can be easily guessed against those that cannot. If users can
choose passwords that are easy to guess, the estimation of the expected time must look
for a minimum, not an average. Hence, password aging works best in conjunction with
other mechanisms such as the ones discussed in this chapter.

There are problems involved in implementing password aging. The first is
forcing users to change to a different password. The second is providing notice of the
need to change and a user-friendly method of changing passwords.

Password aging is useless if a user can simply change the current password to
the same thing. One technique to prevent this is to record the n previous passwords.
When a user changes a password, the proposed password is compared with these n pre-
vious ones. If there is a match, the proposed password is rejected. The problem with
this mechanism is that users can change passwords n times very quickly, and then
change them back to the original passwords. This defeats the goal of password aging.

An alternative approach is based on time. In this implementation, the user
must change the password to one other than the current password. The password can-
not be changed for a minimum period of time. This prevents the rapid cycling of
passwords. However, it also prevents the user from changing the password should it
be compromised within that time period.

EXAMPLE: UNIX systems use the time period method to age passwords (when pass-
word aging is turned on). They record the time of the last change, the minimum time
before which the password can be changed again, and the time by which the pass-
word must be changed. Different systems use different formats. System V UNIX sys-
tems record the information in terms of weeks since January 1, 1970; HP/UX
systems running in trusted mode record it in terms of seconds since midnight of that
epoch.

If passwords are selected by users, the manner in which users are reminded to
change their passwords is crucial. Users must be given time to think of good pass-
words or must have their password choices checked. Grampp and Morris [371] point

Bishop.book Page 185 Tuesday, September 28, 2004 1:46 PM

186 Chapter 11 Authentication

out that, although there is no formal statistical evidence to support it, they have found
that the easiest passwords to guess are on systems that do not give adequate notice of
upcoming password expirations.

EXAMPLE: Most System V–based UNIX systems give no warnings or reminders
before passwords expire. Instead, when users try to log in, they are told that their
passwords have expired. Before they can complete the logins, they must change their
passwords as part of the login process. Trusted HP/UX, on the other hand, gives
warning messages every time a user logs in within some period of time before the
password expires. The specific period of time is set by the system administrator.

11.3 Challenge-Response

Passwords have the fundamental problem that they are reusable. If an attacker sees a
password, she can later replay the password. The system cannot distinguish between
the attacker and the legitimate user, and allows access. An alternative is to authenti-
cate in such a way that the transmitted password changes each time. Then, if an
attacker replays a previously used password, the system will reject it.

Definition 11–7. Let user U desire to authenticate himself to system S. Let U
and S have an agreed-on secret function f. A challenge-response authentica-
tion system is one in which S sends a random message m (the challenge) to U,
and U replies with the transformation r = f(m) (the response). S validates r by
computing it separately.

Challenge-response algorithms are similar to the IFF (identification—friend
or foe) techniques that military airplanes use to identify allies and enemies.

11.3.1 Pass Algorithms

Definition 11–8. Let there be a challenge-response authentication system in
which the function f is the secret. Then f is called a pass algorithm.

Under this definition, no cryptographic keys or other secret information may
be input to f. The algorithm computing f is itself the secret.

EXAMPLE: Haskett [405] suggests using this scheme in combination with a standard
password scheme. After the user supplies a reusable password, a second prompt is
given (Haskett points out that this could be the same as the system’s standard
prompt, to confuse attackers). At this point, the user must enter some string based on
an algorithm. For example, if the prompt “abcdefg” were given, the appropriate

Bishop.book Page 186 Tuesday, September 28, 2004 1:46 PM

11.3 Challenge-Response 187

response could be “bdf”; if the prompt were “ageksido,” the appropriate response
could be “gkio” (the algorithm is every other letter beginning with the second). Or, to
use Haskett’s example, the pass algorithm can alter a fixed password. In this case, at
the prompt, the user would enter “wucsmfxymap” if the terminal were on a dial-in
line, “acdflmq” if it were in a semisecure area, and “cfm” if it were in a secure area.
Here, “cfm” is the expected password; the location dictates how many random char-
acters surround each of the letters.

11.3.2 One-Time Passwords

The ultimate form of password aging occurs when a password is valid for exactly
one use. In some sense, challenge-response mechanisms use one-time passwords.
Think of the response as the password. As the challenges for successive authentica-
tions differ, the responses differ. Hence, the acceptability of each response (pass-
word) is invalidated after each use.

Definition 11–9. A one-time password is a password that is invalidated as
soon as it is used.

A mechanism that uses one-time passwords is also a challenge-response
mechanism. The challenge is the number of the authentication attempt; the response
is the one-time password.

The problems in any one-time password scheme are the generation of random
passwords and the synchronization of the user and the system. The former problem is
solved by using a cryptographic hash function or enciphering function such as the
DES, and the latter by having the system inform the user which password it
expects—for example, by having all the user’s passwords numbered and the system
providing the number of the one-time password it expects.

EXAMPLE: S/Key [390] implements a one-time password scheme. It uses a tech-
nique first suggested by Lamport [542] to generate the passwords. Let h be a one-
way hash function (S/Key uses MD4 or MD5, depending on the version). Then the
user chooses an initial seed k, and the key generator calculates

h(k) = k1, h(k1) = k2, ..., h(kn–1) = kn

The passwords, in the order they are used, are

p1 = kn, p2 = kn–1, ..., pn–1 = k2, pn = k1

Suppose an attacker intercepts pi. Because pi = kn–i+1, pi+1 = kn–i, and h(kn–i) = kn–i+1,
the attacker would need to invert h, or launch a dictionary attack on h, in order to
determine the next password. Because h is a one-way function, it cannot be inverted.

Bishop.book Page 187 Tuesday, September 28, 2004 1:46 PM

188 Chapter 11 Authentication

Furthermore, for MD4 and MD5, dictionary attacks are not a threat provided the
seeds are chosen randomly, an assumption we (and the authors of S/Key) make
implicitly.

The S/Key system takes the seed the user enters and generates a list of n pass-
words. The implementation presents each password as a sequence of six short words
(but the internal representation is an integer). The user can generate a numbered list
of these sequences. S/Key initializes a database, called the skeykeys file, with the
number of the next password to be supplied and the hexadecimal representation of
the last password correctly supplied.

The protocol proceeds as follows.

1. User Matt supplies his name to the server.
2. The server replies with the number i stored in the skeykeys file.
3. Matt supplies the corresponding password pi.
4. The server computes h(pi) = h(kn–i+1) = kn–i+2 = pi–1 and compares the

result with the stored password. If they match, the authentication succeeds.
S/Key updates the number in the skeykeys file to i – 1 and stores pi in the
file. If the authentication fails, the skeykeys file is left unchanged.

When a user has used all passwords of a particular sequence of passwords, that user’s
entry in the skeykeys file must be reinitialized. This requires the user to reregister
with the S/Key program.

One-time passwords are considerably simpler with hardware support because
the passwords need not be printed on paper or some other medium.

11.3.3 Hardware-Supported Challenge-Response Procedures

Hardware support comes in two forms: a program for a general-purpose computer
and special-purpose hardware support. Both perform the same functions.

The first type of hardware device, informally called a token, provides mecha-
nisms for hashing or enciphering information. With this type of device, the system
sends a challenge. The user enters it into the device. The device returns the appropri-
ate response. Some devices require the user to enter a personal identification number
or password, which is used as a cryptographic key or is combined with the challenge
to produce the response.

The second type of hardware device is temporally based. Every 60 seconds, it
displays a different number. The numbers range from 0 to 10n – 1, inclusive. A simi-
lar device is attached to the computer. It knows what number the device for each reg-
istered user should display. To authenticate, the user provides his login name. The
system requests a password. The user then enters the number shown on the hardware
device, followed by a fixed (reusable) password. The system validates that the num-
ber is the one expected for the user at that time and that the reusable portion of the
password is correct.

Bishop.book Page 188 Tuesday, September 28, 2004 1:46 PM

11.3 Challenge-Response 189

EXAMPLE: The RSA SecureID card uses a system based on time. In addition to the
features described above, the password is invalidated once a login succeeds. (See
Exercise 12.)

11.3.4 Challenge-Response and Dictionary Attacks

Whether or not a challenge-response technique is vulnerable to a dictionary attack of
type 1 depends on the nature of the challenge and the response. In general, if the
attacker knows the challenge and the response, a dictionary attack proceeds as for a
reusable password system.

EXAMPLE: Suppose a user is authenticating herself using a challenge-response sys-
tem. The system generates a random challenge r, and the user returns the value Ek(r)
of r enciphered using the key k. Then the attacker knows both r and Ek(r) and can try
different values of k until the encipherment of r matches Ek(r).

In practice, it is not necessary to know the value of r. Most challenges are
composed of random data combined with public data that an attacker can determine.

EXAMPLE: In the authentication system Kerberos [872], an authentication server
enciphers data consisting of a name, a timestamp, some random data, and a crypto-
graphic key. An attacker does not see the original data sent to the server. By knowing
the form and contents of part of the data sent back, the attacker can try cryptographic
keys until the known parts of the enciphered data decipher correctly. From this, she
can derive the cryptographic key to be used in future communications. Researchers
at Purdue University combined this with a weakness in key generation to compro-
mise Kerberos Version 4 [277].

Bellovin and Merritt [73] propose a technique, called encrypted key exchange,
that defeats dictionary attacks of type 1. Basically, it ensures that random challenges
are never sent in the clear. Because the challenges are random, and unknown to the
attacker, the attacker cannot verify when she has correctly deciphered them. Hence,
the dictionary attack is infeasible.

The protocol assumes that Alice shares a secret password with Bob.

1. Alice uses the shared password s to encipher a randomly selected public
key p for a public key system. Alice then forwards this key, along with her
name, to Bob.

2. Bob determines the public key using the shared password, generates a
random secret key k, enciphers it with p, enciphers the result with s, and
sends it to Alice.

3. Alice deciphers the message to get k. Now both Bob and Alice share a
randomly generated secret key. At this point, the challenge-response phase
of the protocol begins.

Bishop.book Page 189 Tuesday, September 28, 2004 1:46 PM

190 Chapter 11 Authentication

Alice generates a random challenge RA, enciphers it using k, and sends Ek(RA)
to Bob.

4. Bob uses k to decipher RA. He then generates a random challenge RB and
enciphers both with k to produce Ek(RARB). He sends this to Alice.

5. Alice deciphers the message, validates RA, and determines RB. She
enciphers it using k and sends the message Ek(RB) back to Bob.

6. Bob deciphers the message and verifies RB.

At this point, both Alice and Bob know that they are sharing the same random key k.
To see that this system is immune to dictionary attacks of type 1, look at each
exchange. Because the data sent in each exchange is randomly selected and never
visible to the attacker in plaintext form, the attacker cannot know when she has cor-
rectly deciphered the message.

11.4 Biometrics

Identification by physical characteristics is as old as humanity. Recognizing people
by their voices or appearance, and impersonating people by assuming their appear-
ance, was widely known in classical times. Efforts to find physical characteristics
that uniquely identify people include the Bertillion cranial maps, fingerprints, and
DNA sampling. Using such a feature to identify people for a computer would ideally
eliminate errors in authentication.

Biometrics is the automated measurement of biological or behavioral features
that identify a person [635]. When a user is given an account, the system administra-
tion takes a set of measurements that identify that user to an acceptable degree of
error. Whenever the user accesses the system, the biometric authentication mecha-
nism verifies the identity. Lawton [553] points out that this is considerably easier
than identifying the user because no searching is required. A comparison to the
known data for the claimed user’s identity will either verify or reject the claim. Com-
mon characteristics are fingerprints, voice characteristics, eyes, facial features, and
keystroke dynamics.

11.4.1 Fingerprints

Fingerprints can be scanned optically, but the cameras needed are bulky. A capacita-
tive technique uses the differences in electrical charges of the whorls on the finger to
detect those parts of the finger touching a chip and those raised. The data is converted
into a graph in which ridges are represented by vertices and vertices corresponding to
adjacent ridges are connected. Each vertex has a number approximating the length of
the corresponding ridge. At this point, determining matches becomes a problem of

Bishop.book Page 190 Tuesday, September 28, 2004 1:46 PM

11.4 Biometrics 191

graph matching [463]. This problem is similar to the classical graph isomorphism
problem, but because of imprecision in measurements, the graph generated from the
fingerprint may have different numbers of edges and vertices. Thus, the matching
algorithm is an approximation.

11.4.2 Voices

Authentication by voice, also called speaker verification or speaker recognition,
involves recognition of a speaker’s voice characteristics [151] or verbal information
verification [561, 562]. The former uses statistical techniques to test the hypothesis
that the speaker’s identity is as claimed. The system is first trained on fixed pass-
phrases or phonemes that can be combined. To authenticate, either the speaker says
the pass-phrase or repeats a word (or set of words) composed of the learned pho-
nemes. Verbal information verification deals with the contents of utterances. The sys-
tem asks a set of questions such as “What is your mother’s maiden name?” and “In
which city were you born?” It then checks that the answers spoken are the same as
the answers recorded in its database. The key difference is that speaker verification
techniques are speaker-dependent, but verbal information verification techniques are
speaker-independent, relying only on the content of the answers [563].

11.4.3 Eyes

Authentication by eye characteristics uses the iris and the retina. Patterns within the
iris are unique for each person. Hence, one verification approach is to compare the
patterns statistically and ask whether the differences are random [231]. A second
approach is to correlate the images using statistical tests to see if they match [942].
Retinal scans rely on the uniqueness of the patterns made by blood vessels at the
back of the eye. This requires a laser beaming onto the retina, which is highly intru-
sive. This method is typically used only in the most secure facilities [553].

11.4.4 Faces

Face recognition consists of several steps. First, the face is located. If the user places
her face in a predetermined position (for example, by resting her chin on a support),
the problem becomes somewhat easier. However, facial features such as hair and
glasses may make the recognition harder. Techniques for doing this include the use
of neural networks [716] and templates [962]. The resulting image is then compared
with the relevant image in the database. The correlation is affected by the differences
in the lighting between the current image and the reference image, by distortion, by
“noise,” and by the view of the face. The correlation mechanism must be “trained.”
Several different methods of correlation have been used, with varying degrees of
success [647]. An alternative approach is to focus on the facial features such as the

Bishop.book Page 191 Tuesday, September 28, 2004 1:46 PM

192 Chapter 11 Authentication

distance between the nose and the chin, and the angle of the line drawn from one to
the other [775].

11.4.5 Keystrokes

Keystroke dynamics requires a signature based on keystroke intervals, keystroke
pressure, keystroke duration, and where the key is struck (on the edge or in the mid-
dle). This signature is believed to be unique in the same way that written signatures
are unique [477]. Keystroke recognition can be both static and dynamic. Static rec-
ognition is done once, at authentication time, and usually involves typing of a fixed
or known string [139, 648]. Once authentication has been completed, an attacker can
capture the connection (or take over the terminal) without detection. Dynamic recog-
nition is done throughout the session, so the aforementioned attack is not feasible.
However, the signature must be chosen so that variations within an individual’s ses-
sion do not cause the authentication to fail. For example, keystroke intervals may
vary widely, and the dynamic recognition mechanism must take this into account.
The statistics gathered from a user’s typing are then run through statistical tests
(which may discard some data as invalid, depending on the technique used) that
account for acceptable variance in the data.

11.4.6 Combinations

Several researchers have combined some of the techniques decribed above to
improve the accuracy of biometric authentication. Dieckmann, Plankensteiner, and
Wagner [264] combined voice sounds and lip motion with the facial image. Duc,
Bigun, Bigun, Maire, and Fischer [281] describe a “supervisor module” for melding
voice and face recognition with a success rate of 99.5%. The results indicate that a
higher degree of accuracy can be attained than when only a single characteristic is
used.

11.4.7 Caution

Because biometrics measures characteristics of the individual, people are tempted to
believe that attackers cannot pose as authorized users on systems that use biometrics.
Two assumptions underlie this belief. The first is that the biometric device is accurate
in the environment in which it is used. For example, if a fingerprint scanner is under
observation, having it scan a mask of another person’s finger would be detected. But
if it is not under observation, such a trick might not be detected and the unauthorized
user might gain access. The second assumption is that the transmission from the bio-
metric device to the computer’s analysis process is tamperproof. Otherwise, one
could record a legitimate authentication and replay it later to gain access. Exercise 13
explores this in more detail.

Bishop.book Page 192 Tuesday, September 28, 2004 1:46 PM

11.6 Multiple Methods 193

11.5 Location

Denning and MacDoran [249] suggest an innovative approach to authentication.
They reason that if a user claims to be Anna, who is at that moment working in a
bank in California but is also logging in from Russia at the same time, the user is
impersonating Anna. Their scheme is based on the Global Positioning System
(GPS), which can pinpoint a location to within a few meters. The physical location of
an entity is described by a location signature derived from the GPS satellites. Each
location (to within a few meters) and time (to within a few milliseconds) is unique,
and hence form a location signature. This signature is transmitted to authenticate the
user. The host also has a location signature sensor (LSS) and obtains a similar signa-
ture for the user. If the signatures disagree, the authentication fails.

This technique relies on special-purpose hardware. If the LSS is stolen, the thief
would have to log in from an authorized geographic location. Because the signature is
generated from GPS data, which changes with respect to time, location, and a variety
of vagaries resulting from the nature of the electromagnetic waves used to establish
position, any such signature would be unique and could not be forged. Moreover, if
intercepted, it could not be replayed except within the window of temporal uniqueness.

This technique can also restrict the locations from which an authorized user
can access the system.

EXAMPLE: Suppose Anna is an employee of a bank in California. The bank uses
location-based authentication to verify logins. Anna’s LSS is stolen, and the thief
takes it to New York. From there, the thief tries to access the bank’s computer.

Anna’s LSS generates a signature and transmits it to the bank. The bank’s LSS
determines that Anna’s LSS is in New York and is supplying a correct signature.
However, Anna is not authorized to access the bank’s computer from New York, so
the authentication is rejected. If the thief tries to forge a message indicating that
Anna is connecting from inside California, the host’s LSS would report that Anna
was at a different location and would reject the connection.

An interesting point is that the authentication can be done continuously. The
LSS simply intermingles signature data with the transmitted data, and the host
checks it. If the connection were hijacked, the data from the LSS would be lost.

11.6 Multiple Methods

Authentication methods can be combined, or multiple methods can be used.

EXAMPLE: Authenticating by location generally uses special-purpose hardware.
Although the key feature of this technique is physical location, without the LSS it
will not work. It combines location with a token or with what one possesses.

Bishop.book Page 193 Tuesday, September 28, 2004 1:46 PM

194 Chapter 11 Authentication

EXAMPLE: Most challenge-response schemes require the use of a computer or smart
card as well as a key or password. They combine what you know (password) with
what you have (computer or smart card).

Techniques using multiple methods assign one or more authentication meth-
ods to each entity. The entity must authenticate using the specific method, or meth-
ods, chosen. The specific authentication methods vary from system to system, but in
all cases the multiple layers of authentication require an attacker to know more, or
possess more, than is required to spoof a single layer.

EXAMPLE: Some versions of the UNIX operating system provide a mechanism
called pluggable authentication modules (PAM) [776]. When a program authenti-
cates a user, it invokes a library routine, pam_authenticate, that accesses a set of con-
figuration files. These files are in the directory /etc/pam.d. Each file in that directory
has the same name as the program to which it applies. For example, the library rou-
tine will access the file /etc/pam.d/ftpd when called from the program ftpd. That file
contains a sequence of lines describing the authentication modules to be invoked and
how their results are to be handled.

auth sufficient /usr/lib/security/pam_ftp.so
auth required /usr/lib/security/pam_unix_auth.so \

use_first_pass
auth required /usr/lib/security/pam_listfile.so \

onerr=succeed item=user sense=deny \
file=/etc/ftpusers

The first field describes the nature of the line. All checks that the PAM library
function will make relate to authentication of a user. The first entry invokes the
module /usr/lib/security/pam_ ftp.so. This module obtains the user’s name and pass-
word. If the name is “anonymous,” the password is assumed to be the user’s e-mail
address. In this case, the module succeeds. If the user’s name is not “anonymous,”
the variable PAM_AUTHTOK is set to the entered password, the variable
PAM_RUSER is set to the entered user name, and the module fails.

If the module succeeds, the library returns to the caller, indicating success
(because of the “sufficient” in the second field). If it fails, the next two entries will be
used (because of the “required” in their second fields). The second entry invokes a
module that performs the standard UNIX password authentication. The argument
“use_first_pass” means that the password is in the variable PAM_AUTHTOK. If the
module fails, the failure is recorded, but the next line is invoked anyway. Then the
third entry is invoked. Its module looks in the file /etc/ftpusers for the user name in
the variable PAM_RUSER (because of “item=user”). If found, the module fails
(“sense=deny”). If an error occurs (for example, because the file does not exist), the
module succeeds (“onerr=succeed”). If both of the modules in the last two lines suc-
ceed, the user is authenticated. If not, the user’s authentication fails.

Bishop.book Page 194 Tuesday, September 28, 2004 1:46 PM

11.7 Summary 195

The second field controls the calling of the modules. The entries are processed
in the order in which they appear. If the second field is “sufficient” and the module
succeeds, authentication is completed. If the second field is “required,” failure of the
module makes authentication fail, but all required modules are invoked before the
failure is reported. To make the PAM library routine return immediately after the fail-
ure of a module, the second field must be set to “requisite.” Finally, an “optional”
field indicates that if all other modules fail (whether they precede or follow this
entry), the module in this entry is invoked.

The idea of invoking successive modules is called stacking. The interval vari-
ables PAM_AUTHTOK and PAM_RUSER (and some others) enable stacked mod-
ules to communicate with one another. (The option “use_first_pass” in entry 2 is an
example of this.) The caller need know nothing about how the administrator has set
up authentication. Because the order in which the PAM modules are called can
change, the caller can make no assumptions about how the modules work. The
authentication is in effect hidden from the program.

Modules can control access to resources on the basis of factors other than
authentication. The following file, /etc/pam.d/login, corresponds to standard UNIX
authentication and resource checking at login time.

auth required /usr/lib/security/pam_unix_auth.so
account required /usr/lib/security/pam_unix_acct.so
password required /usr/lib/security/pam_unix_passwd.so
session required /usr/lib/security/pam_unix_session.so

The first entry performs the standard password authentication. The second line con-
trols access on the basis of such factors as time of day, and the fourth line does so on
the basis of the resources available for the session. The third entry is invoked when
the user changes the password.

11.7 Summary

Authentication consists of an entity, the user, trying to convince a different entity, the
verifier, of the user’s identity. The user does so by claiming to know some informa-
tion, to possess something, to have some particular set of physical characteristics, or
to be in a specific location. The verifier has some method of validating the claim,
possibly with auxiliary equipment.

Passwords are the most basic authentication mechanism. They are vulnerable
to guessing unless precautions ensure that there is a large enough set of possible
passwords and that each potential password in the set is equally likely to be selected.
Challenge-response techniques allow the system to vary the password and are less
vulnerable to compromise because the password is never transmitted in the clear.

Bishop.book Page 195 Tuesday, September 28, 2004 1:46 PM

196 Chapter 11 Authentication

One-time passwords, an example of this technique, are particularly effective against
guessing attacks because even if a password is guessed, it may not be reused.

Some forms of authentication require hardware support. A cryptographic key
is embedded in the device. The verifier transmits a challenge. The user computes a
response using the hardware device and transmits it to the verifier. The verifier then
validates the signature.

Biometrics measures physical characteristics of the user. These characteristics
are sent to the verifier, which validates them. Critical to the successful use of biometric
measurements is the understanding that they are simply passwords (although very com-
plex ones) and must be protected in the same way that passwords must be protected.

Location requires the verifier to determine the location of the user. If the loca-
tion is not as it should be, the verifier rejects the claim.

In practice, some combination of these methods is used. The specific methods,
and their ordering, depend on the resources available to the verifier and the user, the
strength of the authentication required, and external factors such as laws and customs.

11.8 Further Reading

Discussions of the strength of the UNIX password scheme provide insight into how
gracefully authentication schemes age. Bishop [102] and Feldmeier and Karn [312]
discuss attacks on the UNIX scheme. Su and Bishop use a Connection Machine in a
dictionary attack [884]; Kedem and Ishihara use a PixelFlow SIMD computer [499].
Leong and Tham [556] discuss specific password-cracking hardware. Manber [589]
discusses a salting scheme. Bergadano, Crispo, and Ruffo discuss techniques for
compressing dictionaries for use with proactive password checkers [76, 77].

The U.S. Department of Defense has issued specific guidelines for password
selection and management [256]. Jermyn, Mayer, Monrose, Reiter, and Rubin use
the graphical capabilities of many systems to generate passwords [470]. Rubin pre-
sents an alternative one-time password scheme [763].

Many network-oriented protocols are challenge-response protocols. Seberry
and Pieprzyk [805] and Schneier [796] discuss network-oriented authentication in
depth. Chapter 10, “Key Management,” discusses some of these protocols.

Itoi and Honeyman [465] have developed a version of PAM for Windows NT.

11.9 Exercises

1. Prove Theorem 11–1.
2. A system allows the user to choose a password with a length of one to

eight characters, inclusive. Assume that 10,000 passwords can be tested

Bishop.book Page 196 Tuesday, September 28, 2004 1:46 PM

11.9 Exercises 197

per second. The system administrators want to expire passwords once they
have a probability of 0.10 of having been guessed. Determine the expected
time to meet this probability under each of the following conditions.

a. Password characters may be any ASCII characters from 1 to 127,
inclusive.

b. Password characters may be any alphanumeric characters (“A”
through “Z,” “a” through “z,” and “0” through “9”).

c. Password characters must be digits.
3. Anderson’s Formula assumes that all passwords are equally likely to be

chosen. Generalize the formula to handle cases in which the probability of
the ith string in a set of possible passwords is pi.

4. Classify the following proposed passwords as good choices or poor
choices, and justify your reasoning.

a. Mary
b. go2work
c. cat&dog
d. 3.1515pi

5. The strings used as examples of good passwords are constructed to make
them difficult to guess. Yet the particular good passwords in this chapter
should not be used as passwords. Why not?

6. If password aging is based on previous passwords, why should those
previous passwords not be stored in the clear on disk?

7. Why should salts be chosen at random?
8. Does using passwords with salts make attacking a specific account more

difficult than using passwords without salts? Explain why or why not.
9. Show that a system using an EKE scheme is vulnerable to a dictionary

attack of type 2.
10. The designers of the UNIX password algorithm used a 12-bit salt to

perturb the first and third sets of 12 entries in the E-table of the UNIX
hashing function (the DES). Consider a system with 224 users. Assume
that each user is assigned a salt from a uniform random distribution and
that anyone can read the password hashes and salts for the users.

a. What is the expected time to find all users’ passwords using a
dictionary attack?

b. Assume that eight more characters were added to the password and
that the DES algorithm was changed so as to use all 16 password
characters. What would be the expected time to find all users’
passwords using a dictionary attack?

Bishop.book Page 197 Tuesday, September 28, 2004 1:46 PM

198 Chapter 11 Authentication

c. Assume that the passwords were eight characters long but that the
salt length was increased to 24 bits. Again, the salts (and the
corresponding algorithms) are known to all users. What would be the
expected time to find all users’ passwords using a dictionary attack?

11. The example describing S/Key stated that “for MD4 and MD5, dictionary
attacks are not a threat provided the seeds are chosen randomly.” Why?
How realistic is this assumption?

12. Why should a time-based authentication system invalidate the current
password on a successful authentication?

13. A computer system uses biometrics to authenticate users. Discuss ways in
which an attacker might try to spoof the system under each of the
following conditions.

a. The biometric hardware is directly connected to the system, and the
authentication software is loaded onto the system.

b. The biometric hardware is on a stand-alone computer connected to
the system, and the authentication software on the stand-alone
computer sends a “yes” or “no” to the system indicating whether or
not the user has been authenticated.

14. What complications arise in dynamic keystroke monitoring as a biometric
authentication mechanism when the user’s keystrokes are sent over the
Internet? In particular, what characteristics of the keystroke sequences are
valid, and which ones are distorted by the network?

15. PAM can be used to provide authorization as well as authentication.
Design a set of modules for the PAM scheme that implements the Chinese
Wall model.

Bishop.book Page 198 Tuesday, September 28, 2004 1:46 PM

199

Chapter 12
Design Principles

FALSTAFF: If I had a thousand sons, the
first human principle I would teach them should

be, to forswear thin potations and to addict
themselves to sack.

—The Second Part of King Henry the Fourth, IV, iii, 133–136.

Specific design principles underlie the design and implementation of mechanisms for
supporting security policies. These principles build on the ideas of simplicity and
restriction. This chapter discusses those basic ideas and eight design principles.

12.1 Overview

Saltzer and Schroeder [773] describe eight principles for the design and implementa-
tion of security mechanisms. The principles draw on the ideas of simplicity and
restriction.

Simplicity makes designs and mechanisms easy to understand. More impor-
tantly, less can go wrong with simple designs. Minimizing the interaction of system
components minimizes the number of sanity checks on data being transmitted from
one component to another.

EXAMPLE: The program sendmail reads configuration data from a binary file. System
administrators generated the binary file by “freezing,” or compiling, a text version of
the configuration file. This created three interfaces: the mechanism used to edit the text
file, the mechanism used to freeze the file, and the mechanism sendmail used to read
the frozen file. The second interface required manual intervention and was often over-
looked. To minimize this problem, sendmail checked that the frozen file was newer
than the text file. If not, it warned the user to update the frozen configuration file.

The security problem lies in the assumptions that sendmail made. For example,
the compiler would check that a particular option had an integer value. However,
sendmail would not recheck; it assumed that the compiler had done the checking.

Bishop.book Page 199 Tuesday, September 28, 2004 1:46 PM

200 Chapter 12 Design Principles

Errors in the compiler checks, or sendmail’s assumptions being inconsistent with
those of the compiler, could produce security problems. If the compiler allowed the
default UID to be a user name (say, daemon with a UID of 1), but sendmail assumed
that it was an integer UID, then sendmail would scan the string “daemon” as though
it were an integer. Most input routines would recognize that this string is not an inte-
ger and would default the return value to 0. Thus, sendmail would deliver mail with
the root UID rather than with the desired daemon UID.

Simplicity also reduces the potential for inconsistencies within a policy or set
of policies.

EXAMPLE: A college rule requires any teaching assistant who becomes aware of
cheating to report it. A different rule ensures the privacy of student files. A TA con-
tacts a student, pointing out that some files for a program were not submitted. The
student tells the TA that the files are in the student’s directory, and asks the TA to get
the files. The TA does so, and while looking for the files notices two sets, one with
names beginning with “x” and the other set not. Unsure of which set to use, the TA
takes the first set. The comments show that they were written by a second student.
The TA gets the second set, and the comments show that they were written by the
first student. On comparing the two sets, the TA notes that they are identical except
for the names in the comments. Although concerned about a possible countercharge
for violation of privacy, the TA reports the student for cheating. As expected, the stu-
dent charges the TA with violating his privacy by reading the first set of files. The
rules conflict. Which charge or charges should be sustained?

Restriction minimizes the power of an entity. The entity can access only infor-
mation it needs.

EXAMPLE: Government officials are denied access to information for which they
have no need (the “need to know” policy). They cannot communicate that which they
do not know.

Entities can communicate with other entities only when necessary, and in as
few (and narrow) ways as possible.

EXAMPLE: All communications with prisoners are monitored. Prisoners can com-
municate with people on a list (given to the prison warden) through personal visits or
mail, both of which are monitored to prevent the prisoners from receiving contraband
such as files for cutting through prison bars or weapons to help them break out. The
only exception to the monitoring policy is when prisoners meet with their attorneys.
Such communications are privileged and so cannot be monitored.

“Communication” is used in its widest possible sense, including that of
imparting information by not communicating.

Bishop.book Page 200 Tuesday, September 28, 2004 1:46 PM

12.2 Design Principles 201

EXAMPLE: Bernstein and Woodward, the reporters who broke the Watergate scan-
dal, describe an attempt to receive information from a source without the source’s
directly answering the question. They suggested a scheme in which the source would
hang up if the information was inaccurate and remain on the line if the information
was accurate. The source remained on the line, confirming the information [80].

12.2 Design Principles

The principles of secure design discussed in this section express common-sense
applications of simplicity and restriction in terms of computing. We will discuss
detailed applications of these principles throughout the remainder of Part 5, and in
Part 8, “Practicum.” However, we will mention examples here.

12.2.1 Principle of Least Privilege

This principle restricts how privileges are granted.

Definition 12–1. The principle of least privilege states that a subject should
be given only those privileges that it needs in order to complete its task.

If a subject does not need an access right, the subject should not have that right.
Furthermore, the function of the subject (as opposed to its identity) should control the
assignment of rights. If a specific action requires that a subject’s access rights be aug-
mented, those extra rights should be relinquished immediately on completion of the
action. This is the analogue of the “need to know” rule: if the subject does not need
access to an object to perform its task, it should not have the right to access that object.
More precisely, if a subject needs to append to an object, but not to alter the information
already contained in the object, it should be given append rights and not write rights.

In practice, most systems do not have the granularity of privileges and permis-
sions required to apply this principle precisely. The designers of security mecha-
nisms then apply this principle as best they can. In such systems, the consequences
of security problems are often more severe than the consequences for systems that
adhere to this principle.

EXAMPLE: The UNIX operating system does not apply access controls to the user
root. That user can terminate any process and read, write, or delete any file. Thus,
users who create backups can also delete files. The administrator account on Win-
dows has the same powers.

This principle requires that processes should be confined to as small a protec-
tion domain as possible.

Bishop.book Page 201 Tuesday, September 28, 2004 1:46 PM

202 Chapter 12 Design Principles

EXAMPLE: A mail server accepts mail from the Internet and copies the messages
into a spool directory; a local server will complete delivery. The mail server needs
the rights to access the appropriate network port, to create files in the spool directory,
and to alter those files (so it can copy the message into the file, rewrite the delivery
address if needed, and add the appropriate “Received” lines). It should surrender the
right to access the file as soon as it has finished writing the file into the spool direc-
tory, because it does not need to access that file again. The server should not be able
to access any user’s files, or any files other than its own configuration files.

12.2.2 Principle of Fail-Safe Defaults

This principle restricts how privileges are initialized when a subject or object is created.

Definition 12–2. The principle of fail-safe defaults states that, unless a sub-
ject is given explicit access to an object, it should be denied access to that
object.

This principle requires that the default access to an object is none. Whenever
access, privileges, or some security-related attribute is not explicitly granted, it
should be denied. Moreover, if the subject is unable to complete its action or task, it
should undo those changes it made in the security state of the system before it termi-
nates. This way, even if the program fails, the system is still safe.

EXAMPLE: If the mail server is unable to create a file in the spool directory, it should
close the network connection, issue an error message, and stop. It should not try to
store the message elsewhere or to expand its privileges to save the message in
another location, because an attacker could use that ability to overwrite other files or
fill up other disks (a denial of service attack). The protections on the mail spool
directory itself should allow create and write access only to the mail server and read
and delete access only to the local server. No other user should have access to the
directory.

In practice, most systems will allow an administrator access to the mail spool
directory. By the principle of least privilege, that administrator should be able to access
only the subjects and objects involved in mail queueing and delivery. As we have seen,
this constraint minimizes the threats if that administrator’s account is compromised.
The mail system can be damaged or destroyed, but nothing else can be.

12.2.3 Principle of Economy of Mechanism

This principle simplifies the design and implementation of security mechanisms.

Definition 12–3. The principle of economy of mechanism states that security
mechanisms should be as simple as possible.

Bishop.book Page 202 Tuesday, September 28, 2004 1:46 PM

12.2 Design Principles 203

If a design and implementation are simple, fewer possibilities exist for errors.
The checking and testing process is less complex, because fewer components and
cases need to be tested. Complex mechanisms often make assumptions about the sys-
tem and environment in which they run. If these assumptions are incorrect, security
problems may result.

EXAMPLE: The ident protocol [769] sends the user name associated with a process
that has a TCP connection to a remote host. A mechanism on host A that allows
access based on the results of an ident protocol result makes the assumption that the
originating host is trustworthy. If host B decides to attack host A, it can connect and
then send any identity it chooses in response to the ident request. This is an example
of a mechanism making an incorrect assumption about the environment (specifically,
that host B can be trusted).

Interfaces to other modules are particularly suspect, because modules often
make implicit assumptions about input or output parameters or the current system
state; should any of these assumptions be wrong, the module’s actions may produce
unexpected, and erroneous, results. Interaction with external entities, such as other
programs, systems, or humans, amplifies this problem.

EXAMPLE: The finger protocol transmits information about a user or system [964].
Many client implementations assume that the server’s response is well-formed. How-
ever, if an attacker were to create a server that generated an infinite stream of charac-
ters, and a finger client were to connect to it, the client would print all the characters.
As a result, log files and disks could be filled up, resulting in a denial of service
attack on the querying host. This is an example of incorrect assumptions about the
input to the client.

12.2.4 Principle of Complete Mediation

This principle restricts the caching of information, which often leads to simpler
implementations of mechanisms.

Definition 12–4. The principle of complete mediation requires that all
accesses to objects be checked to ensure that they are allowed.

Whenever a subject attempts to read an object, the operating system should
mediate the action. First, it determines if the subject is allowed to read the object. If
so, it provides the resources for the read to occur. If the subject tries to read the
object again, the system should check that the subject is still allowed to read
the object. Most systems would not make the second check. They would cache the
results of the first check and base the second access on the cached results.

Bishop.book Page 203 Tuesday, September 28, 2004 1:46 PM

204 Chapter 12 Design Principles

EXAMPLE: When a UNIX process tries to read a file, the operating system deter-
mines if the process is allowed to read the file. If so, the process receives a file
descriptor encoding the allowed access. Whenever the process wants to read the
file, it presents the file descriptor to the kernel. The kernel then allows the access.

If the owner of the file disallows the process permission to read the file after
the file descriptor is issued, the kernel still allows access. This scheme violates the
principle of complete mediation, because the second access is not checked. The
cached value is used, resulting in the denial of access being ineffective.

EXAMPLE: The Domain Name Service (DNS) caches information mapping host
names into IP addresses. If an attacker is able to “poison” the cache by implanting
records associating a bogus IP address with a name, one host will route connections
to another host incorrectly. Section 13.6.1.2 discusses this in more detail.

12.2.5 Principle of Open Design

This principle suggests that complexity does not add security.

Definition 12–5. The principle of open design states that the security of a
mechanism should not depend on the secrecy of its design or implementation.

Designers and implementers of a program must not depend on secrecy of
the details of their design and implementation to ensure security. Others can fer-
ret out such details either through technical means, such as disassembly and
analysis, or through nontechnical means, such as searching through garbage
receptacles for source code listings (called “dumpster-diving”). If the strength of
the program’s security depends on the ignorance of the user, a knowledgeable
user can defeat that security mechanism. The term “security through obscurity”
captures this concept exactly.

This is especially true of cryptographic software and systems. Because cryp-
tography is a highly mathematical subject, companies that market cryptographic
software or use cryptography to protect user data frequently keep their algorithms
secret. Experience has shown that such secrecy adds little if anything to the security
of the system. Worse, it gives an aura of strength that is all too often lacking in the
actual implementation of the system.

Keeping cryptographic keys and passwords secret does not violate this principle,
because a key is not an algorithm. However, keeping the enciphering and deciphering
algorithms secret would violate it.

Issues of proprietary software and trade secrets complicate the application
of this principle. In some cases, companies may not want their designs made
public, lest their competitors use them. The principle then requires that the
design and implementation be available to people barred from disclosing it out-
side the company.

Bishop.book Page 204 Tuesday, September 28, 2004 1:46 PM

12.2 Design Principles 205

EXAMPLE: The Content Scrambling System (CSS)
is a cryptographic algorithm that protects DVD
movie disks from unauthorized copying. The DVD
disk has an authentication key, a disk key, and a title
key. The title key is enciphered with the disk key. A
block on the DVD contains several copies of the disk
key, each enciphered by a different player key, and a
checksum of the disk key. When a DVD is inserted
into a DVD player, the algorithm reads the authenti-
cation key. It then deciphers the disk keys using the
DVD player’s unique key. When it finds a deciphered
key with the correct hash, it uses that key to decipher
the title key, and it uses the title key to decipher the
movie [876]. (Figure 12–1 shows the layout of the
keys.) The authentication and disk keys are not
located in the file containing the movie, so if one
copies the file, one still needs the DVD disk in the
DVD player to be able to play the movie.

In 1999, a group in Norway acquired a (soft-
ware) DVD playing program that had an unenci-
phered key. They also derived an algorithm
completely compatible with the CSS algorithm from
the software. This enabled them to decipher any
DVD movie file. Software that could perform these functions rapidly became avail-
able throughout the Internet, much to the discomfort of the DVD Copyright Control
Association, which promptly sued to prevent the code from being made public [698,
712]. As if to emphasize the problems of providing security by concealing algo-
rithms, the plaintiff’s lawyers filed a declaration containing the source code of an
implementation of the CSS algorithm. When they realized this, they requested that
the declaration be sealed from public view. By then, the declaration had been posted
on several Internet sites, including one that had more than 21,000 downloads of the
declaration before the court sealed it [604].

12.2.6 Principle of Separation of Privilege

This principle is restrictive because it limits access to system entities.

Definition 12–6. The principle of separation of privilege states that a system
should not grant permission based on a single condition.

This principle is equivalent to the separation of duty principle discussed in
Section 6.1. Company checks for more than $75,000 must be signed by two officers
of the company. If either does not sign, the check is not valid. The two conditions are
the signatures of both officers.

hash(KD)

E(KD, KPi)

KA

...

E(KD, KPn)

E(KT, KD)

Figure 12–1 DVD
key layout. KA is the
authentication key, KT
the title key, KD the disk
key, and KPi the key for
DVD player i. The disk
key is enciphered once
for each player key.

Bishop.book Page 205 Tuesday, September 28, 2004 1:46 PM

206 Chapter 12 Design Principles

Similarly, systems and programs granting access to resources should do so
only when more than one condition is met. This provides a fine-grained control over
the resource as well as additional assurance that the access is authorized.

EXAMPLE: On Berkeley-based versions of the UNIX operating system, users are not
allowed to change from their accounts to the root account unless two conditions are
met. The first condition is that the user knows the root password. The second condi-
tion is that the user is in the wheel group (the group with GID 0). Meeting either con-
dition is not sufficient to acquire root access; meeting both conditions is required.

12.2.7 Principle of Least Common Mechanism

This principle is restrictive because it limits sharing.

Definition 12–7. The principle of least common mechanism states that mech-
anisms used to access resources should not be shared.

Sharing resources provides a channel along which information can be trans-
mitted, and so such sharing should be minimized. In practice, if the operating system
provides support for virtual machines, the operating system will enforce this privi-
lege automatically to some degree (see Chapter 16, “Confinement Problem”). Other-
wise, it will provide some support (such as a virtual memory space) but not complete
support (because the file system will appear as shared among several processes).

EXAMPLE: A Web site provides electronic commerce services for a major company.
Attackers want to deprive the company of the revenue it obtains from that Web site.
They flood the site with messages and tie up the electronic commerce services.
Legitimate customers are unable to access the Web site and, as a result, take their
business elsewhere.

Here, the sharing of the Internet with the attackers’ sites caused the attack to
succeed. The appropriate countermeasure would be to restrict the attackers’ access to the
segment of the Internet connected to the Web site. Techniques for doing this include
proxy servers such as the Purdue SYN intermediary [801] or traffic throttling (see Sec-
tion 23.4, “Availability and Network Flooding”). The former targets suspect connections;
the latter reduces the load on the relevant segment of the network indiscriminately.

12.2.8 Principle of Psychological Acceptability

This principle recognizes the human element in computer security.

Definition 12–8. The principle of psychological acceptability states that
security mechanisms should not make the resource more difficult to access
than if the security mechanisms were not present.

Bishop.book Page 206 Tuesday, September 28, 2004 1:46 PM

12.3 Summary 207

Configuring and executing a program should be as easy and as intuitive as
possible, and any output should be clear, direct, and useful. If security-related soft-
ware is too complicated to configure, system administrators may unintentionally set
up the software in a nonsecure manner. Similarly, security-related user programs
must be easy to use and must output understandable messages. If a password is
rejected, the password changing program should state why it was rejected rather than
giving a cryptic error message. If a configuration file has an incorrect parameter, the
error message should describe the proper parameter.

EXAMPLE: The ssh program [959] allows a user to set up a public key mechanism
for enciphering communications between systems. The installation and configuration
mechanisms for the UNIX version allow one to arrange that the public key be stored
locally without any password protection. In this case, one need not supply a pass-
word to connect to the remote system, but will still obtain the enciphered connection.
This mechanism satisfies the principle of psychological acceptability.

On the other hand, security requires that the messages impart no unnecessary
information.

EXAMPLE: When a user supplies the wrong password during login, the system
should reject the attempt with a message stating that the login failed. If it were to say
that the password was incorrect, the user would know that the account name was
legitimate. If the “user” were really an unauthorized attacker, she would then know
the name of an account for which she could try to guess a password.

In practice, the principle of psychological acceptability is interpreted to mean
that the security mechanism may add some extra burden, but that burden must be
both minimal and reasonable.

EXAMPLE: A mainframe system allows users to place passwords on files. Accessing
the files requires that the program supply the password. Although this mechanism
violates the principle as stated, it is considered sufficiently minimal to be acceptable.
On an interactive system, where the pattern of file accesses is more frequent and
more transient, this requirement would be too great a burden to be acceptable.

12.3 Summary

The design principles discussed in this chapter are fundamental to the design and
implementation of security mechanisms. They encompass not only technical details
but also human interaction. Several principles come from nontechnical environ-
ments, such as the principle of least privilege. Each principle involves the restriction

Bishop.book Page 207 Tuesday, September 28, 2004 1:46 PM

208 Chapter 12 Design Principles

of privilege according to some criterion, or the minimization of complexity to make
the mechanisms less likely to fail.

12.4 Further Reading

Many papers discuss the application of these principles to security mechanisms. Suc-
ceeding chapters will present references for this aspect of the principles. Other papers
present different sets of principles. These papers are generally specializations or alter-
native views of Saltzer and Schroeder’s principles, tailored for particular environments.
Abadi and Needham [2] and Anderson and Needham [31] discuss principles for the
design of cryptographic protocols; Syverson discusses their limits [890]. Moore [649]
and Abadi [1] describe problems in cryptographic protocols. Wood [952, 953]
discusses principles for secure systems design with an emphasis on groupware.
Bonyun [125] focuses on architectural principles. Landwehr and Goldschlag [547]
present principles for Internet security.

12.5 Exercises

1. The PostScript language [11] describes page layout for printers. Among its
features is the ability to request that the interpreter execute commands on
the host system.

a. Describe a danger that this feature presents when the language
interpreter is running with administrative or root privileges.

b. Explain how the principle of least privilege could be used to
ameliorate this danger.

2. A common technique for inhibiting password guessing is to disable an
account after three consecutive failed login attempts.

a. Discuss how this technique might prevent legitimate users from
accessing the system. Why is this action a violation of the principle
of least common mechanism?

b. One can argue that this is an example of fail-safe defaults, because
by blocking access to an account under attack, the system is
defaulting to a known, safe state. Do you agree or disagree with this
argument? Justify your answer.

3. Kernighan and Plauger [506] argue a minimalist philosophy of tool
building. Their thesis is that each program should perform exactly one
task, and more complex programs should be formed by combining simpler
programs. Discuss how this philosophy fits in with the principle of

Bishop.book Page 208 Tuesday, September 28, 2004 1:46 PM

12.5 Exercises 209

economy of mechanism. In particular, how does the advantage of the
simplicity of each component of a software system offset the disadvantage
of a multiplicity of interfaces among the various components?

4. Design an experiment to determine the performance impact of checking
access permissions for each file access (as opposed to once at the file’s
opening). If you have access to a system on which you can modify the file
access mechanism, run your experiment and determine the impact.

5. A company publishes the design of its security software product in a
manual that accompanies the executable software.

a. In what ways does this satisfy the principle of open design? In what
ways does it not?

b. Given that the design is known, what advantages does keeping the
source code unavailable give the company and those who purchase
the software? What disadvantages does it cause?

6. Assume that processes on a system share no resources. Is it possible for
one process to block another process’ access to a resource? Why or why
not? From your answer, argue that denial of service attacks are possible or
impossible.

7. Given that the Internet is a shared network, discuss whether preventing
denial of service attacks is inherently possible or not possible. Do systems
connected to the Internet violate the principle of least common
mechanism?

8. A program called lsu [104] gives access to role accounts. The user’s access
rights are checked, and the user is required to enter her password. If access
rules allow the change and the user’s password is correct, lsu allows the
change. Given that Mary uses lsu from her account, why does lsu require
her to enter her password? Name the principles involved, and why they
require this.

9. Recall the S/Key one-time password algorithm discussed in Section
12.3.2. When a user prints a list of S/Key passwords for future use, the
system encodes each hash value as a set of six short words and prints them.
Why does it not merely print out the hash values?

10. The program su enables a UNIX user to access another user’s account.
Unless the first user is the superuser, su requires that the password of the
second user be given. A (possibly apocryphal) version of su would ask for
the user’s password and, if it could not determine if the password was
correct because the password file could not be opened, immediately grant
superuser access so that the user could fix the problem. Discuss which of
the design principles this approach meets, and which ones it violates.

Bishop.book Page 209 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 210 Tuesday, September 28, 2004 1:46 PM

211

Chapter 13
Representing Identity

AEMELIA: Most mighty duke, behold a man much wrong’d.
All gather to see them.

ADRIANA: I see two husbands, or mine eyes deceive me!
DUKE SOLINUS: One of these men is Genius to the other;

And so of these, which is the natural man,
And which the spirit? Who deciphers them?

DROMIO OF SYRACUSE: I, sir, am Dromio: command him away.
DROMIO OF EPHESUS: I, sir, am Dromio: pray, let me stay.

—The Comedy of Errors, V, i, 332–338.

The theme of identity runs throughout humanity’s experience, and computers are no
exception. In computer science, an identity is the basis for assignment of privileges
and is integral in the designation of a protection domain. This chapter discusses the
many different types of identity and the contexts in which they arise. It begins with
the identity of a principal on a system, first singly and then as defined by function.
Designation of identity for certificates follows, as does identity on a network with
respect to both individual processes and individual hosts. The chapter concludes with
the notion of an anonymous user.

13.1 What Is Identity?

Identity is simply a computer’s representation of an entity.

Definition 13–1. A principal is a unique entity. An identity specifies a principal.

Authentication binds a principal to a representation of identity internal to the
computer. Each system has its own way of expressing this representation, but all
decisions of access and resource allocation assume that the binding is correct.

Bishop.book Page 211 Tuesday, September 28, 2004 1:46 PM

212 Chapter 13 Representing Identity

Identities are used for several purposes. The two main ones are for accountability
and for access control. Accountability requires an identity that tracks principals across
actions and changes of other identities, so that the principal taking any action can be unam-
biguously identified. Access control requires an identity that the access control mecha-
nisms can use to determine if a specific access (or type of access) should be allowed.

Accountability is tied to logging and auditing. It requires an unambiguous
identification of the principal involved. On many systems, this is not possible.
Instead, the logged identity maps to a user account, to a group, or to a role.

Most systems base access rights on the identity of the principal executing the
process. That is, all processes executed by user bishop have some set of rights. All
processes executed by user holly have a set of rights that may differ from those that
bishop’s processes have. However, a process may have fewer rights than the principal
executing it, and in fact there are substantial reasons to reduce privileges. Chapter 14,
“Access Control Mechanisms,” discusses this topic in more depth.

13.2 Files and Objects

The identity of a file or other entity (here called an “object”) depends on the system
that contains the object.

Local systems identify objects by assigning names. The name may be
intended for human use (such as a file name), for process use (such as a file descrip-
tor or handle), or for kernel use (such as a file allocation table entry). Each name may
have different semantics.

EXAMPLE: The UNIX operating system offers four different types of file names.
The inode uniquely identifies a file. It contains file attribute information such as
access control permissions and ownership information, and identifies the specific
disk blocks that contain the file’s data. Processes read files using a file descriptor that
abstracts the inode into a representation that the process can read from, write to, and
so forth. Once created, the file descriptor cannot be rebound to a different file. Pro-
cesses (and users) can also use file names that identify files by describing their posi-
tions in the file hierarchy. UNIX file names may be absolute path names that
describe the locations of files with respect to the root of the UNIX file hierarchy, or
relative path names that describe the locations of files with respect to the directory in
which the current process is executing.

The semantics of the names differ in important ways. Most critically, when a
process or user operates on a file, the kernel maps the file name to an inode using an
iterative procedure. It obtains the inode of the first directory in the path,1 opens it,

1 If the path is an absolute path name, the first directory in the path is the root directory, which
has a well-known inode number (typically 0, 1, or 2). If the path is a relative path name, the first
directory has the same inode number as the directory in which the process executes.

Bishop.book Page 212 Tuesday, September 28, 2004 1:46 PM

13.3 Users 213

and within that directory locates the inode number of the next component in the path.
This continues until the file’s inode number is found. Two references to the same file
name will reference different file objects when the file is deleted after the first refer-
ence and a new file, with the same name as the deleted file, is created. This can create
problems with programs (see Section 26.5.3.3, “Race Conditions in File Accesses”).

However, when a file descriptor is created, it refers to a specific object.
Regardless of how the file is manipulated, the inode that the file descriptor refers to
remains present until the file descriptor is closed, which breaks the association
between the descriptor and the inode.

If the object resides on a different system, the name must encode the location
of the object.

EXAMPLE: A uniform resource locator (URL) identifies an object by specify-
ing its location and the protocol needed to access it. The object with the URL
ftp://abccorp.com/pub/README specifies that the named object can be accessed by
using the FTP protocol to request the object /pub/README from the host abccorp.com.
The URL does not say that the object is located on that host. Indeed, the host may con-
struct the object to respond to the request, or it may forward the request to another host.

One file may have multiple names. The semantics of the system determine the
effects of each name. For example, some systems define “deleting a file” to mean
removing the given file name. The file object itself will not be deleted until all its
names (or all names meeting certain conditions) have been deleted. Section 25.3.1.3,
“File Deletion,” discusses this issue further.

13.3 Users

In general, a user is an identity tied to a single entity. Specific systems may add addi-
tional constraints. Systems represent user identity in a number of different ways.
Indeed, the same system may use different representations of identity in different
contexts.

EXAMPLE: Versions of the UNIX operating system usually represent user identity as
an integer between 0 and some large integer (usually 65,535). This integer is called
the user identification number, or UID. Principals (called users) may also be
assigned login names. Each login name corresponds to a single UID (although one
UID may have many different login names).

When the kernel deals with user identity, it uses the UID; for example, the
superuser is any user whose UID is 0 regardless of that user’s name. However, when
a user logs in, she provides her identity as her login name. Similarly, all logging uses
the login name rather than the numeric UID.

Bishop.book Page 213 Tuesday, September 28, 2004 1:46 PM

214 Chapter 13 Representing Identity

The same principal may have many different identities. Typically each iden-
tity serves a particular function.

EXAMPLE: Versions of the UNIX operating system provide several types of user
identities [608]. Because a user is a subject, and a process executes on behalf of a
user, the various identities are associated with processes. The real UID is the user
identity at initial login, but it can be changed. The effective UID is the user identity
used for access control. For example, if only UID 22 can read a particular file, and a
process’ real UID is 22 and its effective UID is 35, the user will not be able to read
the file. If the process’ real UID were 35 and its effective UID were 22, access would
be granted.

A special class of programs, called setuid programs [347], create processes
with the effective UID being that of the owner of the program rather than that of the
user executing the program. The resulting process has the access rights of the owner
of the program rather than those of the user executing the program.

In an effort to limit the need for special privileges, many UNIX systems (such
as Solaris and FreeBSD) provide a saved UID. Whenever the effective UID changes,
the saved UID is set to the value of the effective UID before the change. The user can
switch among the real, effective, and saved UIDs. This allows the process to be given
root privileges, use them for a limited time (effective UID of 0), drop them (saved
UID of 0, nonzero effective UID), and reacquire them later.

Traditionally, the real UID was used to track the original UID of the process.
However, the superuser can change it. To provide an unalterable means of recording
the original real UID of the process, many UNIX systems provide an audit or login
UID. This UID is assigned at login and cannot be changed.2

13.4 Groups and Roles

The “entity” may be a set of entities referred to by a single identifier. The members
of the set must be distinguishable, but the set may have an identity separate from any
of its elements.

Principals often need to share access to files. Most systems allow principals to
be grouped into sets called, logically enough, groups. Groups are essentially a short-
hand tool for assigning rights to a set of principals simultaneously.

Two implementations of groups provide different abilities and therefore are
based on different models. The first simply uses a group as an alias for a set of prin-
cipals. Principals are assigned to groups, and they stay in those groups for the life-
times of their sessions. The second model allows principals to change from one
group to another. After each change, the rights belonging to the principal as a mem-
ber of the previous group are discarded and the rights of the new group are added.

2 Interestingly, some systems allow root to change the audit UID after assignment.

Bishop.book Page 214 Tuesday, September 28, 2004 1:46 PM

13.5 Naming and Certificates 215

The difference lies in the representations of identity. In the former model, the identity
assigned to a principal remains static; it is the principal identity and the set of identi-
ties of each group that the principal is a part of. This identity does not change
throughout the lifetime of the session. In the latter model, the identity of the principal
is the identity of the user and the set of identities of each group of which the principal
is currently a member. It is dynamic, and should the principal change from one group
to another, the identity of that principal also changes.

In practice, one discusses “user identity” and “group identity.”

EXAMPLE: UNIX users are assigned membership to a group when they log in [608].
Each process has two identities, a “user identification” and a “group identification.”
On older UNIX systems, each principal can be in only one group at a time. The com-
mand newgrp(1) changes this identity. The principal can change to any group of
which he is a member. On other UNIX systems, each principal can be in several
groups at a time. On login, the user is placed into all groups of which he is a member.

A role is a type of group that ties membership to function. When a principal
assumes a role, the principal is given certain rights that belong to that role. When the
principal leaves the role, those rights are removed. The rights given are consistent
with the functionality that the principal needs to perform the tasks expected of mem-
bers of the role.

EXAMPLE: On the DG/UX system, system administration privileges belong to the
sysadmin role, not the root user [230]. That user’s rights are restricted. The sysuser
user can assume the sysadmin role to administer the host, or the netadmin role to
administer the network. Several such roles are defined.

13.5 Naming and Certificates

Chapter 9 described certificates as a mechanism for binding cryptographic keys to
identifiers. The identifier corresponds to a principal. The identifier must uniquely
identify the principal to avoid confusion.

Suppose the principals are people. The identifiers cannot be names, because
many different people may have the same name. (How many people named “John
Smith” or “Pierre LeBlanc” are there?) The identifiers must include ancillary infor-
mation to distinguish the “Matt Bishop” who teaches at UC Davis from the “Matt
Bishop” who works at Microsoft Corporation.

EXAMPLE: The X.509v3 certificates use identifiers called Distinguished Names. A
Distinguished Name identifies a principal. It consists of a series of fields, each with a
key and a value. When written as strings, the fields are separated by “/” and the key

Bishop.book Page 215 Tuesday, September 28, 2004 1:46 PM

216 Chapter 13 Representing Identity

and value by “=”.3 To use our earlier example, the “Matt Bishop” who teaches at the
University of California might have the Distinguished Name

/O=University of California/OU=Davis campus/OU=Department
of Computer Science/CN=Matt Bishop/

(where the key “O” means organization, “OU” means organizational unit, and “CN”
means common name) and the “Matt Bishop” who works at Microsoft might have
the Distinguished Name

/O=Microsoft Corporation/OU=Quality Assurance/CN=Matt
Bishop/

Although the names are the same, the individuals, and hence the Distinguished
Names, are different.

Certification authorities (CAs) vouch, at some level, for the identity of the
principal to which the certificate is issued. Every CA has two policies controlling
how it issues certificates.

Definition 13–2. A CA authentication policy describes the level of authenti-
cation required to identify the principal to whom the certificate is to be issued.

Definition 13–3. A CA issuance policy describes the principals to whom the
CA will issue certificates.

The difference between these two policies is that the first simply establishes
the level of proof of identity needed for the CA to accept the principal’s claim of
identity whereas the second answers the question, “Given the identity of the princi-
pal, will the CA issue a certificate?”

EXAMPLE: In 1996, Verisign Corporation ran several CAs. Each had its own policies
of issuance and authentication for certificates [348].

Individuals obtained certificates (called “Digital IDs”) from one of three
CAs.4 The class 1 CA authenticated the individual’s electronic mail address. This CA
provided a certificate for sending and receiving electronic mail securely. The class 2
CA required that the individual supply his real name and address, which was verified
through an online database. This CA provided a certificate suitable for online purchas-
ing and was (roughly) equivalent to the level of authentication for a credit card. The
class 3 CA required a background check from an investigative service. The certificate

3 When compiled into a binary format, in many cases the key is implied by the data structure.
4 Actually, a single CA issues multiple types of certificates. Conceptually, the single
organization is acting as though it were multiple CAs.

Bishop.book Page 216 Tuesday, September 28, 2004 1:46 PM

13.5 Naming and Certificates 217

from this CA provided a higher level of assurance of identity than the other two cer-
tificates. All three CAs had the same issuance policy: that certificates were issued to
individuals. A fourth CA provided certificates to Web servers. This CA had the same
issuance policy as the class 3 CA. Consumers who did business with the Web site
had a high degree of assurance that the Web site was whom it claimed to be.

CAs can issue certificates to other organizations. The certificate-based key
management architecture for the Internet [504] demonstrates how such an organiza-
tion can lead to a simple hierarchical structure of policies.

EXAMPLE: The infrastructure organizes CAs into a hierarchical, tree-based struc-
ture. Each node in the tree corresponds to a CA. Consider a node that is the root of a
subtree. The CAs under that root are constrained by the policies of that root; the sub-
ordinate nodes may issue certificates with more restrictive policies, but not with
more liberal policies.

The root of the tree is the Internet Policy Registration Authority (IPRA). It sets
policies that all subordinate CAs must follow, and it certifies other CAs called policy
certification authorities (PCAs). Each PCA has its own issuance and authentication
policies, but those policies must not conflict with the policies set by the IPRA. The
PCAs issue certificates to ordinary CAs, which can then issue certificates to organi-
zations or individuals. The IPRA and PCAs do not issue certificates to individuals or
organizations. All CAs, PCAs, and the IPRA have unique Distinguished Names.

The elegance of this approach is twofold. Because all PCA policies are public,
on receiving a certificate one can determine how much trust to place in the identity in
the certificate (authentication policy) as well as the requirements that the holder had
to meet to have the certificate issued (issuance policy).

To understand how this works, suppose the University of Valmont wished to
establish a CA for both students and staff. The requirements for certification for
these groups are different. Students must present valid registration cards to obtain
certificates. These certificates would be considered low-assurance certificates
(because of the nature of the registration process) and so would be signed using the
university’s low-assurance certificate. This certificate, in turn, is signed by a PCA
that requires its subordinate CAs to make a good-faith effort to verify the identities
of those to whom it issues certificates. But the university requires staff members to
present proof of employment and fingerprints, which are compared with the finger-
prints obtained when each employee was hired. This provides a high level of assur-
ance of identity, and so the University of Valmont signs these certificates with its
high-assurance certificate, obtained from a different PCA that requires the use of bio-
metrics for verification of identity.

The certificates for student John and professor Marsha are both signed by the
same organization, but they are signed using different cryptographic keys. John’s
certificate is signed by the key corresponding to a low-assurance certificate (because
the first PCA signed it), and Marsha’s certificate is signed by the key corresponding
to a high-assurance certificate (because the second PCA signed it). By checking the

Bishop.book Page 217 Tuesday, September 28, 2004 1:46 PM

218 Chapter 13 Representing Identity

policies of each of the PCAs, and (possibly) the CA, the recipient of one of these cer-
tificates can tell what the policies of issuance and assurance are. (A potential conflict
arises because the CA has the same Distinguished Name for two different types of
policies.)

As another example of how the certificates encode policy, note that Marsha’s
certificate implicitly identifies her as being affiliated with the University of Valmont.
This type of certificate is called an organizational certificate. The Internet infrastruc-
ture defines a second type of certificate, a residential certificate, that identifies the
principal’s residential address. Marsha has one of these, issued by the post office, and
identifying her as a citizen residing in the city of Valmont.

/C=US/SP=Louisiana/L=Valmont/PA=27 Russell Blvd./
CN=Marsha/

(Here, “C” is the country code, “SP” is the province or state name, “L” is the locality
(city, town, or village), and “PA” is the street address.

The principals need not be people or organizations; they can be roles.

EXAMPLE: A company wishes to have its comptroller authorized to digitally sign
documents. To this end, it issues a certificate to the role.

/O=Hodgepodge Corporation/OU=Office of Big Money/
RN=Comptroller/

Even if the current comptroller leaves and a new one is hired, the same certificate can
be used. Here, “Comptroller” is a role (and the use of the “RN” key, for “Role
Name,” reflects this).

The identifiers in a certificate need not be formal Distinguished Names. The
certificates used with PGP, for example, allow the subject to select any identifier he
or she wishes. The convention is to use an electronic mail address, but this permits a
high level of ambiguity, especially when mail addresses change frequently. This
leads directly to conflicts; how can a CA ensure that the certificate it issues does not
conflict with another?

13.5.1 The Meaning of the Identity

The authentication policy defines the way in which principals prove their identities.
Each CA has its own requirements (although they may be constrained by contractual
requirements, such as with PCAs). All rely on nonelectronic proofs of identity, such
as biometrics (fingerprints), documents (driver’s license, passports), or personal

Bishop.book Page 218 Tuesday, September 28, 2004 1:46 PM

13.5 Naming and Certificates 219

knowledge. If any of these means can be compromised, the CA may issue the certifi-
cate in good faith to the wrong person.

This hearkens back to the issue of trust. Ignoring the trust required for cryp-
tography to work, the certificate is the binding of an external identity to a crypto-
graphic key and a Distinguished Name. If the issuer can be fooled, all who rely on
that certificate may also be fooled.

With the erosion of privacy in many societies comes the need for anonymity.
This conflicts with the notion of a certificate binding an identity to a Distinguished
Name and a public key. The conflict arises when the anonymous principal needs to
send a set of integrity-checked, confidential electronic messages to a recipient and to
ensure that the recipient realizes that all of the messages have come from the same
source (but the recipient cannot know what the source is).

EXAMPLE: A government plans to require all citizens with a specific gene to regis-
ter, because anecdotal evidence suggests that people with that gene commit crimes
slightly more often than other people. The government plans to make the law without
publicity, because aside from the civil liberties issues, there is no reputable scientific
evidence to back up the belief. A government employee decides to alert the media.
She realizes that the government will promptly deny the plan and change its
approach to getting the law passed. She feels that she will be fired (or charged with a
crime) if the government determines who she is, and would therefore be unable to
reveal any changes in the plan. So she decides to publicize the plans anonymously.

Anonymous, or persona, certificates supply the requisite anonymity. A CA
issues a persona certificate under a policy that makes the Distinguished Name of the
principal meaningless. For example, a persona certificate with a principal Distin-
guished Name of

/C=US/O=Microsoft Corp./CN=John Smith/

does not imply that the certificate was issued to someone named John Smith. PGP
certificates can have any name to identify the principal, and can innately provide
anonymity in this sense.

EXAMPLE: Continuing, our heroine obtains a persona certificate and sends a copy of
the government’s plan to the media, using electronic mail, as described above. The
government denies the plan and secretly changes its strategy. It has some employees
leak verifiably false information so that if the original whistleblower sends another
message, it is less likely to be believed. But she does, and she uses the same certifi-
cate to authenticate the message. Now the media can check that the two messages
came from the same source (or at least were signed with the same certificate),
whereas the false messages were signed by different certificates.

Bishop.book Page 219 Tuesday, September 28, 2004 1:46 PM

220 Chapter 13 Representing Identity

13.5.2 Trust

The goal of certificates is to bind the correct identity to the public key. When a user
obtains a certificate, the issuer of that certificate is vouching, to some degree of cer-
tainty, that the identity corresponds to the principal owning the public key. The criti-
cal question is the degree of that assurance.

X.509v3, and the PEM certification hierarchy, define the degree of certainty in
the policy of the CA that issues the certificate. If a CA requires a passport as identifi-
cation, then the degree of certainty is high; if it requires an unsworn statement of
identity, the degree of certainty is low. But even high-assurance CAs can be fooled.
In the case of the passport, passports can be stolen or forged. So the level of trust in
an identity is not quantifiable. Rather, it is an estimate based on the policy of the CA,
the rigor with which that policy is followed, and the assumptions that the policy
makes.

EXAMPLE: Consider the CA that requires a passport to issue a certificate. The certif-
icate will have as its DN the name in the passport, the name of the country issuing
the passport, and the passport number. There are several points of trust in this policy.
First, the CA assumes that the passport is not forged and that the name has not been
altered. Second, the CA assumes that the country issuing the passport issued it to the
person named in the passport. Third, the CA assumes that the individual presenting
the passport is the individual to whom the passport was issued.5 Fourth, the users of
the certificate assume that the CA has actually checked the passport and the individ-
ual using the passport to obtain a certificate.

PGP certificates include a series of signature fields (see Section 9.3.1.2), each
of which contains a level of trust.6 The OpenPGP specification defines four levels
[150].

1. Generic certification of a user name and a public key; this makes no
assertions.

2. Persona certification of a user name and a public key; the signer has done
no verification that the user name correctly identifies the principal.

3. Casual certification of a user name and a public key; the signer has done
some verification that the user name correctly identifies the principal.

4. Positive certification of a user name and a public key; the signer has done
substantial verification that the user name correctly identifies the principal.

Even here, though, the trust is not quantifiable. What exactly do “some verifi-
cation” and “substantial verification” mean? The OpenPGP specification does not

5 Passport photographs are notoriously poor, making visual identification questionable unless
conditions are optimal.
6 This is encoded in the signature type field of the signature.

Bishop.book Page 220 Tuesday, September 28, 2004 1:46 PM

13.6 Identity on the Web 221

define them, preferring to leave their definitions to the signer, but the same terms can
imply different levels of assurance to different signers.

EXAMPLE: At a university, “substantial verification” may mean having a student
identification card and a matching driver’s license. The university’s CA would sign
the student’s PGP certificate with level 4 trust. But at a high-security government
installation that requires background checks before certificates are signed, the uni-
versity’s “substantial verification” would most likely be considered level 2 trust, “no
verification.”

The point is that knowing the policy, or the trust level with which the certifi-
cate is signed, is not enough to evaluate how likely it is that the identity identifies the
correct principal. Other knowledge, about how the CA or signer interprets the policy
and enforces its requirements, is needed.

EXAMPLE: On March 22, 2001, Verisign, Inc. and Microsoft Corporation [203]
reported that Verisign had issued two certificates to someone claiming to be a repre-
sentative of Microsoft Corporation. The individual was not. Both companies took
steps to cancel the certificates and prevent them from being used.

13.6 Identity on the Web

Certificates are not ubiquitous on the Internet. Several other means attach identity to
information, even though the binding may be very transient.

The Internet requires every host to have an address. The address may be fixed
or may change, and without cryptography the binding is weak. Many servers send
information about the state of the client’s interaction, so that when the client recon-
nects, the server can resume the transaction or glean information about previous
transactions.

13.6.1 Host Identity

Host identity is intimately bound to networking. A host not connected to any network
can have any name, because the name is used only locally. A host connected to a net-
work can have many names or one name, depending on how the interface to the net-
work is structured and the context in which the name is used.

The ISO/OSI model [894] provides a context for the issue of naming. Recall
that the ISO/OSI model is composed of a series of layers (see Figure 10–2). Each
host, conceptually, has a principal at each layer that communicates with a peer on
other hosts. These principals communicate with principals at the same layer on other
hosts. Each principal on an individual host can have different names (also called

Bishop.book Page 221 Tuesday, September 28, 2004 1:46 PM

222 Chapter 13 Representing Identity

“addresses”) at each layer. All names identify the same host, but each one refers to a
particular context in which the host functions.

EXAMPLE: A computer has an Ethernet (media access control layer, or MAC)
address of 00:05:02:6B:A8:21, an IP address of 192.168.35.89, and a host name of
cherry.orchard.net. At the data link level, the system is known by its Ethernet
address. At the network level, it is known by its IP address. At the application level, it
is known by its host name. The system is also on an AppleTalk network, with an
AppleTalk address of network 51, node 235. Other systems on the AppleTalk net-
work identify the host by that name.

Shoch [825] suggests that a “name” identifies a principal and an “address”
identifies where that principal is located. In the context of host identification, the
“address” indicates where on a network (and, sometimes, the specific network) the
host is located. A “name” indicates in what domain the host resides, and corresponds
to a particular address. Although Shoch’s terminology is instructive in many con-
texts, in this context a location identifies a principal just as well as a name. We do not
distinguish between the two in the context of identification.

If an attacker is able to spoof the identity of another host, all protocols that
rely on that identity are relying on a faulty premise and are therefore being spoofed.
When a host has a sequence of names, each relying on the preceding name, then an
attacker spoofing the first identity can compromise all the other identities. For exam-
ple, the host identity is based on the IP identity. Similarly, the IP identity is based on
the Ethernet identity. If an attacker can alter entries in databases containing the map-
ping of a lower-level identity to a higher-level identity, the attacker can spoof one
host by routing traffic to another.

13.6.1.1 Static and Dynamic Identifiers
An identifier can be either static or dynamic. A static identifier does not change over
time; a dynamic identifier changes either as a result of an event (such as a connection
to a network) or over time.

Databases contain mappings between different names. The best known of
these is the Domain Name Service (DNS) [643, 644], which associates host names
and IP addresses. In the absence of cryptographic authentication of hosts, the consis-
tency of the DNS is used to provide weak authentication.

EXAMPLE: The DNS contains forward records, which map host names into IP
addresses, and reverse records, which map IP addresses into names. A reverse
domain lookup occurs when a process extracts the IP address of its remote peer,
determines the associated host name (perhaps using the DNS), and then obtains the
set of IP addresses associated with that host name (again, possibly using the DNS). If
the IP address obtained from the peer matches any of the IP addresses associated
with that host name, then the host name is accepted as the one obtained in the first
lookup. Otherwise, the host name is rejected as untrusted.

Bishop.book Page 222 Tuesday, September 28, 2004 1:46 PM

13.6 Identity on the Web 223

The belief in the trustworthiness of the host name in this case relies on the
integrity of the DNS database. Section 13.6.1.2, “Security Issues with the Domain
Name Service,” examines this issue.

Floating identifiers are assigned to principals for a limited time. Typically, a server
maintains a pool of identifiers. A client contacts the server using an identifier agreed
on between the two (the local identifier). The server transmits an identifier that the
client can use in other contexts (the global identifier) and notifies any intermediate
hosts (such as gateways) of the association between the local and global identifiers.

EXAMPLE: The Bootless University provides a network to which students can hook
up laptops. Rather than assign each student laptop an IP address, the university has
created a DHCP server [14] for this network. When a student connects her laptop to
the network, the laptop transmits its MAC (media access control) address to the
server. The server responds with an unused IP address belonging to the network. The
laptop accepts that IP address and uses it to communicate on the Internet.

A gateway can translate between a local address and a global address.

EXAMPLE: The Zerbche company has 500 computers on a local area network, but
only 256 Internet addresses. The internal network assigns as (fixed) local addresses
the IP addresses 10.1.x.y, where x and y reflect internal configuration details not rele-
vant here. A gateway connects the internal network to the Internet.

When a user at (say) host 10.1.3.241 wants to access the Internet, it forwards
its packets to the gateway. The gateway assigns a legitimate IP address to the inter-
nal, local address; say that IP address is 101.43.21.241. The gateway then rewrites
the source address of each packet, changing 10.1.3.241 to 101.43.21.241, and puts
the packets out on the Internet. When the gateway receives packets destined for host
101.43.21.241, it checks its internal table, rewrites those addresses as 10.1.3.241,
and forwards them to the internal network, and the packets go to their destination.
This translation is invisible to either end of the communication, and enables up to
some number of hosts on the internal network to communicate with hosts on the
Internet. The Network Address protocol (NAT) [864] is used on the Internet to per-
form this function.

In the absence of cryptography, authentication using dynamic naming is dif-
ferent from authentication using static naming. The primary problem is that the asso-
ciation of the identity with a principal varies over time, so any authentication based
on the name must also account for the time. For example, if the DNS record entries
corresponding to the dynamic name are not updated whenever the name is reas-
signed, the reverse domain lookup method of authentication fails.7

7 This failure does not necessarily mean that the DNS has been compromised. Some systems
store the forward and reverse lookup information in separate files. Updating the forward lookup
information file does not change the reverse lookup information file. Unless the latter is updated
also, the stated problem occurs.

Bishop.book Page 223 Tuesday, September 28, 2004 1:46 PM

224 Chapter 13 Representing Identity

The contrast between static and dynamic naming in authentication is worth
noting in light of the different properties described in Chapter 11, “Authentication.”
The reverse domain lookup technique of authentication corresponds to checking a
property of a principal (what it is) with static naming, because the name is bound
permanently to the principal. But that technique corresponds to checking a posses-
sion of a principal (what it has) with dynamic naming, because the principal will
relinquish that name at some point.

13.6.1.2 Security Issues with the Domain Name Service
Understanding the centrality of trust in the databases that record associations of iden-
tity with principals is critical to understanding the accuracy of the identity. The DNS
provides an example of this. The belief in the trustworthiness of the host name in this
case relies on the integrity of the DNS database. If the association between a host
name and an IP address can be corrupted, the identifier in question will be associated
with the wrong host.

Bellovin [69] and Schuba [800] discuss several attacks on the DNS. The goal
of these attacks is to cause a victim to associate incorrectly a particular IP address
with a host name. They assume the attacker is able to control the responses from an
authoritative domain name server. “Control” means that the attacker has control over
the name server or can intercept queries to that server and return its own responses.

The attacker can change the records associating the IP address with the host
name, so that a query for one returns an incorrect answer for the other. A second
technique, known as “cache poisoning,” relies on the ability of a server to add extra
DNS records to the answer to a query. In this case, the extra records added give
incorrect association information. Schuba uses this to demonstrate how the reverse
name lookup can be compromised. The attacker connects to the victim. The victim
queries the DNS for the host name associated with the IP address. The attacker
ensures that two records are returned: a record with the bogus host name associated
with the IP address, and the reverse record. The DNS protocol allows this piggyback-
ing to enable the client to cache records. The cache is checked before any records are
requested from the server, so this may save a network request. The third technique
(“ask me”) is similar: the attacker prepares a request that the victim must resolve by
querying the attacker. When the victim queries the attacker, the attacker returns the
answer, along with two records for the mapping that he is trying to spoof (one for the
forward mapping, one for the reverse).

Judicious use of cryptographically based techniques coupled with careful
administration of DNS servers can effectively limit the ability of attackers to
use these attacks. Supporting infrastructure is under design and development (for
example, see [284, 285, 286, 287, 288]).

Bishop.book Page 224 Tuesday, September 28, 2004 1:46 PM

13.6 Identity on the Web 225

13.6.2 State and Cookies

Many Internet applications require that the client or server maintain state to simplify
the transaction process [534].

Definition 13–4. A cookie is a token that contains information about the state
of a transaction on a network.

Although the transaction can be any client-server interaction, the term
“cookie” is most widely used in reference to interactions between Web browsers and
clients. These cookies minimize the storage requirements of the servers and put the
burden of maintaining required information on the client. The cookies consist of sev-
eral values.

1. The name and value are encoded into the cookie and represent the state.
The interpretation is that the name has an associated value.

2. The expires field indicates when the cookie is valid. Expired cookies are
discarded; they are not to be given out. If this field is not present, the
cookie will be deleted at the end of the session.

3. The domain states the domain for which the cookie is intended. It consists
of the last n fields of the domain name of a server. The cookie will be sent
to servers in that domain. For example, domain=.adv.com specifies
that the cookie is to be sent to any requesting server in the adv.com
domain. A domain field must have at least one embedded “.” in it; this
prevents a server from sending over a cookie ending in “.com” and then
requesting all cookies for the domain “.com.”

There is no requirement that a cookie be sent from a host in the domain.
This can be used to track certain types of accesses, as discussed below.

4. The path further restricts the dissemination of the cookie. When a Web
server requests a cookie, it provides a domain (its own). Cookies that
match that domain may be sent to the server. If the server specifies a path,
the path must be the leading substring of the path specified in the cookie.

5. If the secure field is set, the cookie will be sent only over secured
connections (that is, to “https” or “http” over SSL).

EXAMPLE: Caroline logs in to a Web server, www.books.com, used to sell books.
She selects two books to buy and adds them to her “shopping cart.” The Web server
sends her a cookie with key “bought” and value “BK=234&BK=8763.” The domain
for the cookie is “.books.com.” The expiration field is omitted. When Caroline goes
to the page to pay for the books, the server asks for the cookie “bought” belonging to
the domain “.books.com.” From the value of the cookie, the server sees that Caroline
wants to buy books numbered 234 and 8763. Had Caroline terminated the session
(by exiting her browser, for example), the cookie would be deleted and no record
would exist of the books she thought about purchasing.

Bishop.book Page 225 Tuesday, September 28, 2004 1:46 PM

226 Chapter 13 Representing Identity

The restriction of sending cookies to hosts in the cookie’s domain prevents
one Web server from requesting cookies sent by a second Web server. However, a
Web server can send cookies marked for the domain of a second server. When the
user accesses the second Web server, that server can request the cookies marked for
its domain but sent by the first server.

EXAMPLE: When Caroline accesses the Web server to buy books, that server sends
her a cookie with key “id,” value “books.com,” and domain “adv.com.” Several
advertisements at the www.books.com Web site take Caroline to the server
www.adv.com. When Caroline follows one of those links to that server, the server
requests her cookies for that domain. Caroline’s browser sends the cookie. From this,
www.adv.com can determine the Web site from which Caroline obtained the cookie.

Caroline need not even follow the advertisement. Most such advertisements are
images, and the www.books.com server does not have those images online. Instead, the
Web page contains a pointer to some other server, such as www.adv.com. When Caro-
line’s browser pulls the www.books.com Web page over, it contains an instruction for
her browser to contact www.adv.com to get the advertising image. At that connection,
www.adv.com can request the cookie that www.books.com had sent over.

Cookies can contain authentication information, both user-related and host-
related. Using cookies for authentication treats them as tokens supplied by the
browser to validate (or state and validate) an identity. Depending on the sensitivity of
the interactions with the server, protecting the confidentiality of these cookies may
be critical. Exercise 1 explores this topic in more detail.

13.6.3 Anonymity on the Web

Identification on the Internet arises from associating a particular host with a connec-
tion or message. The recipient can determine the origin from the incoming packet. If
only one person is using the originating host, and the address is not spoofed, some-
one could guess the identity of the sender with a high degree of accuracy.

An anonymizer is a site that hides the origins of connections. It functions as a
proxy server—that is, it operates on behalf of another entity. A user connects to the anon-
ymizer and tells it the destination. The anonymizer makes the connection, so the destina-
tion host sees only the anonymizer. The anonymizer forwards traffic in both directions.

The destination believes it is communicating with the anonymizer because all
traffic will have the anonymizer’s address in it. However, the anonymizer is merely a
go-between and merely passes information between the destination and the origin.

Anonymizers work primarily on electronic mail and http traffic, although the
same principles apply to any type of network messages. In what follows, we focus on
electronic mail, because electronic mail anonymizers are conceptually simple and dem-
onstrate the techniques used and the privacy issues that arise. The story of the Finnish
anonymizer anon.penet.fi is worth recounting, because it was the first widely used anony-
mizer. Its demise points out the problems in both using and running anonymizers.

Bishop.book Page 226 Tuesday, September 28, 2004 1:46 PM

13.6 Identity on the Web 227

EXAMPLE: The host anon.penet.fi offered an anonymous electronic mail service.
One would send a letter to it, naming another destination (either an individual or a
USENET news group). The anonymizer would strip off the headers, assign an anon-
ymous ID (anon374, for example) to the letter, and record the sender and the associ-
ated anonymous ID in a database. The letter would then be delivered to its
destination, as though user anon374 at anon.penet.fi had sent it. The recipients could
not tell the original sender from the letter. They would reply to the letter by sending
the reply to anon374 at anon.penet.fi. This letter would be anonymized in the same
way the original letter was anonymized, and would then be forwarded to the real
electronic mail address corresponding to anon374.

This exchange is not truly anonymous. Even though the end parties do not
know who each other are, the anonymizer knows who both are.

Definition 13–5. A pseudo-anonymous (or pseudonymous) remailer is a
remailer that replaces the originating electronic mail addresses (and associ-
ated data) of messages it receives before it forwards them, but keeps mappings
of the anonymous identities and the associated origins.

The problem is that the binding between the anonymous address and the real
address is known somewhere. If that point can be made to reveal the association,
anonymity ceases to exist.

EXAMPLE: The association between the anonymous ID and the electronic mail
address of the sender was anon.penet.fi’s undoing [418]. Some material, claimed to
be copyrighted, was circulated through the site. A Finnish court directed the owner of
the site to reveal the database so the plaintiffs could determine the electronic mail
address of the sender, thereby ending the anonymity. Although the owner appealed
the order, he subsequently shut down the site.

The association can be obscured by using a sequence of pseudo-anonymous
remailers. Tracing the origin then requires the trackers to obtain information from
several sites. But the chain must exist if replies are to be sent back to the original
sender. Eliminating that requirement allows true anonymity.

Definition 13–6. [300] A Cypherpunk (or type 1) remailer is a remailer that
deletes the header of an incoming message and forwards the remainder to its
destination.

Unlike a pseudo-anonymous remailer, no record of the association between
the originating address and the remailer address is kept. Thus, one cannot trace the
message by mapping the remailer’s user name to an electronic mail address.

Bishop.book Page 227 Tuesday, September 28, 2004 1:46 PM

228 Chapter 13 Representing Identity

Cypherpunk remailers are typ-
ically used in a chain, and messages
sent through them are always enci-
phered [382]. Figure 13–1 shows how
this works. Bob composes a message
to Alice and then uses PGP to enci-
pher it twice. The first encipherment
is for the destination “remailer 2.”
The resulting message is then enci-
phered for delivery to remailer 1. Bob
then mails the message to remailer 1.
It deciphers the message, sees that it
is to be sent to remailer 2, and for-
wards it. Remailer 2 receives the mes-
sage, deciphers it, and forwards the
message to Alice. Because there is no
record of who sent the message to
remailer 1, it cannot be tied back to
Bob’s electronic mail address.
Because remailer 2 received the
message from remailer 1, it cannot
associate any real electronic mail address with the destination address (Alice). This
illustrates the reason for using chains of Cypherpunk remailers. Were only one remailer
used, it could associate the real sender with the real recipients. Although two remailers,
or any number of remailers, could cooperate to do the same thing, in practice such
cooperation is very difficult to achieve. Again, the issue of trust in the remailers is cen-
tral to the success of Cypherpunk remailers.

But there is still a weakness. Suppose an attacker could monitor all traffic
between the source and the destination but the remailers themselves remained
uncompromised. Then the attacker could view traffic into and out of a remailer but
could not see the association of incoming traffic with outgoing traffic. The goal of the
attacker would be to reconstruct this association [213, 382].

Obviously, reconstructing this association from cleartext messages is simple:
just compare the bodies of incoming messages with those of outgoing messages. The
envelope for the current remailer will be deleted; otherwise, the bodies will be the
same. This is the reason to encipher all messages going through a Cypherpunk
remailer. In the following discussion, we assume that all such messages are enci-
phered. The attacks all involve traffic analysis.

If a remailer immediately forwards a message after receiving it, and before
any other message arrives (or if processing is guaranteed to occur in order of arrival),
then the attacker can determine the association. One approach to obscuring this is to
hold messages for random intervals of time; however, unless the interval is greater
than the average interarrival time, the delay does not help. (Some remailers allow the
sender to specify the length of the interval.)

send to remailer 2

send to Alice

send to remailer 1

Hi, Alice,

Bob

It’s
SQUEAMISH
OSSIFRIGE

Figure 13–1 A message sent to a
Cypherpunk remailer. Remailer 1
forwards the message to remailer 2,
and remailer 2 sends it to Alice.

Bishop.book Page 228 Tuesday, September 28, 2004 1:46 PM

13.6 Identity on the Web 229

A second approach is to randomize the order of processing of the incoming
messages; implicit in this approach is a delay to allow such reordering. Cypherpunk
remailers that do this keep a pool of incoming messages. No messages are sent out
until the pool contains a fixed number, call it n, of messages. When the nth message
arrives, one of the messages in the pool is selected and sent. This protects the associ-
ations against passive attacks. However, an active attacker can send enough messages
to the remailer so that all n – 1 messages in the pool are sent. (See Exercise 2.)

A third approach deals with message size. As a message moves through its
chain of remailers, each remailer strips off an outside envelope. Thus, the size of the
message decreases. The attacker can use this by recording the sizes of messages
entering and leaving the remailer. No outbound message can be associated with an
inbound message of lesser or equal size. Furthermore, the size of the envelope can be
estimated well enough to estimate how much the message would shrink by, thus
eliminating more possible associations. To limit this threat, some remailers allow
users to append junk to the message and instruct the remailer to delete it. Again, this
reduces message size; it does not increase it.

The final attack is also active. The attacker replays the messages many times to
the first remailer, which forwards them. The attacker monitors the outbound traffic and
looks for a bump in the amount of traffic from the remailer corresponding to the mes-
sages sent into the remailer. This associates the outbound path with the inbound path.
To prevent this attack, remailers cannot forward the same message more than once.

A second type of remailer, based on ideas from Chaum’s paper [164] (which
uses the term “mix” to describe the obscuring of information), does not suffer from
these problems.

Definition 13–7. [212] A Mixmaster (or type 2) remailer is a Cypherpunk
remailer that handles only enciphered messages and that pads or fragments
messages to a fixed size before sending them.

This hinders the attacks described above. The contents of the incoming and
outgoing messages cannot be matched, because everything is enciphered. Traffic
analysis based on size is not possible, because all messages (incoming and outgoing)
are of the same size. All messages are uniquely numbered, so replay attacks are not
possible. Message fragments are not reassembled until the message reaches the last
remailer in the chain, so reordering attacks are more difficult. Figure 13–2 shows
what a Mixmaster message looks like. Special software is used to construct the mes-
sages, whereas Cypherpunk remailers can accept messages constructed by hand.

In practice, messages sent through Mixmaster remailers are untraceable unless
the remailers themselves are compromised. In that case, one could track packet and
message IDs and make associations as desired. The point is that anonymity assumes
that the remailers can be trusted not to disclose associations. The Mixmaster tech-
nique minimizes the threat of compromised remailers, because all remailers must
track origin, packet, and message IDs, and the final remailer must also track destina-
tion address, packet, and message IDs for the sender to be associated with a received

Bishop.book Page 229 Tuesday, September 28, 2004 1:46 PM

230 Chapter 13 Representing Identity

message. This technique is not foolproof; if only one message is sent over the net-
work, an attacker can easily determine the sender and receiver, for example. But it
substantially adds to the difficulty of matching an anonymous letter to a sender.

The Mixmaster remailer BABEL [382] adds the ability to reply without know-
ing the identity of, or even the actual e-mail address of, the sender (see Exercise 3).

13.6.3.1 Anonymity for Better or Worse
Anonymity provides a shield to protect people from having to associate their identi-
ties with some data. Is this desirable?

The easiest way to answer this is to ask what the purpose of anonymity is.
Anonymity is power, because it allows one to make statements without fear of repris-
als. One can even deny having made the statements when questioned, and with true
anonymity, the denial cannot be disproved.

RSA for remailer #1
send to remailer #2
packet ID: 135
Triple DES key: 1
enciphered with Triple DES key #1
RSA for remailer #2
final hop
packet ID: 168
message ID: 7839
Triple DES key: 2
random garbage
enciphered with Triple DES key #2

recipient’s address
any mail headers to add

message

any necessary padding

Figure 13–2 A Mixmaster message. This is a fragment of a multipart message
sent through two remailers. Messages are enciphered using both RSA and
Triple DES, and random garbage is added as well as padding. The recipient’s
address is visible only to the last remailer.

Bishop.book Page 230 Tuesday, September 28, 2004 1:46 PM

13.6 Identity on the Web 231

Anonymity allows one to shape the course of debate by implication. Alex-
ander Hamilton, James Madison, and John Jay deliberately used the name “Publius”
to hide their authorship of the Federalist Papers. Aside from hiding the authors’ iden-
tity, the “Publius” pseudonym was chosen because the Roman Publius was seen as a
model governor. The pseudonym implied that the authors stood for responsible polit-
ical philosophy and legislation [392]. The discussion of the Federalist Papers focused
on their content, not on the personalities of their authors.

Anonymity allows whistleblowers considerable protection. Those who criti-
cize the powerholders often fall into disfavor, even when their criticism is valid, and
the powerholders take action. Galileo promulgated the theory that the earth circles
the sun and was brought before the Inquisition [415]. Ernest Fitzgerald exposed cost
overruns on the U.S. Air Force C-54 airplane and was removed from his position.
After several court victories, he was reinstated [147]. Contrast this with the anony-
mous sources that spoke with Bernstein and Woodward during the Watergate scan-
dal. The reporters combined those anonymous sources (especially one called “Deep
Throat”) with public records to uncover a pattern of activity that ultimately led to
impeachment charges against President Richard Nixon, his resignation, and criminal
indictments and convictions of many government officials. No action could be taken
against the sources, because their identities were unknown (and, as of this writing,
the identity of “Deep Throat” has not been revealed) [80, 81].

Whether these are benefits or drawbacks depends on whether one is the pow-
erholder under attack or the person attacking the powerholder. In many societies,
questioning of authority is considered desirable and beneficial to the society, and in
such cases the need for anonymity outweighs the problems, especially when the
powerholders will strike back at the critics. In other societies, those who hold power
are considered to be more experienced and knowledgeable and are trusted to act in
the best interests of the society. In those societies, anonymous criticism would be
considered destabilizing and inimical to the best interests of the social order. The
reader must decide how anonymity affects the society of which he or she is a part.

Just as anonymity is a tool with which powerholders can be attacked, the pow-
erholders can use it to attack those they consider to be adversaries. Franz Kafka’s
book The Trial [480], which describes a trial in which the accused does not know the
(anonymous) judges, is considered a masterpiece of existential literature. However,
as dissidents in many countries have found, anonymous judges are not always fic-
tional. In the United States during the period when Martin Dies and Joseph McCar-
thy held sway, anonymous accusers cost many people their livelihoods, and in some
cases their lives (see, for example, Donner [278] and Nizer [693]).

Anonymity also protects privacy. From this perspective, as we move through a
society, parts of that society gather information about us. Grocery stores can record
what we purchase, bookstores can record what books we buy, and libraries can
record what books we read. Individually, each datum seems unimportant, but when
the data is correlated, the conclusions that can be drawn are frighteningly complete.
Credit bureaus do this to a degree already, by obtaining information from a variety of
credit sources and amalgamating them into a single credit report that includes
income, loans, and revolving credit accounts such as credit cards.

Bishop.book Page 231 Tuesday, September 28, 2004 1:46 PM

232 Chapter 13 Representing Identity

This poses three risks to individuals. First, incorrect conclusions can come
from data interpreted incorrectly. For example, suppose one visits Web sites looking
for information on a proscribed narcotic. One conclusion is that the individual is
looking for information on making or obtaining such a drug for illicit purposes, but
this conclusion could be wrong. The individual could be a high school student
assigned to write a report on dangerous drugs. The individual could be a doctor seek-
ing information on the effects of the use of the drug, for treating a patient. Or the
individual could simply be curious. There is insufficient information to draw any of
these conclusions.

Second, erroneous information can cause great harm. The best examples of
this are the increasingly common cases of “identity theft,” in which one person
impersonates another, using a faked driver’s license, Social Security card, or passport
to obtain credit in another’s name [244]. The credit reporting agencies will amalgam-
ate the information under the real person’s records, and when the thief defaults, the
victim will have to clear himself.

Third, the right to privacy inherent in many societies includes what Warren
and Brandeis called the “right to be let alone—the most comprehensive of rights and
the right most valued by civilized men” [931]. Anonymity serves as a shield behind
which one can go about one’s business and be let alone. No central, or distributed,
authority can tie information obtained about an anonymous entity back to an individ-
ual. Without the right to anonymity, protecting one’s privacy becomes problematic.
Stalkers can locate people and harrass them; indeed, in one case a stalker murdered
an actress [46]. On the Web, one may have to accept cookies that can be used to con-
struct a profile of the visitor. Organizations that use cookies for this purpose gener-
ally adopt an “opt-out” approach, in which a user must request that no information
be gathered, rather than an “opt-in” approach, in which a user must expressly give
permission for the information to be gathered. If the user is anonymous, no mean-
ingful profile can be constructed. Furthermore, the information gathered cannot be
matched with information in credit records and other data banks. The ability to
prevent others from gathering information about you without your consent is an
example of the right to privacy.

Anonymity for personal protection has its disadvantages, too. Jeremy
Bentham’s panopticon introduced the notion of perpetual and complete monitoring
to prevent crime and protect citizens. The idea that governments should be able to
detect crimes as they happen and intervene, or establish that a crime has been com-
mitted and act to apprehend the perpetrators, is attractive because of the sense of
security it gives citizens. But many, including the Founding Fathers of the United
States, regarded this as too high a price to be paid. As Benjamin Franklin wrote,
“They that can give up essential liberty to obtain a little temporary safety deserve
neither liberty nor safety” [58].

Perhaps the only conclusion one can draw is that, like all freedoms and all
powers, anonymity can be used for good or for evil. The right to remain anonymous
entails a responsibility to use that right wisely.

Bishop.book Page 232 Tuesday, September 28, 2004 1:46 PM

13.8 Further Reading 233

13.7 Summary

Every access control mechanism is based on an identity of some sort. An identity
may have many different representations (for example, as an integer and as a string).
A principal may have many different identities. One certificate may identify the prin-
cipal by its role, another by its job, and a third by its address. A host on the Internet
has multiple addresses, each of which is an identity.

Identities are bound to principals, and the strength and accuracy of that bind-
ing determines how systems act when presented with the identity. Unfortunately,
trust cannot be measured in absolute terms except for complete trust and no trust.
Reality dictates a continuum, not discrete values. Understanding how an identity is
bound to a principal provides insight into the trustworthiness of that identity.

Anonymity allows a principal to interact with others without revealing his or
her true identity. Anonymity comes in two forms: pseudo-anonymity, in which an
intermediary knows the true identity (and can relay messages without revealing that
identity); and true anonymity, in which no one knows the true identity. The use of
anonymity entails a responsibility to use it wisely.

13.8 Further Reading

Representation of identity varies from system to system. The use of roles is becom-
ing a widely studied topic. Bishop [104] discusses implementation of role accounts
using standard UNIX account mechanisms. McNutt [614] presents requirements and
procedures for implementing roles to manage UNIX systems. Sandhu and Ahn [784]
extend the UNIX group semantics to include hierarchies.

Ellison explores methods of identifying a principal through relationships to oth-
ers [297] and the meaning of a name [298]. Saltzer [774] lucidly discusses the issues
and principles that affect naming on the Internet. Several RFCs discuss schemes for
naming hosts and other principals on the Internet [38, 61, 396, 397, 630, 926].

Several cryptographic protocols allow information to be broadcast anony-
mously. The best-known such algorithm is Chaum’s “Dining Cryptographers Prob-
lem” [166], in which the goal is to determine if one of the dining cryptographers paid
for the meal (without revealing which one), or someone else did. Waidner and Pfitz-
mann [927] point out that Chaum’s solution could be disrupted if one of the cryptog-
raphers lies, and present an algorithm (called “The Dining Cryptographers in the
Disco”) to detect it.

Chaum [165] first described digital cash. Okamoto and Ohta [701] list desirable
properties for digital cash systems and present a protocol that meets them. Other proto-
cols include Brands’ protocol [131], electronic checks [167, 169], CAFE [122], and
NetCash [617]. Smart cards can carry digital cash [28, 168, 170], and some European

Bishop.book Page 233 Tuesday, September 28, 2004 1:46 PM

234 Chapter 13 Representing Identity

banks are using this technology [352, 594]. Von Solms and Naccache note that the
untraceability of digital cash makes solving certain crimes more difficult [852].

Bacard [47] discusses the basics of remailers. Mazières and Kaashoek [601]
describe a type 1 remailer in operation. Cottrell [212] cites the Cypherpunk remail-
ers, and a discussion on the Cypherpunk mailing list, as the inspiration for the devel-
opment of Mixmaster remailers. His discussion of attacking Mixmaster and remailer
sites [213] is perceptive. Engelfriet (also known as “Galactus”) [300] presents tech-
nical details of anonymity on the Web.

13.9 Exercises

1. The Web site www.widget.com requires users to supply a user name and a
password. This information is encoded into a cookie and sent back to the
browser. Whenever the user connects to the Web server, the cookie is sent.
This means that the user need only supply a password at the beginning of
the session. Whenever the server requests reauthentication, the client
simply sends the cookie. The name of the cookie is “identif.”

a. Assume that the password is kept in the clear in the cookie. What
should the settings of the secure and expires fields be, and why?

b. Assume that the name and password are hashed and that the hash is
stored in the cookie. What information must the server store to
determine the user name associated with the cookie?

c. Is the cookie storing state or acting as an authentication token, or
both? Justify your answer.

2. Assume that a Cypherpunk remailer reorders messages. It has a pool of
n – 1 messages at all times. When the nth message arrives, one of the n
messages is selected at random and forwarded. An attacker floods the
server with enough messages to force the n – 1 messages in the original
pool to be sent.

a. Assuming that the message to be sent is chosen according to a
uniform random distribution, what is the expected number of
messages that the attacker would have to send to achieve this goal?

b. How can the attacker determine when all the messages originally in
the pool have been sent?

3. Consider a scheme that allows a recipient to reply to a message from a
chain of Cypherpunk remailers. Assume that encipherment is used
throughout the chain.

Bishop.book Page 234 Tuesday, September 28, 2004 1:46 PM

13.9 Exercises 235

a. Bob selects a chain of remailers for the return path. He creates a set
of keys and enciphers them so that only the key for the current
remailer is visible to that remailer. Design a technique by which he
could accomplish this. Describe how he would include this data in
his message.

b. How should Alice’s mailer handle the processing of the return
address information?

c. When Bob receives the reply, what does it contain? How can he
obtain the cleartext reply?

4. Give reasons why root should not be able to change the audit UID on a
UNIX system, and give reasons why it should. Which reasons sound more
persuasive to you?

Bishop.book Page 235 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 236 Tuesday, September 28, 2004 1:46 PM

237

Chapter 14
Access Control Mechanisms

CASSIO: Why, no. The day had broke
Before we parted. I ha’ made bold, Iago,

To send in to your wife. My suit to her
Is that she will to virtuous Desdemona

Procure me some access.
—The Tragedy of Othello, III, i, 32–36.

Recall the access control matrix discussed in Chapter 2. As in the theoretical model,
an implementation of the array and the commands to manipulate it provide a mecha-
nism that the system can use to control access to objects. Unfortunately, there are
several problems with a straightforward implementation. On a typical system, the
number of subjects and objects will be sufficiently large that the matrix’s size will
use significant amounts of storage. Second, most entries in the matrix will be either
blank (indicating no access) or the same (because implementations often provide a
default setting). Third, the creation and deletion of subjects and objects will require
the matrix to manage its storage carefully, adding to the complexity of this code.

Instead, several optimizations enable systems to use more convenient, and in
some cases simpler, versions of the access control matrix. Access control lists and
capabilities are variants based on the access control matrix that eliminate many of the
problems mentioned above. Various organizations of these mechanisms lead to pow-
erful controls such as the ring-based mechanism of Multics. A third mechanism,
locks and keys, is based on cryptography and provides a powerful alternative. A
fourth mechanism uses access control lists to implement an ORCON-like control.

14.1 Access Control Lists

An obvious variant of the access control matrix is to store each column with the
object it represents. Thus, each object has associated with it a set of pairs, with each
pair containing a subject and a set of rights. The named subject can access the associ-
ated object using any of those rights. More formally:

Bishop.book Page 237 Tuesday, September 28, 2004 1:46 PM

238 Chapter 14 Access Control Mechanisms

Definition 14–1. Let S be the set of subjects, and R the set of rights, of a sys-
tem. An access control list (ACL) l is a set of pairs l = { (s, r) : s ∈ S, r ⊆ R }.
Let acl be a function that determines the access control list l associated with a
particular object o. The interpretation of the access control list acl(o) = { (si,
ri) : 1 ≤ i ≤ n } is that subject si may access o using any right in ri.

EXAMPLE: Consider the access control matrix in Figure 2–1, on page 29. The set of
subjects is process 1 and process 2, and the set of objects is file 1, file 2, process 1,
and process 2. The corresponding access control lists are

acl(file 1) = { (process 1, { read, write, own }), (process 2, { append }) }
acl(file 2) = { (process 1, { read }), (process 2, { read, own }) }
acl(process 1) = { (process 1, { read, write, execute, own }), (process 2, { read }) }
acl(process 2) = { (process 1, { write }), (process 2, { read, write, execute, own }) }

Each subject and object has an associated ACL. Thus, process 1 owns file 1,
and can read from or write to it; process 2 can only append to file 1. Similarly, both
processes can read file 2, which process 2 owns. Both processes can read from pro-
cess 1; both processes can write to process 2. The exact meanings of “read” and
“write” depend on the instantiation of the rights.

One issue is the matter of default permission. If a subject is not named in the
ACL, it has no rights over the associated object. On a system with many subjects, the
ACL may be very large. If many subjects have the same right over the file, one could
define a “wildcard” to match any unnamed subjects, and give them default rights.

EXAMPLE: UNICOS 7.0 ACLs have entries of the form (user, group, rights) [220].
If the user is in the named group, he or she has those rights over the object. For
example, the triplet (holly, maceranch, r) gives user holly read (r) access over the
object only when holly has maceranch as her group.

If either user or group is specified as “*”, that character is taken to match all
users or all groups. Thus, (holly, *, r) gives holly read permission over the object
regardless of the group she is in; (*, maceranch, r) gives any user read permission
over the object when that user is in the group maceranch.

14.1.1 Abbreviations of Access Control Lists

Some systems abbreviate access control lists. The basis for file access control in the
UNIX operating system is of this variety. UNIX systems divide the set of users into
three classes: the owner of the file, the group owner of the file, and all other users.
Each class has a separate set of rights.

Bishop.book Page 238 Tuesday, September 28, 2004 1:46 PM

14.1 Access Control Lists 239

EXAMPLE: UNIX systems provide read (r), write (w), and execute (x) rights. When
user bishop creates a file, assume that it is in the group vulner. Initially, bishop
requests that he be able to read from and write to the file, that members of the group
be allowed to read from the file, and that no one else have access to the file. Then the
permissions would be rw for owner, r for group, and none for other.

UNIX permissions are represented as three triplets. The first is the owner
rights; the second, group rights; and the third, other rights. Within each triplet, the
first position is r if read access is allowed or – if it is not; the second position is w if
write access is allowed or – if it is not; and the third position is x if execute access is
allowed or – if it is not. The permissions for bishop’s file would be rw–r– – – – – .

An interesting question is how UNIX systems assign group ownership. Tradi-
tionally, UNIX systems assign the effective principal group ID of the creating pro-
cess. But in some cases this is not appropriate. For instance, suppose the line printer
program works by using group permissions; say its group is lpdaemon. Then, when a
user copies a file into the spool directory, lpdaemon must own the spool file. The
simplest way to enforce this requirement is to make the spool directory group owned
by lpdaemon and to have the group ownership inherited by all files created in that
directory. Some systems—notably, Solaris and SunOS systems—augment the seman-
tics of file protection modes by setting the setgid bit on the directory when any files
created in the directory are to inherit the group ownership of the containing directory.

Abbreviations of access control lists, such as those supported by the UNIX
operating system, suffer from a loss of granularity. Suppose a UNIX system has five
users. Anne wants to allow Beth to read her file, Caroline to write to it, Della to read
and write to it, and Elizabeth to execute it. Because there are only three sets of per-
missions and five desired arrangements of rights (including Alice), three triplets are
insufficient to allow all desired modes of access. Hence, Alice must compromise, and
either give someone more rights than she desires or give someone fewer rights. Similarly,
traditional UNIX access control does not allow one to say “everybody but user Fran”;
to do this, one must create groups of all users except Fran. Such an arrangement is
cumbersome, the more so because only a system administrator can create groups.

Many systems augment abbreviations of ACLs with full-blown ACLs. This
scheme uses the abbreviations of ACLs as the default permission controls; the
explicit ACL overrides the defaults as needed. The exact method varies.

EXAMPLE: IBM’s version of the UNIX operating system, called AIX, uses an ACL
(called “extended permissions”) to augment the traditional UNIX abbreviations of
ACL (called “base permissions”) [341]. Unlike traditional ACLs, the AIX ACL
allows one to specify permissions to be added or deleted from the user’s set. Like
UNICOS, AIX bases matches on group and user identity. The specific algorithm
(using AIX’s terminology, in which “base permissions” are the UNIX abbreviations
of ACLs and “extended permissions” are unabbreviated ACL entries) is as follows.

1. Determine what set S of permissions the user has from the base
permissions.

Bishop.book Page 239 Tuesday, September 28, 2004 1:46 PM

240 Chapter 14 Access Control Mechanisms

2. If extended permissions are disabled, stop. The set S is the user’s set of
permissions.

3. Get the next entry in the extended permissions. If there are no more, stop.
The set S is the user’s set of permissions.

4. If the entry has the same user and group as the process requesting access,
determine if the entry denies access. If so, stop. Access is denied.

5. Modify S as dictated by the permissions in the entry.
6. Go to 3.

As a specific example, consider the following representation of an AIX system’s
access control permissions for the file xyzzy.

attributes:
base permissions

owner(bishop): rw-
group(sys): r--
others: ---

extended permissions enabled
specify rw- u:holly
permit -w- u:heidi, g=sys
permit rw- u:matt
deny -w- u:holly, g=faculty

In the extended permissions lines, the first field determines what the line means
(“specify” to override the base permissions, “permit” to add rights, and “deny” to
delete rights); the second field states the rights involved, using the traditional UNIX
triplet; and the third field defines the user (“u:”) and group (“g:”) involved.

In this example, holly can read xyzzy because the first and fourth lines in the
extended permissions section override the base permission denial of access to others
(the class of which holly is a member). If holly is working in the faculty group, she
cannot write to xyzzy (the last line) but can read it (first line). The user heidi, working in
group sys, can read and write to the file (the group line in the base permissions gives
heidi read permission; the first permit line in the extended permissions section gives her
write permission). In this way, the extended permissions augment the base permissions.

14.1.2 Creation and Maintenance of Access Control Lists

Specific implementations of ACLs differ in details. Some of the issues are as follows.

1. Which subjects can modify an object’s ACL?
2. If there is a privileged user (such as root in the UNIX system or

administrator in Windows NT), do the ACLs apply to that user?

Bishop.book Page 240 Tuesday, September 28, 2004 1:46 PM

14.1 Access Control Lists 241

3. Does the ACL support groups or wildcards (that is, can users be grouped
into sets based on a system notion of “group” or on pattern matching)?

4. How are contradictory access control permissions handled? If one entry
grants read privileges only and another grants write privileges only, which
right does the subject have over the object?

5. If a default setting is allowed, do the ACL permissions modify it, or is the
default used only when the subject is not explicitly mentioned in the ACL?

Because these isues are critical to the correct use of ACLs on a system, we will
explore them in more detail.

14.1.2.1 Which Subjects Can Modify an Object’s ACL?
When an ACL is created, rights are instantiated. Chief among these rights is the one
we will call own. Possessors of the own right can modify the ACL.

Creating an object also creates its ACL, with some initial value (possibly
empty, but more usually the creator is initially given all rights, including own, over
the new object). By convention, the subject with own rights is allowed to modify the
ACL. However, some systems allow anyone with access to manipulate the rights.

EXAMPLE: The relational database System R [381] contains sets of n-tuples making
up the records, and each element of each n-tuple has attributes. These n-tuples are
stored as tables, with the records as the rows and the attributes as the columns. Each
table defines a relation.

The rights for manipulating a table (relation) include read (for reading rows,
querying using the relation, or defining views), update (for writing to a table), insert
(for adding rows), delete (for deleting rows), and drop (for deleting tables). Each
right has a modifier, called the grant option, which if set allows the possessor to give
the right to another. Any user with access to a table can give rights to any other user,
provided the right has the grant option. Hence, possession of access (and a grant
option associated with each right), not ownership, controls the transfer of rights.

14.1.2.2 Do the ACLs Apply to a Privileged User?
Many systems have users with extra privileges. The two best known are the root super-
user on UNIX systems and the administrator user on Windows NT and 2000 systems.
Typically, ACLs (or their degenerate forms) are applied in a limited fashion to such users.

EXAMPLE: Solaris UNIX systems use both the abbreviations of ACLs standard to
UNIX systems and a full-blown ACL. The abbreviations of ACLs are ignored when
root is the subject, but the full ACLs apply even to root.

Bishop.book Page 241 Tuesday, September 28, 2004 1:46 PM

242 Chapter 14 Access Control Mechanisms

14.1.2.3 Does the ACL Support Groups and Wildcards?
In its classic form, ACLs do not support groups or wildcards. In practice, systems
support one or the other (or both) to limit the size of the ACL and to make manipula-
tion of the lists easier. A group can either refine the characteristics of the processes to
be allowed access or be a synonym for a set of users (the members of the group).

EXAMPLE: In the AIX example above, recall that the extended permission lines (cor-
responding to the full ACL) were

extended permissions enabled
specify rw- u:holly
permit -w- u:heidi, g=sys
permit rw- u:matt
deny -w- u:holly, g=faculty

Initially, the group sys had read permission only on the file. The second line
adds write permission for processes with UID heidi and GID sys. The first line gives
processes with UID holly read and write access, except when the GID of the process
is faculty, in which case the process cannot write to the object (see the fourth line).

EXAMPLE: The UNICOS operating system provides ACLs similar to those of AIX,
but allows wildcards [220]. For example,

holly : maceranch : r

means that a process with UID holly and GID maceranch can read the object with
which the ACL is associated. The ACL entry

holly : * : r

means that a process with UID holly can access the object regardless of the group
that the process is in. And the entry

* : maceranch : r

means that any process with GID maceranch can read the object.

14.1.2.4 Conflicts
A conflict arises when two access control list entries in the same ACL give different
permissions to the subject. The system can allow access if any entry would give
access, deny access if any entry would deny access, or apply the first entry that
matches the subject.

Bishop.book Page 242 Tuesday, September 28, 2004 1:46 PM

14.1 Access Control Lists 243

EXAMPLE: If any entry in an AIX ACL denies access, the subject is denied access
regardless of the location of that entry. Otherwise, if any entry has granted access,
the subject is granted access. This is an example of denial taking precedence.

EXAMPLE: Cisco routers apply the first access control list entry that matches the
incoming packet [414]. If none applies, the incoming packet is discarded. This is an
example of the second approach, with a default rule of deny.

14.1.2.5 ACLs and Default Permissions
When ACLs and abbreviations of access control lists or default access rights coexist
(as on many UNIX systems), there are two ways to determine access rights. The first
is to apply the appropriate ACL entry, if one exists, and to apply the default permis-
sions or abbreviations of access control lists otherwise. The second way is to aug-
ment the default permissions or abbreviations of access control lists with those in the
appropriate ACL entry.

EXAMPLE: The AIX extended permissions fall into the second category, because
they modify the base permissions.

EXAMPLE: If a packet entering a Cisco router is destined for a host on a network
behind the router, but the router has no access list entry that allows the packet to be
forwarded, the packet is discarded. This is an example of the first method, because
the default permission is deny.

14.1.3 Revocation of Rights

Revocation, or the prevention of a subject’s accessing an object, requires that the
subject’s rights be deleted from the object’s ACL.

Preventing a subject from accessing an object is simple. The entry for the sub-
ject is deleted from the object’s ACL. If only specific rights are to be deleted, they are
removed from the relevant subject’s entry in the ACL.

If ownership does not control the giving of rights, revocation is more complex.

EXAMPLE: Return to System R. Suppose Anna has given Peter update rights over a
relation T but now wishes to revoke them. System R holds that after the revoking, the
protection state of the system should be as it was before Anna gave Peter any rights.
Specifically, if Peter gave Mary update rights, when Anna revokes Peter’s update
rights, Mary’s update rights should be revoked unless someone other than Peter has
also given her update rights.

To implement this, System R defines a relation called Sysauth. The attributes
of this relation are (User, Table, Grantor, Read, Insert, Delete, Drop, Update). The
values of the attributes corresponding to the rights are timestamps indicating when

Bishop.book Page 243 Tuesday, September 28, 2004 1:46 PM

244 Chapter 14 Access Control Mechanisms

the right was given (except for Update, which we will deal with later). For example,
if Anna gave Peter read rights over the relation Reports at time 10, and Peter gave
them to Mary at time 20, the table would be as follows.

If Anna revokes Peter’s read rights, and Mary obtained her read rights from Peter
after Anna gave them to Peter, her read rights would also be revoked. However, sup-
pose that Michelle had also given Mary read rights over Reports. Then deleting the
last row in the table leaves an entry for Mary—namely, the one from Michelle:

So Mary can still read Reports.
The update right has a value of All, Some, or None. These values refer to the

set of rows that can be changed. If the value is Some, a second relation called Syscol-
auth records the columns that the subject can update. This table also records times,
and revocation proceeds as for the other columns.

14.1.4 Example: Windows NT Access Control Lists

Windows NT provides access control lists for those files on NTFS partitions [767].
Windows NT allows a user or group to read, write, execute, delete, change the per-
missions of, or take ownership of a file or directory. These rights are grouped into
commonly assigned sets called generic rights. The generic rights for files are as
follows.

• no access, whereby the subject cannot access the file
• read, whereby the subject can read or execute the file
• change, whereby the subject can read, execute, write, or delete the file
• full control, whereby the subject has all rights to the file

In addition, the generic right special access allows the assignment of any of the six
permissions.

Windows NT directories also have their own notion of generic rights.

User Table Grantor Read

Peter Reports Anna 10

Mary Reports Peter 20

User Table Grantor Read

Peter Reports Anna 10

Mary Reports Michelle 5

Bishop.book Page 244 Tuesday, September 28, 2004 1:46 PM

14.1 Access Control Lists 245

• no access, whereby the subject cannot access the directory
• read, whereby the subject can read or execute files within the directory
• list, whereby the subject can list the contents of the directory and may

change to a subdirectory within that directory
• add, whereby the subject may create files or subdirectories in the directory
• add and read, which combines the generic rights add and read
• change, whereby the subject can create, read, execute, or write files within

the directory and can delete subdirectories
• full control, whereby the subject has all rights over the files and

subdirectories in the directory

As before, the generic special access right allows assignment of other combinations
of permissions.

When a user accesses a file, Windows NT first examines the file’s ACL. If the
user is not present in the ACL, and is not a member of any group listed in the ACL,
access is denied. Otherwise, if any ACL entry denies the user access, Windows NT
denies the access (this is an explicit denial, which is calculated first). If access is not
explicitly denied, and the user is named in the ACL (as either a user or a member of a
group), the user has the union of the set of rights from each ACL entry in which the
user is named.

As an example, suppose Paul, Quentin, and Regina are users of a Windows
NT system. Paul and Quentin are in the group students. Quentin and Regina are in
the group staff. The directory e:\stuff has its access control list set to (staff, add),
(Quentin, change), (students, no access). Under this list, the first entry enables
Regina to create subdirectories or files in e:\stuff. The third entry disallows all mem-
bers of the group students from accessing the directory. The second entry would
allow Quentin to delete subdirectories, except that Quentin is in the students group,
and in Windows NT an explicit deny (as given in the third entry) overrides any grants
of permission. Hence, Quentin cannot access the directory.

Now, let Regina create a subdirectory plugh in e:\stuff. She then disallows
Paul’s access, but wants to allow Quentin to have change access. She does the
following.

• Create e:\stuff \ plugh; its ACL is (staff, add), (Quentin, change), (students,
no access).

• Delete the last entry in ACL; from the second entry, this gives Quentin
change access.

• Add the entry (Paul, no access) to the ACL.

The last step is superfluous, because Windows NT denies access by default, but it is
safer to add it anyway, lest the group students be given rights. If that should happen,
Paul would get those rights unless the (Paul, no access) entry were present.

Bishop.book Page 245 Tuesday, September 28, 2004 1:46 PM

246 Chapter 14 Access Control Mechanisms

14.2 Capabilities

Conceptually, a capability is like the row of an access control matrix. Each subject
has associated with it a set of pairs, with each pair containing an object and a set of
rights. The subject associated with this list can access the named object in any of the
ways indicated by the named rights. More formally:

Definition 14–2. Let O be the set of objects, and R the set of rights, of a sys-
tem. A capability list c is a set of pairs c = { (o, r) : o ∈ O, r ⊆ R }. Let cap be
a function that determines the capability list c associated with a particular sub-
ject s. The interpretation of the capability list cap(s) = { (oi, ri) : 1 ≤ i ≤ n } is
that subject s may access oi using any right in ri.

We abbreviate “capability list” as C-List.

EXAMPLE: Again, consider the access control matrix in Figure 2–1 on page 29. The
set of subjects is process 1 and process 2. The corresponding capability lists are

cap(process 1) = { (file 1, { read, write, own }), (file 2, { read }),
(process 1, {read, write, execute, own}), (process 2, { write }) }

cap(process 2) = { (file 1, { append }), (file 2, { read, own }),
(process 1, { read }), (process 2, {read, write, execute, own}) }

Each subject has an associated C-List. Thus, process 1 owns file 1, and can read or
write to it; process 1 can read file 2; process 1 can read, write to, or execute itself and
owns itself; and process 1 can write to process 2. Similarly, process 2 can append to
file 1; process 2 owns file 2 and can read it; process 2 can read process 1; and process
2 can read, write to, or execute itself and owns itself.

Capabilities encapsulate object identity. When a process presents a capability
on behalf of a user, the operating system examines the capability to determine both
the object and the access to which the process is entitled. This reflects how capabili-
ies for memory management work; the location of the object in memory is encapsu-
lated in the capability. Without a capability, the process cannot name the object in a
way that will give it the desired access.

EXAMPLE: To open a UNIX file, a process gives the file name to the kernel. The ker-
nel obtains the file’s inode number by resolving the name through the file hierarchy.
Once the inode is obtained, the system determines if the requested access should be
granted using the access control permissions. If the access is granted, the operating
system returns a capability called a file descriptor. The capability is tightly bound to
the file object, so even if the file is deleted and a new file with the same name is cre-
ated, the file descriptor still refers to the previous file.

Bishop.book Page 246 Tuesday, September 28, 2004 1:46 PM

14.2 Capabilities 247

The “codewords” of Iliffe [457, 458] are similar to capabilities. Dennis and
Van Horn [255] first suggested “capabilities” as a way to control access to objects in
memory or secondary storage. Fabry generalized this idea to implement capability-
based addressing [306].

The architecture of capabilities is more interesting than that of access control
lists. The access control list and the process identity are under the control of the oper-
ating system. In the absence of flaws, user processes can change them only by invok-
ing the operating system services. However, a process must identify a capability in
order to use it, so the process must have some control over the capabilities. If the pro-
cess can forge a capability and then use it, access controls fail.

14.2.1 Implementation of Capabilities

Three mechanisms are used to protect capabilities: tags, protected memory, and
cryptography.

A tagged architecture has a set of bits associated with each hardware word.
The tag has two states: set and unset. If the tag is set, an ordinary process can read
but not modify the word. If the tag is unset, an ordinary process can read and modify
the word. Further, an ordinary process cannot change the state of the tag; the proces-
sor must be in a privileged mode to do so.

EXAMPLE: The B5700 [704] used a tagged architecture (although it did not use
capabilities as protection mechanisms). The tag field consisted of three bits and indi-
cated how the architecture was to treat the word (pointer, descriptor, type, and so on).

More common is to use the protection bits associated with paging or segmen-
tation. All capabilities are stored in a page (segment) that the process can read but not
alter. This requires no special-purpose hardware other than that used by the memory
management scheme. But the process must reference capabilities indirectly, usually
through pointers, rather than directly.

EXAMPLE: The CAP system [684] did not allow processes to modify the segment in
which instructions lay. It also stored capabilities in this segment. A fence register
separated instructions and capabilities.

A third alternative is to use cryptography. The goal of tags and memory pro-
tection is to prevent the capabilities from being altered. This is akin to integrity
checking. Cryptographic checksums are another mechanism for checking the integ-
rity of information. Each capability has a cryptographic checksum associated with it,
and the checksum is digitally enciphered using a cryptosystem whose key is known
to the operating system.

When the process presents a capability to the operating system, the system
first recomputes the cryptographic checksum associated with the capability. It then
either enciphers the checksum using the cryptographic key and compares it with the

Bishop.book Page 247 Tuesday, September 28, 2004 1:46 PM

248 Chapter 14 Access Control Mechanisms

one stored in the capability, or deciphers the checksum provided with the capability
and compares it with the computed checksum. If they match, the capability is unal-
tered. If not, the capability is rejected.

EXAMPLE: The Amoeba system is a distributed system that uses capabilities to name
objects [893]. On creation, a capability corresponding to the object is returned. To
use the object, the program presents the corresponding capability. The capability
encodes the name of the object (24 bits), the server that created it (48 bits), and the
rights (8 bits) in a 128-bit quantity. Initially, all rights are turned on.

The last 48 bits are used as a check field. This is a random number selected at
creation time. (Because the capability is given to the owner of the object, the owner
can freely modify the rights without danger.) The number is stored in a table corre-
sponding to the server that created the object, so whenever the capability is presented
to that server, it verifies that the random number is correct. An attacker would need to
know the random number in order to be able to forge a capability. However, as
Tanenbaum notes, the system is vulnerable if a capability is disclosed.

14.2.2 Copying and Amplifying Capabilities

The ability to copy capabilities implies the ability to give rights. To prevent processes
from indiscriminately giving away rights, a copy flag is associated with capabilities.
A process cannot copy a capability to another process unless the copy flag is set. If
the process does copy the capability, the copy flag may be turned off (at the discre-
tion of either the process or the kernel).

EXAMPLE: Amoeba uses an interesting scheme. It does not control copying rights.
However, the uses to which those copied rights can be put are restricted.

Suppose user matt wishes to allow user holly to read an object he owns. He
passes his capability for that object to the server and requests a restricted capability
for reading. The server creates a new capability for the object but with only the read
right turned on. The rights field now is all 0’s except for the read bit, which is a 1.
This is xor’ed with the random check and input to a cryptographic hash function. The
output is the new random number for this capability. The restricted capability is then
passed back to matt, who gives it to holly.

When holly uses the capability, the server notes that at least one bit in the
rights field is 0. It takes the rights field, xor’s it with the random number of the
original capability (stored in its tables), and hashes the result. If the resulting hash
matches the random number in the capability, the capability is valid; otherwise, it
is not.

Amplification is the increasing of privileges. The idea of modular program-
ming, and especially of abstract data types, requires that the rights a process has over
an object be amplified.

Bishop.book Page 248 Tuesday, September 28, 2004 1:46 PM

14.2 Capabilities 249

To understand why, consider the following abstract data type for a counter.

module counter;
procedure entry increment(var ctr: integer);
begin

ctr := ctr + 1;
end;
function entry getval(ctr: integer);
begin

getval := ctr;
end;
procedure entry clear(var ctr: integer);
begin

ctr := 0;
end;

end.

Suppose x is declared to be a counter. The rules of abstract data types allow that
object to be accessed only by the counter module. So, initially the capability for x
would contain the right to invoke the counter module only. But when the object is
passed to the counter module, the process must now be able to read and write to that
object. Hence, the capability must be amplified temporarily while the module
counter is active.

EXAMPLE: The seminal system HYDRA [179, 957] used amplification templates to
amplify a process’ rights. Associated with each procedure in the module is a template
that adds rights to the capabilities as needed. For example, the template for the getval
procedure would add read rights while the procedure was active. The template for the
increment procedure would add read and write rights.

EXAMPLE: The Intel iAPX 432 system [486, 909] implements a similar mechanism in
hardware. Its “access descriptors” correspond to capabilities. Three bits in the capabil-
ity control various system functions. One of these bits controls amplification of rights.
When an abstract data type module is constructed, the permission bits of the type con-
trol object (which defines the data type) are set to the permissions that the procedure
needs. When the procedure is called, the system checks the amplification bit. If it is set,
the rights in the type control object are or’ed with the rights in the descriptor of the
object being passed. This combination defines the rights available to the procedure.

14.2.3 Revocation of Rights

In a capability system, revoking access to an object requires that all the capabilities
granting access to that object be revoked. Conceptually, each process could be

Bishop.book Page 249 Tuesday, September 28, 2004 1:46 PM

250 Chapter 14 Access Control Mechanisms

checked, and the capabilities deleted. The cost of such an operation would be unac-
ceptable, however, so alternative methods are used.

The simplest mechanism is indirection [745]. Define one or more global
object tables. In this scheme, each object has a corresponding entry in a table. Capa-
bilities do not name the object directly; they name the entry in the table correspond-
ing to the object.

This scheme has several advantages. First, to revoke capabilities, the entry in
the global object table is invalidated. Then any references will obtain an invalid table
entry and will be rejected. Second, if only some of the capabilities are to be revoked,
the object can have multiple entries, each corresponding to a different set of rights or
a different group of users.

EXAMPLE: Amoeba uses essentially this scheme. To revoke a capability, the owner
of the object requests that the server change the random number and issue a new
capability. This invalidates all existing capabilities.

An alternative revocation mechanism uses abstract data type managers.
Included with each abstract data type is a revocation procedure. When access is to be
revoked, the type manager simpy disallows further accesses by the subject whose
rights are being revoked. This does not affect alternative methods of accessing the
objects underlying the abstract data types. For example, access to a file may be
revoked, but this technique would not block access to the underlying segments
through an alternative type manager. The SCP3 system used this technique [949].

14.2.4 Limits of Capabilities

Boebert [117] credits Neumann and his colleagues [689] with a demonstration of the
importance of controlling the copying of capabilities. Without such restrictions, a
capability system cannot enforce the *-property of the Bell-LaPadula Model (see
Chapter 5).

Suppose capabilities can be copied into one’s C-List. Let Heidi be cleared for
HIGH information, and Lou only for LOW information. The file “lough” has LOW
classification. Lou asks for a capability to read and write to the file “lough” and
obtains it (call the capability “rw*lough”). Lou stores the capability in the file
“lough.” Now, Heidi requests a capability to read “lough” (call it “r*lough”); by the
simple security condition, this is granted. Heidi uses this to read “lough,” thereby
obtaining the capability “rw*lough.” She can now write to a LOW object, even
though she has HIGH clearance. This violates the *-property. (See Figure 14–1.)

Kain and Landwehr [488] present two ways to handle this problem. Their first
technique assigns a security classification to the capability itself. When the capability
is created, its compartment is the same as the requesting process, and the capability
contains read, read and write, or write rights depending on whether its compartment
dominates, is the same as, or is dominated by that of the object to which the capabil-
ity refers. Similar rules apply when a capability is copied. So, in Boebert’s example,

Bishop.book Page 250 Tuesday, September 28, 2004 1:46 PM

14.2 Capabilities 251

because the capability “rw*lough” is copied to HIGH, and because the destination
(HIGH level) dominates the source (“lough,” at the LOW level), the resulting capa-
bility has only the right to read.

Their second solution uses a technique from Karger and Herbert [495],
although in a different context. Before a capability is passed to another process, the
kernel evaluates the capability to determine if passing it to the subject violates any
security properties. In Boebert’s example, the *-property is violated, so Heidi’s
request to obtain “rw*lough” would be denied.

A simpler approach is to distinguish between the “copy capability” right and
the “read” right. The Take-Grant Protection Model uses this difference to resolve
Boebert’s example. That Heidi could read the capability did not mean that she could
acquire (take or copy) it. Heidi would be able to read the capability but could not add
it to her C-List.

14.2.5 Comparison with Access Control Lists

Two questions underlie the use of access controls:

1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?

In theory, either access control lists or capabilities can answer these questions. For
the first question, capabilities are the simplest; just list the elements of the subject’s
associated C-List. For the second question, ACLs are the simplest; just list the ele-
ments of the object’s access control list. In an ACL-based system, answering the first
question requires all objects to be scanned. The system extracts all ACL entries

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough
C-List

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough
C-List

rw*lough

Figure 14–1 Copying and reading capabilities. In the left diagram, Lou has the
capability rw*lough, which he copies into the file lough. Heidi obtains the
capability r*lough. In the right diagram, Heidi has used her r*lough capability to
read the contents of the file lough and has added the capability it contains to
her C-List. She can now write to lough, violating the *-property. One solution is
to separate the “copy” and “read” rights.

Bishop.book Page 251 Tuesday, September 28, 2004 1:46 PM

252 Chapter 14 Access Control Mechanisms

associated with the subject in question. In a capability-based system, answering the
second question requires all subjects to be scanned. The system extracts all capabili-
ties associated with the object in question.

Karger and Herbert [495] speculate that the practical difference in answering
the second question is the reason more systems use access control lists than capabili-
ties. This question is asked more often than the first. As the focus of incident
response (see Section 22.6, “Intrusion Response”) shifts from “who accessed the
object” to include “what else did that subject access,” capability-based systems may
become more common.

14.3 Locks and Keys

The locks and keys technique combines features of access control lists and capabilities.
A piece of information (the lock) is associated with the object and a second piece of
information (the key) is associated with those subjects authorized to access the object
and the manner in which they are allowed to access the object. When a subject tries to
access an object, the subject’s set of keys is checked. If the subject has a key corre-
sponding to any of the object’s locks, access of the appropriate type is granted.

The difference between locks and keys and the other access control mechanisms is
the dynamic nature of the former. An access control list is static in the sense that all
changes to it are manual; a user or process must interact with the list to make the change.
Locks and keys, on the other hand, may change in response to system constraints, general
instructions about how entries are to be added, and any factors other than a manual change.

Gifford [356] suggests a cryptographic implementation of locks and keys. The
object o is enciphered with a cryptographic key. The subject has a deciphering key.
To access the object, the subject deciphers it. Gifford points out that this provides a
simple way to allow n subjects to access the data (called or-access). Simply encipher
n copies of the data using n different keys, one per subject. The object o is then rep-
resented as o´, where

o´ = (E1(o), …, En(o))

The system can easily deny access except on the request of n subjects (called and-
access). Simply iterate the cipher using n different keys, one per subject:

o´ = E1(…(En(o))…)

EXAMPLE: The IBM 370 system [487] assigns each process an access key and
assigns each page a storage key and a fetch bit. If the fetch bit is cleared, only read
accesses are allowed. If the fetch bit is set and the access key is 0 (which occurs in
nonuser mode), the process can write to any page. If not, and the access key matches
the storage key of a particular page, the process can write to that page. If the access
key is neither 0 nor the same as the storage key, the process cannot access the page.

Bishop.book Page 252 Tuesday, September 28, 2004 1:46 PM

14.3 Locks and Keys 253

EXAMPLE: CISCO routers have a mechanism called dynamic access control lists
that is a locks and keys mechanism [414]. Consider a router that transfers packets
between the Internet and an internal network. We want to limit external access to the
(internal) server with address 10.1.2.3 to weekdays between 9:00 A.M. and 5:00 P.M.
Our router’s IP address is 10.1.1.1. The following is the relevant portion of the
dynamic access control list.

access-list 100 permit tcp any host 10.1.1.1 eq telnet
access-list 100 dynamic test timeout 180 permit ip any
host

10.1.2.3 time-range my-time
time-range my-time

periodic weekdays 9:00 to 17:00
line vty 0 2

login local
autocommand access-enable host timeout 10

The first line tells the router to accept packets coming to it over the Internet
and going to the telnet port. (The binding of the access control list to the Internet
connection is not shown.) The user will enter a name and a password, and if they
match a pair in the configuration file, the connection will close and the router will
add an access control list entry for that remote host to access the server 10.1.2.3 over
any IP protocol. After 180 minutes, the access control list entry will be discarded
even if there are connections at that time (this effectively terminates the connec-
tions). The access control entry is valid only between 9:00 A.M. and 5:00 P.M. on
weekdays (the “time-range” block). Furthermore, any host matching this new entry
is to be allowed access; if no packets from that host are received within a 10-minute
interval, the access control entry is to be deleted (the “line” block).

14.3.1 Type Checking

Type checking restricts access on the basis of the types of the subject and object. It is
a form of locks and keys access control, the pieces of information being the type.
Systems use type checking in areas other than security.

EXAMPLE: UNIX-like systems use type checking to protect the integrity of their file
systems. Under the UNIX model, all file system objects are files, but the kernel disal-
lows the use of write to change the directory. Instead, users must call specific system
calls to create and delete entities in the directory. This allows the kernel to ensure that
all writing to the directory file will create entries of the correct format. The kernel
disallows certain operations, such as write, to file system objects of type directory.

The simplest case of type checking is distinguishing instructions from data.
The operation “execute” can be performed only on instructions, and the operations

Bishop.book Page 253 Tuesday, September 28, 2004 1:46 PM

254 Chapter 14 Access Control Mechanisms

“read” and “write” can be performed only on data. Many systems, such as PDP-11
[269], enforce this distinction.

EXAMPLE: One form of a type of attack called buffer overflow (see Section 20.3.1,
“Two Security Flaws”) involves overwriting of a buffer stored on a memory stack
and changing of the return address on the stack to the location of the buffer. When
the input routine executes a return to the caller, the return address is popped from the
stack and placed in the program counter. The contents of the buffer are then executed
as instructions.

Some vendors have tried to eliminate this type of attack by marking the mem-
ory in which the stack resides as data. The systems cannot execute data, and there-
fore the program terminates right after the return address is popped and placed into
the program counter.

Like pages, files can be either “executable” or “data.”

EXAMPLE: Boebert, Young, Kain, and Hansohn [120] propose labeling of subjects
and objects in Logical Coprocessor Kernel or LOCK (formerly Secure Ada Target or
SAT) [120, 388, 789, 790], a system designed to meet the highest level of security
under the Department of Defense criteria [257]. Once compiled, programs have the
label “data” and cannot be executed until a sequence of specific, auditable events
changes the label to “executable.” After that, the program cannot be modified.

Strictly enforced type checking is a powerful protection mechanism. The
DTEL policy language and the supporting domain and type enforcement (DTE)
mechanism, are good examples. Walker et al. [928] discuss the implementation of
DTE using DTEL at length for the UNIX operating system. The Sidewinder firewall
uses a similar approach.

EXAMPLE: Like DTEL, Sidewinder [900] assigns each subject a domain and
each object a type. The domain definition table defines how domains may inter-
act with types. For instance, packets coming from inside the firewall are assigned
one type, and packets from the outside are assigned a second type. This separates
the two.

Suppose that an attacker outside the firewall is able to embed in a legal
packet a second, fake packet and that this fake packet contains an IP source address
that is inside the firewall. The attacker sends the packet to the Sidewinder firewall
and then sends a second packet to overwrite the part of the first packet before the
fake packet. If there were no typing, the firewall could confuse the fake packet,
which came from outside, with a legitimate packet originating from inside the fire-
wall. However, because Sidewinder types outside packets differently than those
originating behind the firewall, the fake packet will have the type “outside” even
though the source address is from the inside. Thus, it will not be forwarded to the
inside.

Bishop.book Page 254 Tuesday, September 28, 2004 1:46 PM

14.4 Ring-Based Access Control 255

14.4 Ring-Based Access Control

The Multics system [210, 703] generalizes the notion of a supervisor and user state
with a protection mechanism called ring-based access control. To understand its
simplicity and elegance, one must realize that files and memory are treated the same
from the protection point of view. For example, a procedure may occupy a segment
of the disk. When invoked, the segment is mapped into memory and executed. Data
occupies other segments on disk, and when accessed, they are mapped into memory
and accessed. In other words, there is no conceptual difference between a segment of
memory and a segment on a disk.

Segments are of two kinds: data and procedure. A segment could have r (read)
rights, w (write) rights, e (execute) rights, and a (append) rights associated with it.
These rights are contained in access control lists, which constrain access on a per-
user basis. So all procedures that user bishop executes would have the rights associ-
ated with that user, bishop.

In addition, the Multics system defines a sequence of protection rings (or
rings, for short) numbered from 0 to 63.1 The kernel resides in ring 0. The higher the
ring number, the lower the privileges of the segments in that ring. We also say that “a
procedure executes in ring r” because the ring is associated with the individual seg-
ment, not with the entire process.

Subject to the access constraints noted below, procedures can “cross” ring
boundaries. In some cases, the crossing causes a “ring-crossing fault” that traps to
the kernel. At that point, a mechanism called the Gatekeeper checks arguments and
access and performs other functions that constrain ring crossings. In other cases, no
ring-crossing fault is induced, and access is permitted if the access modes allow.

A gate is simply an entry point (like the “public” designators of object-oriented
languages). Gates are specially declared within programs, and the compiler and linker
generate special code to make these entry points available to other procedures.

Assume that a procedure executing in ring r wants to access a data segment.
Associated with each data segment is a pair of ring numbers called an access bracket
(a1, a2), with a1 ≤ a2. Assume that the data segment’s permissions allow the desired
access. The ring numbering adds an extra constraint:

• r ≤ a1: access permitted
• a1 < r ≤ a2: r and e access permitted; w and a access denied
• a2 < r: all accesses denied

Assume that the same procedure, again executing in ring r, wants to access a
procedure segment. Each procedure segment has an access bracket, just like a data
segment. A procedure segment may also have a call bracket (c1, c2), with c1 ≤ c2. By

1 In fact, the system as implemented had eight rings ([703], p. 141).

Bishop.book Page 255 Tuesday, September 28, 2004 1:46 PM

256 Chapter 14 Access Control Mechanisms

convention, when a call bracket is present, c1 = a2, leading to an alternative notation
of (a1, a2, a3), where (a1, a2) is the access bracket and (a2, a3) is the call bracket (that
is, c2 = a3). The rules for access differ slightly from those for accessing a data seg-
ment:

• r < a1: access permitted, but a ring-crossing fault occurs
• a1 ≤ r ≤ a2: all accesses permitted and no fault occurs
• a2 < r ≤ a3: access permitted if made through a valid gate
• a3 < r: all accesses denied

EXAMPLE: Assume that a data segment has the access bracket (2, 4) and heidi has
rw rights over the segment. If heidi’s procedure executes in ring 1, and tries to read
the process, the read succeeds. If heidi’s procedure executes in ring 3, any reads suc-
ceed and any writes fail. If heidi’s procedure executes in ring 5, all accesses fail.

EXAMPLE: Assume that a procedure segment has the bracket (2, 4, 6)—that is, its
access bracket is (2, 4) and its call bracket is (4, 6). heidi’s procedure calls that proce-
dure. If heidi’s procedure executes in ring 1, a ring-crossing fault occurs, but the call
succeeds (unless the Gatekeeper blocks the call). If heidi’s procedure executes in
ring 3, the call succeeds and no ring-crossing fault occurs. If heidi’s procedure exe-
cutes in ring 5 and calls the procedure segment through a valid gate, the call suc-
ceeds; otherwise, it fails. If heidi’s procedure executes in ring 7, the call fails.

The reason for the brackets shows how practical details complicate ideal solu-
tions. Conceptually, the access bracket should contain one ring. However, consider a
procedure embodying a service routine (such as “access file”). Then procedures in
other rings accessing that routine would cause a large number of ring crossings. The
operating system would need to handle these crossings, increasing the overhead. But
if the procedures were within the service routine’s access bracket, no ring-crossing
faults would occur. Hence, the access bracket minimizes operating system overhead
in this context.

A similar situation arises with different classes of users. Suppose a service
routine lies in ring a. Some users need to invoke this routine. Others are allowed to
invoke it in specific ways—for example, to access some system resource in a particu-
lar manner. Still others should not invoke it at all. The access bracket handles the first
and third sets of users, but the second set cannot be handled with an access bracket.
However, with a call bracket, the second set can access the service routine and be
forced to use predefined entry points (the gates). Hence, the need for call brackets.

Variants of the ring mechanism have been used by other systems. The VAX
system of Digital Equipment Corporation, for example, provides four levels of privi-
lege: user, monitor, executive, and kernel. Contrast this with the more traditional two
levels (user and supervisor) and the influence of the rings of Multics is clear.

Bishop.book Page 256 Tuesday, September 28, 2004 1:46 PM

14.5 Propagated Access Control Lists 257

14.5 Propagated Access Control Lists

The Propagated Access Control List (PACL) mechanism [940] provides the creator
of an object with control over who can access the object. It is an implementation that
is ideal for the ORCON policy (see Section 7.3). The creator (originator) is kept with
the PACL, and only the creator can change the PACL. When a subject reads an
object, the PACL of the object is associated with the subject. When a subject creates
an object, the PACL of the subject is associated with the object.

The notation PACLsubject means that subject is the originator of the PACL.
Only subject can change that PACL. The notation PACL(entity) is the PACL associ-
ated with entity.

EXAMPLE: Ann creates the file dates. Ann wants to control who can read the file.
The file’s PACL is the PACL associated with Ann: PACL(dates) = PACLAnn.

Let the PACL of an object o be PACLs. When another subject s´ reads o,
PACL(o) must augment PACL(s´). Otherwise, s´ could create another subject o´, and
copy the data from o to o´. Then s would have no control over the data in o, defeating
the purpose of using PACLs.

Hence, an object can have PACLs associated with two creators. If so, both cre-
ators control access to the object. Only subjects common to both PACLs can access
the object. Otherwise, one creator would not control access to the data it expects to
control. The default is to deny access unless both creators allow it.

EXAMPLE: Ann allows Betty, Dorothy, and Elisabeth access to the file dates. Before
Betty reads dates, PACL(Betty) = PACLBetty. After Betty reads dates, her PACL
changes to PACL(Betty) = PACLBetty ∩ PACL(dates) = PACLBetty ∩ PACLAnn.
Write this as PACLBetty,Ann.

Betty creates the file datescopy. The system assigns Betty’s PACL to dates-
copy. Hence, PACL(datescopy) = PACL(Betty) = PACLBetty,Ann.

If PACLBetty allows Cherisse and Dorothy access to objects, Dorothy will be able
to access datescopy but Cherisse and Elisabeth will not. Because Dorothy is in both
PACLAnn and PACLBetty, both originators of datescopy agree that Dorothy can access the
data in that file. So Dorothy is in PACLBetty,Ann. Because Cherisse is not in PACLAnn,
and because Elisabeth is not in PACLBetty, one originator of datescopy does not want
them to have access to the data in datescopy. Hence, neither of them is in PACLBetty,Ann.

Discretionary access controls can augment PACLs. They restrict access, but
they cannot allow access to subjects excluded by the PACL.

EXAMPLE: Betty does not want Dorothy to be able to read the file datescopy. How-
ever, Dorothy is allowed access by PACLBetty,Ann. Betty, being the owner of the file,
can change the access control list associated with the file (but not the PACL). So
Betty sets the access control list to deny access to Dorothy.

Bishop.book Page 257 Tuesday, September 28, 2004 1:46 PM

258 Chapter 14 Access Control Mechanisms

This example illustrates the distinction between the PACL mechanism and the
ACL mechanism. A PACL is associated with data, whereas an ACL is associated with
an object. The PACL follows the information as it flows around the system, but an ACL
stays with each object. In the example, Cherisse cannot access the information in dates
because of the setting of PACL(dates), and cannot access the information in any deriv-
ative of dates because PACL(dates) propagates with the information. The copiers of
the information cannot change this.

Were the files protected by ACLs instead of PACLs, the ACL would not be
copied with the information. So, Cherisse would not be able to read dates, but Betty
could copy that file and set the ACL so that Cherisse could read it. Ann would not
control the information; she would have to trust those with access to dates not to give
access to others.

14.6 Summary

Access control mechanisms implement controls on subjects and objects. Access con-
trol lists bind the data controlling access to the object. Capability lists bind that data to
the subject. Locks and keys distribute the data between the subject and the object. All
are particularly well-suited for discretionary access controls, because usually the own-
ers of the objects determine who gets access. If the controller of access is the operating
system, then these mechanisms also can implement mandatory access controls.

Ring-based mechanisms generalize the notion of “monitor” and “user” mode.
They are particularly well-suited for mandatory access controls, because the operat-
ing system enforces the barriers to ring crossings. However, the brackets must be
chosen judiciously.

Propagated access control lists are associated with information rather than
with the objects that contain the information. This makes them particularly suitable
for implementing originator controlled policies.

14.7 Further Reading

Saltzer [772] describes the use of access control lists in Multics. Kramer [530]
describes their incorporation into the Linus system. Stiegler [877] describes structures
used to implement ACLs. Riechmann and Hauck [750] discuss extensions. In addition
to the systems described in this chapter, several others, both abstract and real, use capa-
bilities [367, 403, 919]. Klein [511] describes how to emulate capabilities using setuid
programs in traditional UNIX systems. The KeyKOS system implemented capabilities
[123, 398, 739], and its descendent, EROS [816, 817, 818], is revisiting the concepts.
Ko [520] developed a model of the ring bracket mechanism and demonstrated that it

Bishop.book Page 258 Tuesday, September 28, 2004 1:46 PM

14.8 Exercises 259

can enforce either the Bell-LaPadula confidentiality policy or the Biba integrity policy,
but not both. Lock and key schemes can be implemented using key sharing techniques,
such as those proposed by Shamir [815], Blakley [114] and Asmuth and Bloom [41].
Simmons discusses several generalizations [831, 832, 833]. Others discuss several
forms of cheating [134, 565, 901].

14.8 Exercises

1. In general, ACLs and C-List entries use “owners” (users) rather than
individual processes. Why?

2. Alice can read and write to the file x, can read the file y, and can execute
the file z. Bob can read x, can read and write to y, and cannot access z.

a. Write a set of access control lists for this situation. Which list is
associated with which file?

b. Write a set of capability lists for this situation. With what is each list
associated?

3. Revoking an individual’s access to a particular file is easy when an access
control list is used. How hard is it to revoke a user’s access to a particular
set of files, but not to all files? Compare and contrast this with the problem
of revocation using capabilities.

4. Explain why some UNIX-based systems with access control lists do not
allow root to alter the ACL. What problems might this raise?

5. It is said that UNIX uses access control lists. Does the UNIX model
include capabilities as well as access control lists? (Hint: Consider file
descriptors. If a file is opened, and its protection mode is changed to
exclude access by the opener, can the process still access the file using the
file descriptor?)

6. Suppose a user wishes to edit the file xyzzy in a capability-based system.
How can he be sure that the editor cannot access any other file? Could this
be done in an ACL-based system? If so, how? If not, why not?

7. Consider Multics procedures p and q. Procedure p is executing and needs
to invoke procedure q. Procedure q’s access bracket is (5, 6) and its call
bracket is (6, 9). Assume that q’s access control list gives p full (read,
write, append, and execute) rights to q. In which ring(s) must p execute for
the following to happen?

a. p can invoke q, but a ring-crossing fault occurs.
b. p can invoke q provided that a valid gate is used as an entry point.
c. p cannot invoke q.

Bishop.book Page 259 Tuesday, September 28, 2004 1:46 PM

260 Chapter 14 Access Control Mechanisms

d. p can invoke q without any ring-crossing fault occurring, but not
necessarily through a valid gate.

8. Consider Multics procedure p and data segment d. Procedure p is
executing and needs to access segment d. Segment d’s access bracket is (5,
6). Assume that d’s access control list gives p full (read, write, append, and
execute) rights to d. In which ring(s) must p execute for the following to
happen?

a. p can read, write to, and append to d.
b. p can read d but not write to or append to d.
c. p cannot access q.

9. Although most systems allow objects to have only one owner, it is possible
for an object to have two (or more) owners. Consider ownership as a right
that allows the changing of capabilities (or access control lists). How
might you implement this right using capabilities? How might you
implement it using access control lists? Contrast these implementations of
capability lists and access control lists with PACLs.

Bishop.book Page 260 Tuesday, September 28, 2004 1:46 PM

261

Chapter 15
Information Flow

BOTTOM: Masters, I am to discourse wonders: but
ask me not what; for if I tell you, I am no true

Athenian. I will tell you every thing, right as it
fell out.

—A Midsummer Night’s Dream, IV, ii, 30–33.

Although access controls can constrain the rights of a user, they cannot constrain the
flow of information about a system. In particular, when a system has a security pol-
icy regulating information flow, the system must ensure that the information flows do
not violate the constraints of the policy. Both compile-time mechanisms and runtime
mechanisms support the checking of information flows. Several systems implement-
ing these mechanisms demonstrate their effectiveness.

15.1 Basics and Background

Information flow policies define the way information moves throughout a system.
Typically, these policies are designed to preserve confidentiality of data or integrity
of data. In the former, the policy’s goal is to prevent information from flowing to a
user not authorized to receive it. In the latter, information may flow only to processes
that are no more trustworthy than the data.

Any confidentiality and integrity policy embodies an information flow policy.

EXAMPLE: The Bell-LaPadula Model describes a lattice-based information flow pol-
icy. Given two compartments A and B, information can flow from an object in A to a
subject in B if and only if B dominates A.

Let x be a variable in a program. The notation x refers to the information flow
class of x.

Bishop.book Page 261 Tuesday, September 28, 2004 1:46 PM

262 Chapter 15 Information Flow

EXAMPLE: Consider a system that uses the Bell-LaPadula Model. The variable x,
which holds data in the compartment (TS, { NUC, EUR }), is set to 3. Then x = 3 and
x = (TS, { NUC, EUR }).

Intuitively, information flows from an object x to an object y if the application
of a sequence of commands c causes the information initially in x to affect the infor-
mation in y.

Definition 15–1. The command sequence c causes a flow of information from
x to y if, after execution of c, some information about the value of x before c
was executed can be deduced from the value of y after c was executed.

This definition views information flow in terms of the information that the
value of y allows one to deduce about the value in x. For example, the statement

y := x;

reveals the value of x in the initial state, so information about the value of x in the ini-
tial state can be deduced from the value of y after the statement is executed. The
statement

y := x / z;

reveals some information about x, but not as much as the first statement.
The final result of the sequence c must reveal information about the initial

value of x for information to flow. The sequence

tmp := x;
y := tmp;

has information flowing from x to y because the (unknown) value of x at the begin-
ning of the sequence is revealed when the value of y is determined at the end of the
sequence. However, no information flow occurs from tmp to x, because the initial
value of tmp cannot be determined at the end of the sequence.

EXAMPLE: Consider the statement

x := y + z;

Let y take any of the integer values from 0 to 7, inclusive, with equal probability, and
let z take the value 1 with probability 0.5 and the values 2 and 3 with probability 0.25
each. Once the resulting value of x is known,the initial value of y can assume at most
three values. Thus, information flows from y to x. Similar results hold for z.

Bishop.book Page 262 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 263

EXAMPLE: Consider a program in which x and y are integers that may be either 0 or
1. The statement

if x = 1 then y := 0;
else y := 1;

does not explicitly assign the value of x to y.
Assume that x is equally likely to be 0 or 1. Then H(xs) = 1. But H(xs | yt) = 0,

because if y is 0, x is 1, and vice versa. Hence, H(xs | yt) = 0 < H(xs | ys) = H(xs) = 1.
Thus, information flows from x to y.

Definition 15–2. An implicit flow of information occurs when information
flows from x to y without an explicit assignment of the form y := f(x), where
f(x) is an arithmetic expression with the variable x.

The flow of information occurs, not because of an assignment of the value of
x, but because of a flow of control based on the value of x. This demonstrates that
analyzing programs for assignments to detect information flows is not enough. To
detect all flows of information, implicit flows must be examined.

15.1.1 Information Flow Models and Mechanisms

An information flow policy is a security policy that describes the authorized paths
along which that information can flow. Each model associates a label, representing a
security class, with information and with entities containing that information. Each
model has rules about the conditions under which information can move throughout
the system.

In this chapter, we use the notation x ≤ y to mean that information can flow
from an element of class x to an element of class y. Equivalently, this says that infor-
mation with a label placing it in class x can flow into class y.

Earlier chapters usually assumed that the models of information flow policies
were lattices. We first consider nonlattice information flow policies and how their
structures affect the analysis of information flow. We then turn to compiler-based
information flow mechanisms and runtime mechanisms. We conclude with a look at
flow controls in practice.

15.2 Compiler-Based Mechanisms

Compiler-based mechanisms check that information flows throughout a program are
authorized. The mechanisms determine if the information flows in a program could
violate a given information flow policy. This determination is not precise, in that

Bishop.book Page 263 Tuesday, September 28, 2004 1:46 PM

264 Chapter 15 Information Flow

secure paths of information flow may be marked as violating the policy; but it is
secure, in that no unauthorized path along which information may flow will be
undetected.

Definition 15–3. A set of statements is certified with respect to an informa-
tion flow policy if the information flow within that set of statements does not
violate the policy.

EXAMPLE: Consider the program statement

if x = 1 then y := a;
else y := b;

By the rules discussed earlier, information flows from x and a to y or from x and b to
y, so if the policy says that a ≤ y, b ≤ y, and x ≤ y, then the information flow is secure.
But if a ≤ y only when some other variable z = 1, the compiler-based mechanism
must determine whether z = 1 before certifying the statement. Typically, this is infea-
sible. Hence, the compiler-based mechanism would not certify the statement. The
mechanisms described here follow those developed by Denning and Denning [247]
and Denning [242].

15.2.1 Declarations

For our discussion, we assume that the allowed flows are supplied to the checking
mechanisms through some external means, such as from a file. The specifications of
allowed flows involve security classes of language constructs. The program involves
variables, so some language construct must relate variables to security classes. One
way is to assign each variable to exactly one security class. We opt for a more liberal
approach, in which the language constructs specify the set of classes from which
information may flow into the variable. For example,

x: integer class { A, B }

states that x is an integer variable and that data from security classes A and B may
flow into x. Note that the classes are statically, not dynamically, assigned. Viewing
the security classes as a lattice, this means that x’s class must be at least the least
upper bound of classes A and B—that is, lub{A, B} ≤ x.

Two distinguished classes, Low and High, represent the greatest lower bound
and least upper bound, respectively, of the lattice. All constants are of class Low.

Information can be passed into or out of a procedure through parameters.
We classify parameters as input parameters (through which data is passed into
the procedure), output parameters (through which data is passed out of the pro-
cedure), and input/output parameters (through which data is passed into and out
of the procedure).

Bishop.book Page 264 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 265

(* input parameters are named is; output parameters, os; *)
(* and input/output parameters, ios, with s a subscript *)
proc something(i1, ..., ik; var o1, ..., om, io1, ..., ion);
var l1, ..., lj; (* local variables *)
begin

S; (* body of procedure *)
end;

The class of an input parameter is simply the class of the actual argument:

is: type class { is }

Let r1, ..., rp be the set of input and input/output variables from which information
flows to the output variable os. The declaration for the type must capture this:

os: type class { r1, ..., rp }

(We implicitly assume that any output-only parameter is initialized in the procedure.)
The input/output parameters are like output parameters, except that the initial value
(as input) affects the allowed security classes. Again, let r1, ..., rp be defined as
above. Then:

ios: type class {r1, ..., rp, io1, ..., iok }

EXAMPLE: Consider the following procedure for adding two numbers.

proc sum(x: int class { x };
var out: int class { x, out });

begin
out := out + x;

end;

Here, we require that x ≤ out and out ≤ out (the latter holding because ≤ is reflexive).

The declarations presented so far deal only with basic types, such as integers,
characters, floating point numbers, and so forth. Nonscalar types, such as arrays,
records (structures), and variant records (unions) also contain information. The rules
for information flow classes for these data types are built on the scalar types.

Consider the array

a: array 1 .. 100 of int;

First, look at information flows out of an element a[i] of the array. In this case,
information flows from a[i] and from i, the latter by virtue of the index indicating

Bishop.book Page 265 Tuesday, September 28, 2004 1:46 PM

266 Chapter 15 Information Flow

which element of the array to use. Information flows into a[i] affect only the value
in a[i], and so do not affect the information in i. Thus, for information flows from
a[i], the class involved is lub{ a[i], i }; for information flows into a[i], the class
involved is a[i].

15.2.2 Program Statements

A program consists of several types of statements. Typically, they are

1. Assignment statements
2. Compound statements
3. Conditional statements
4. Iterative statements
5. Goto statements
6. Procedure calls
7. Function calls
8. Input/output statements.

We consider each of these types of statements separately, with two exceptions. Func-
tion calls can be modeled as procedure calls by treating the return value of the func-
tion as an output parameter of the procedure. Input/output statements can be modeled
as assignment statements in which the value is assigned to (or assigned from) a file.
Hence, we do not consider function calls and input/output statements separately.

15.2.2.1 Assignment Statements
An assignment statement has the form

y := f(x1, ..., xn)

where y and x1, ..., xn are variables and f is some function of those variables. Infor-
mation flows from each of the xi’s to y. Hence, the requirement for the information
flow to be secure is

• lub{x1, ..., xn} ≤ y

EXAMPLE: Consider the statement

x := y + z;

Then the requirement for the information flow to be secure is lub{ y, z } ≤ x.

Bishop.book Page 266 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 267

15.2.2.2 Compound Statements
A compound statement has the form

begin
S1;
...
Sn;

end;

where each of the Si’s is a statement. If the information flow in each of the statements
is secure, then the information flow in the compound statement is secure. Hence, the
requirements for the information flow to be secure are

• S1 secure
• ...
• Sn secure

EXAMPLE: Consider the statements

begin
x := y + z;
a := b * c - x;

end;

Then the requirements for the information flow to be secure are lub{ y, z } ≤ x for S1
and lub{ b, c, x } ≤ a for S2. So, the requirements for secure information flow are
lub{ y, z } ≤ x and lub{ b, c, x } ≤ a.

15.2.2.3 Conditional Statements
A conditional statement has the form

if f(x1, ..., xn) then
S1;

else
S2;

end;

where x1, …, xn are variables and f is some (boolean) function of those variables.
Either S1 or S2 may be executed, depending on the value of f, so both must be secure.
As discussed earlier, the selection of either S1 or S2 imparts information about the
values of the variables x1, ..., xn, so information must be able to flow from those
variables to any targets of assignments in S1 and S2. This is possible if and only if the

Bishop.book Page 267 Tuesday, September 28, 2004 1:46 PM

268 Chapter 15 Information Flow

lowest class of the targets dominates the highest class of the variables x1, ..., xn. Thus,
the requirements for the information flow to be secure are

• S1 secure
• S2 secure
• lub{x1, ..., xn} ≤ glb{ y | y is the target of an assignment in S1 and S2 }

As a degenerate case, if statement S2 is empty, it is trivially secure and has no
assignments.

EXAMPLE: Consider the statements

if x + y < z then
a := b;

else
d := b * c - x;

end;

Then the requirements for the information flow to be secure are b ≤ a for S1 and
lub{ b, c, x } ≤ d for S2. But the statement that is executed depends on the values of x,
y, and z. Hence, information also flows from x, y, and z to d and a. So, the require-
ments are lub{ y, z } ≤ x , b ≤ a, and lub{ x, y, z } ≤ glb{ a, d }.

15.2.2.4 Iterative Statements
An iterative statement has the form

while f(x1, ..., xn) do
S;

where x1, ..., xn are variables and f is some (boolean) function of those variables.
Aside from the repetition, this is a conditional statement, so the requirements for
information flow to be secure for a conditional statement apply here.

To handle the repetition, first note that the number of repetitions causes infor-
mation to flow only through assignments to variables in S. The number of repetitions
is controlled by the values in the variables x1, ..., xn, so information flows from those
variables to the targets of assignments in S—but this is detected by the requirements
for information flow of conditional statements.

However, if the program never leaves the iterative statement, statements after
the loop will never be executed. In this case, information has flowed from the vari-
ables x1, ..., xn by the absence of execution. Hence, secure information flow also
requires that the loop terminate.

Bishop.book Page 268 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 269

Thus, the requirements for the information flow to be secure are

• Iterative statement terminates
• S secure
• lub{x1, ..., xn} ≤ glb{ y | y is the target of an assignment in S }

EXAMPLE: Consider the statements

while i < n do
begin

a[i] := b[i];
i := i + 1;

end;

This loop terminates. If n ≤ i initially, the loop is never entered. If i < n, i is
incremented by a positive integer, 1, and so increases, at each iteration. Hence, after
n – i iterations, n = i, and the loop terminates.

Now consider the compound statement that makes up the body of the loop.
The first statement is secure if i ≤ a[i] and b[i] ≤ a[i]; the second statement is secure
because i ≤ i. Hence, the compound statement is secure if lub{ i, b[i] } ≤ a[i].

Finally, a[i] and i are targets of assignments in the body of the loop. Hence,
information flows into them from the variables in the expression in the while state-
ment. So, lub{ i, n } ≤ glb{ a[i], i }. Putting these together, the requirement for the
information flow to be secure is lub{ b[i], i, n } ≤ glb{ a[i], i } (see Exercise 2).

15.2.2.5 Goto Statements
A goto statement contains no assignments, so no explicit flows of information occur.
Implicit flows may occur; analysis detects these flows.

Definition 15–4. A basic block is a sequence of statements in a program that
has one entry point and one exit point.

EXAMPLE: Consider the following code fragment.

proc transmatrix(x: array [1..10][1..10] of int class { x };
var y: array [1..10][1..10] of int class { y });

var i, j: int class { tmp };
begin

i := 1; (* b1 *)
l2: if i > 10 goto l7; (* b2 *)

j := 1; (* b3 *)
l4: if j > 10 then goto l6; (* b4 *)

Bishop.book Page 269 Tuesday, September 28, 2004 1:46 PM

270 Chapter 15 Information Flow

y[j][i] := x[i][j]; (* b5 *)
j := j + 1;
goto l4;

l6: i := i + 1; (* b6 *)
goto l2;

l7: (* b7 *)
end;

There are seven basic blocks, labeled b1 through b7 and separated by lines. The sec-
ond and fourth blocks have two ways to arrive at the entry—either from a jump to the
label or from the previous line. They also have two ways to exit—either by the
branch or by falling through to the next line. The fifth block has three lines and
always ends with a branch. The sixth block has two lines and can be entered either
from a jump to the label or from the previous line. The last block is always entered
by a jump.

Control within a basic block flows from the first line to the last. Analyzing the
flow of control within a program is therefore equivalent to analyzing the flow of con-
trol among the program’s basic blocks. Figure 15–1 shows the flow of control among
the basic blocks of the body of the procedure transmatrix.

When a basic block has two exit paths, the block reveals information implic-
itly by the path along which control flows. When these paths converge later in the
program, the (implicit) information flow derived from the exit path from the basic
block becomes either explicit (through an assignment) or irrelevant. Hence, the class

b1 b2 b7
i > n

b3

b4

b6

b5

i ≤ n

j > n

j ≤ n

Figure 15–1 The control flow graph of the procedure transmatrix. The basic
blocks are labeled b1 through b7.The conditions under which branches are
taken are shown over the edges corresponding to the branches.

Bishop.book Page 270 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 271

of the expression that causes a particular execution path to be selected affects the
required classes of the blocks along the path up to the block at which the divergent
paths converge.

Definition 15–5. An immediate forward dominator of a basic block b (writ-
ten IFD(b)) is the first block that lies on all paths of execution that pass
through b.

EXAMPLE: In the procedure transmatrix, the immediate forward dominators of each
block are IFD(b1) = b2, IFD(b2) = b7, IFD(b3) = b4, IFD(b4) = b6, IFD(b5) = b4, and
IFD(b6) = b2.

Computing the information flow requirement for the set of blocks along the
path is now simply applying the logic for the conditional statement. Each block
along the path is taken because of the value of an expression. Information flows from
the variables of the expression into the set of variables assigned in the blocks. Let Bi
be the set of blocks along an execution path from bi to IFD(bi), but excluding these
endpoints. (See Exercise 3.) Let xi1, ..., xin be the set of variables in the expression
that selects the execution path containing the blocks in Bi. The requirements for the
program’s information flows to be secure are

• All statements in each basic block secure
• lub{xi1, ..., xin} ≤ glb{ y | y is the target of an assignment in Bi }

EXAMPLE: Consider the body of the procedure transmatrix. We first state require-
ments for information flow within each basic block:

b1: Low ≤ i ⇒ secure
b3: Low ≤ j ⇒ secure
b5: lub{ x[i][j], i, j } ≤ y[j][i]; j ≤ j ⇒ lub{ x[i][j], i, j } ≤ y[j][i]
b6: lub{ Low, i } ≤ i ⇒ secure

The requirement for the statements in each basic block to be secure is, for i = 1, ..., n
and j = 1, ..., n, lub{ x[i][j], i, j } ≤ y[j][i]. By the declarations, this is true when
lub{x, i} ≤ y .

In this procedure, B2 = { b3, b4, b5, b6 } and B4 = { b5 }. Thus, in B2, state-
ments assign values to i, j, and y[j][i]. In B4, statements assign values to j and y[j][i].
The expression controlling which basic blocks in B2 are executed is i ≤ 10; the
expression controlling which basic blocks in B4 are executed is j ≤ 10. Secure infor-
mation flow requires that i ≤ glb{ i, j, y[j][i]} and j ≤ glb{ j, y[j][i] }. In other words,
i ≤ glb{ i, y } and i ≤ glb{ i, y }, or i ≤ y.

Combining these requirements, the requirement for the body of the procedure
to be secure with respect to information flow is lub{x, i} ≤ y .

Bishop.book Page 271 Tuesday, September 28, 2004 1:46 PM

272 Chapter 15 Information Flow

15.2.2.6 Procedure Calls
A procedure call has the form

proc procname(i1, ..., im : int; var o1, ..., on : int);
begin

S;
end;

where each of the ij’s is an input parameter and each of the oj’s is an input/output
parameter. The information flow in the body S must be secure. As discussed earlier,
information flow relationships may also exist between the input parameters and the
output parameters. If so, these relationships are necessary for S to be secure. The
actual parameters (those variables supplied in the call to the procedure) must also
satisfy these relationships for the call to be secure. Let x1, ..., xm and y1, ..., yn be the
actual input and input/output parameters, respectively. The requirements for the
information flow to be secure are

• S secure
• For j = 1, ..., m and k = 1, ..., n, if ij ≤ ok then xj ≤ yk

• For j = 1, ..., n and k = 1, ..., n, if oj ≤ ok then yj ≤ yk

EXAMPLE: Consider the procedure transmatrix from the preceding section. As we
showed there, the body of the procedure is secure with respect to information flow
when lub{x, tmp} ≤ y. This indicates that the formal parameters x and y have the
information flow relationship x ≤ y. Now, suppose a program contains the call

transmatrix(a, b)

The second condition asserts that this call is secure with respect to information flow
if and only if a ≤ b.

15.2.3 Exceptions and Infinite Loops

Exceptions can cause information to flow.

EXAMPLE: Consider the following procedure, which copies the (approximate) value
of x to y.1

proc copy(x: int class { x }; var y: int class Low);
var sum: int class { x };

z: int class Low;

1 From Denning [242], p. 306.

Bishop.book Page 272 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 273

begin
z := 0;
sum := 0;
y := 0;
while z = 0 do begin

sum := sum + x;
y := y + 1;

end
end

When sum overflows, a trap occurs. If the trap is not handled, the procedure exits.
The value of x is MAXINT / y, where MAXINT is the largest integer representable as
an int on the system. At no point, however, is the flow relationship x ≤ y checked.

If exceptions are handled explicitly, the compiler can detect problems such as
this. Denning again supplies such a solution.

EXAMPLE: Suppose the system ignores all exceptions unless the programmer specif-
ically handles them. Ignoring the exception in the preceding example would cause
the program to loop indefinitely. So, the programmer would want the loop to termi-
nate when the exception occurred. The following line does this.

on overflowexception sum do z := 1;

This line causes information to flow from sum to z, meaning that sum ≤ z. Because z
is Low and sum is { x }, this is incorrect and the procedure is not secure with respect
to information flow.

Denning also notes that infinite loops can cause information to flow in unex-
pected ways.

EXAMPLE: The following procedure copies data from x to y. It assumes that x and y
are either 0 or 1.

proc copy(x: int 0..1 class { x };
var y: int 0..1 class Low);

begin
y := 0;
while x = 0 do

(* nothing *);
y := 1;

end.

If x is 0 initially, the procedure does not terminate. If x is 1, it does terminate, with y
being 1. At no time is there an explicit flow from x to y. This is an example of a
covert channel, which we will discuss in detail in the next chapter.

Bishop.book Page 273 Tuesday, September 28, 2004 1:46 PM

274 Chapter 15 Information Flow

15.2.4 Concurrency

Of the many concurrency control mechanisms that are available, we choose to study
information flow using semaphores [270]. Their operation is simple, and they can be
used to express many higher-level constructs [135, 718]. The specific semaphore
constructs are

wait(x): if x = 0 then block until x > 0; x := x - 1;
signal(x): x := x + 1;

where x is a semaphore. As usual, the wait and the signal are indivisible; once either
one has started, no other instruction will execute until the wait or signal finishes.

Reitman and his colleagues [33, 748] point out that concurrent mechanisms
add information flows when values common to multiple processes cause specific
actions. For example, in the block

begin
wait(sem);
x := x + 1;

end;

the program blocks at the wait if sem is 0, and executes the next statement when sem
is nonzero. The earlier certification requirement for compound statements is not suf-
ficient because of the implied flow between sem and x. The certification requirements
must take flows among local and shared variables (semaphores) into account.

Let the block be

begin
S1;
...
Sn;

end;

Assume that each of the statements S1, ..., Sn is certified. Semaphores in the signal do
not affect information flow in the program in which the signal occurs, because the
signal statement does not block. But following a wait statement, which may block,
information implicitly flows from the semaphore in the wait to the targets of succes-
sive assignments.

Let statement Si be a wait statement, and let shared(Si) be the set of shared
variables that are read (so information flows from them). Let g(Si) be the greatest
lower bound of the targets of assignments following Si. A requirement that the block
be secure is that shared(Si) ≤ g(Si). Thus, the requirements for certification of a com-
pound statement with concurrent constructs are

Bishop.book Page 274 Tuesday, September 28, 2004 1:46 PM

15.2 Compiler-Based Mechanisms 275

• S1 secure
• ...
• Sn secure
• For i = 1, ..., n [shared(Si) ≤ g(Si)]

EXAMPLE: Consider the statements

begin
x := y + z;
wait(sem);
a := b * c - x;

end;

The requirements that the information flow be secure are lub{ y, z } ≤ x for S1 and
lub{ b, c, x } ≤ a for S2. Information flows implicitly from sem to a, so sem ≤ a. The
requirements for certification are lub{ y, z } ≤ x, lub{ b, c, x } ≤ a, and sem ≤ a.

Loops are handled similarly. The only difference is in the last requirement,
because after completion of one iteration of the loop, control may return to the begin-
ning of the loop. Hence, a semaphore may affect assignments that precede the wait
statement in which the semaphore is used. This simplifies the last condition in the
compound statement requirement considerably. Information must be able to flow
from all shared variables named in the loop to the targets of all assignments. Let
shared(Si) be the set of shared variables read, and let t1, ..., tm be the targets of
assignments in the loop. Then the certification conditions for the iterative statement

while f(x1, ..., xn) do
S;

are

• Iterative statement terminates
• S secure
• lub{x1, ..., xn} ≤ glb{ t1, ..., tm }
• lub{shared(S1), ,,,, shared(Sn) } ≤ glb{ t1, ..., tm }

EXAMPLE: Consider the statements

while i < n do
begin

a[i] := item;
wait(sem);
i := i + 1;

end;

Bishop.book Page 275 Tuesday, September 28, 2004 1:46 PM

276 Chapter 15 Information Flow

This loop terminates. If n ≤ i initially, the loop is never entered. If i < n, i is
incremented by a positive integer, 1, and so increases, at each iteration. Hence, after
n – i iterations, n = i, and the loop terminates.

Now consider the compound statement that makes up the body of the loop.
The first statement is secure if i ≤ a[i] and item ≤ a[i].The third statement is secure
because i ≤ i. The second statement induces an implicit flow, so sem ≤ a[i] and sem ≤
i. The requirements are thus i ≤ a[i], item ≤ a[i], sem ≤ a[i], and sem ≤ i.

Finally, concurrent statements have no information flow among them per se.
Any such flows occur because of semaphores and involve compound statements (dis-
cussed above). The certification conditions for the concurrent statement

cobegin
S1;
...
Sn;

coend;

are

• S1 secure
• ...
• Sn secure

EXAMPLE: Consider the statements

cobegin
x := y + z;
a := b * c - y;

coend;

The requirements that the information flow be secure are lub{ y, z } ≤ x for S1 and
lub{ b, c, y } ≤ a for S2. The requirement for certification is simply that both of these
requirements hold.

15.2.5 Soundness

Denning and Denning [247], Andrews and Reitman [33], and others build their argu-
ment for security on the intuition that combining secure information flows produces
a secure information flow, for some security policy. However, they never formally
prove this intuition. Volpano, Irvine, and Smith [920] express the semantics of the

Bishop.book Page 276 Tuesday, September 28, 2004 1:46 PM

15.3 Execution-Based Mechanisms 277

above-mentioned information on flow analysis as a set of types, and equate certifica-
tion that a certain flow can occur to the correct use of types. In this context, checking
for valid information flows is equivalent to checking that variable and expression
types conform to the semantics imposed by the security policy.

Let x and y be two variables in the program. Let x’s label dominate y’s label. A
set of information flow rules is sound if the value in x cannot affect the value in y dur-
ing the execution of the program. Volpano, Irvine, and Smith use language-based
techniques to prove that, given a type system equivalent to the certification rules dis-
cussed above, all programs without type errors have the noninterference property
described above. Hence, the information flow certification rules of Denning and of
Andrews and Reitman are sound.

15.3 Execution-Based Mechanisms

The goal of an execution-based mechanism is to prevent an information flow that
violates policy. Checking the flow requirements of explicit flows achieves this result
for statements involving explicit flows. Before the assignment

y = f(x1, ..., xn)

is executed, the execution-based mechanism verifies that

lub(x1, ..., xn) ≤ y

If the condition is true, the assignment proceeds. If not, it fails. A naïve approach,
then, is to check information flow conditions whenever an explicit flow occurs.

Implicit flows complicate checking.

EXAMPLE: Let x and y be variables. The requirement for certification for a particular
statement y op x is that x ≤ y. The conditional statement

if x = 1 then y := a;

causes a flow from x to y. Now, suppose that when x ≠ 1, x = High and y = Low. If
flows were verified only when explicit, and x ≠ 1, the implicit flow would not be
checked. The statement may be incorrectly certified as complying with the informa-
tion flow policy.

Fenton explored this problem using a special abstract machine.

Bishop.book Page 277 Tuesday, September 28, 2004 1:46 PM

278 Chapter 15 Information Flow

15.3.1 Fenton’s Data Mark Machine

Fenton [313] created an abstract machine called the Data Mark Machine to study han-
dling of implicit flows at execution time. Each variable in this machine had an associ-
ated security class, or tag. Fenton also included a tag for the program counter (PC).

The inclusion of the PC allowed Fenton to treat implicit flows as explicit
flows, because branches are merely assignments to the PC. He defined the semantics
of the Data Mark Machine. In the following discussion, skip means that the instruc-
tion is not executed, push(x, x) means to push the variable x and its security class x
onto the program stack, and pop(x, x) means to pop the top value and security class
off the program stack and assign them to x and x, respectively.

Fenton defined five instructions. The relationships between execution of the
instructions and the classes of the variables are as follows.

1. The increment instruction

x := x + 1

is equivalent to

if PC ≤ x then x := x + 1; else skip

2. The conditional instruction

if x = 0 then goto n else x := x – 1

is equivalent to

if x = 0 then { push(PC, PC); PC = lub(PC, x); PC := n; }
else { if PC ≤ x then { x := x – 1; } else skip }

This branches, and pushes the PC and its security class onto the program
stack. (As is customary, the PC is incremented so that when it is popped,
the instruction following the if statement is executed.) This captures the
PC containing information from x (specifically, that x is 0) while following
the goto.

3. The return

return

is equivalent to

pop(PC, PC);

Bishop.book Page 278 Tuesday, September 28, 2004 1:46 PM

15.3 Execution-Based Mechanisms 279

This returns control to the statement following the last if statement.
Because the flow of control would have arrived at this statement, the PC no
longer contains information about x, and the old class can be restored.

4. The branch instruction

if’ x = 0 then goto n else x := x – 1

is equivalent to

if x = 0 then { if x ≤ PC then { PC := n; } else skip }
else { if PC ≤ x then { x := x – 1; } else skip }

This branches without saving the PC on the stack. If the branch occurs, the
PC is in a higher security class than the conditional variable x, so adding
information from x to the PC does not change the PC’s security class.

5. The halt instruction

halt

is equivalent to

if program stack empty then halt execution

The program stack being empty ensures that the user cannot obtain
information by looking at the program stack after the program has halted
(for example, to determine which if statement was last taken).

EXAMPLE: Consider the following program, in which x initially contains 0 or 1.2

1. if x = 0 then goto 4 else x := x – 1
2. if z = 0 then goto 6 else z := z – 1
3. halt
4. z := z + 1
5. return
6. y := y + 1
7. return

This program copies the value of x to y. Suppose that x = 1 initially. The following
table shows the contents of memory, the security class of the PC at each step, and the
corresponding certification check.

2 From Denning [242], Figure 5.7, p. 290.

Bishop.book Page 279 Tuesday, September 28, 2004 1:46 PM

280 Chapter 15 Information Flow

x y z PC PC stack certification check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 x (3, Low)
0 1 0 7 x (3, Low) PC ≤ y
0 1 0 3 Low —

Fenton’s machine handles errors by ignoring them. Suppose that, in the pro-
gram above, y ≤ x. Then at the fifth step, the certification check fails (because PC = x).
So, the assignment is skipped, and at the end y = 0 regardless of the value of x. But if
the machine reports errors, the error message informing the user of the failure of the
certification check means that the program has attempted to execute step 6. It could
do so only if it had taken the branch in step 2, meaning that z = 0. If z = 0, then the
else branch of statement 1 could not have been taken, meaning that x = 0 initially.

To prevent this type of deduction, Fenton’s machine continues executing in
the face of errors, but ignores the statement that would cause the violation. This satis-
fies the requirements. Aborting the program, or creating an exception visible to the
user, would also cause information to flow against policy.

The problem with reporting of errors is that a user with lower clearance than
the information causing the error can deduce the information from knowing that
there has been an error. If the error is logged in such a way that the entries in the log,
and the action of logging, are visible only to those who have adequate clearance, then
no violation of policy occurs. But if the clearance of the user is sufficiently high, then
the user can see the error without a violation of policy. Thus, the error can be logged
for the system administrator (or other appropriate user), even if it cannot be dis-
played to the user who is running the program. Similar comments apply to any
exception action, such as abnormal termination.

15.3.2 Variable Classes

The classes of the variables in the examples above are fixed. Fenton’s machine alters
the class of the PC as the program runs. This suggests a notion of dynamic classes,
wherein a variable can change its class. For explicit assignments, the change is
straightforward. When the assignment

y := f(x1, …, xn)

occurs, y’s class is changed to lub(x1, …, xn). Again, implicit flows complicate matters.

EXAMPLE: Consider the following program (which is the same as the program in the
example for the Data Mark Machine).3

3 From Denning [242], Figure 5.5, p. 285.

Bishop.book Page 280 Tuesday, September 28, 2004 1:46 PM

15.4 Example Information Flow Controls 281

proc copy(x : integer class { x };
var y : integer class { y });

var z : integer class variable { Low };
begin

y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;

In this program, z is variable and initially Low. It changes when something is
assigned to z. Flows are certified whenever anything is assigned to y. Suppose y < x.

If x = 0 initially, the first statement checks that Low ≤ y (trivially true). The second
statement sets z to 0 and z to Low. The third statement changes z to 1 and z to lub(Low, x)
= x. The fourth statement is skipped (because z = 1). Hence, y is set to 0 on exit.

If x = 1 initially, the first statement checks that Low ≤ y (trivially true). The
second statement sets z to 0 and z to Low. The third statement is skipped (because x =
1). The fourth statement assigns 1 to y and checks that lub(Low, z) = Low ≤ y (again,
trivially true). Hence, y is set to 1 on exit.

Information has therefore flowed from x to y even though y < x. The program
violates the policy but is nevertheless certified.

Fenton’s Data Mark Machine would detect the violation (see Exercise 4).
Denning [239] suggests an alternative approach. She raises the class of the

targets of assignments in the conditionals and verifies the information flow require-
ments, even when the branch is not taken. Her method would raise z to x in the third
statement (even when the conditional is false). The certification check at the fourth
statement then would fail, because lub(Low, z) = x ≤ y is false.

Denning ([242], p. 285) credits Lampson with another mechanism. Lampson
suggested changing classes only when explicit flows occur. But all flows force certi-
fication checks. For example, when x = 0, the third statement sets z to Low and then
verifies x ≤ z (which is true if and only if x = Low).

15.4 Example Information Flow Controls

Like the program-based information flow mechanisms discussed above, both special-
purpose and general-purpose computer systems have information flow controls at the
system level. File access controls, integrity controls, and other types of access
controls are mechanisms that attempt to inhibit the flow of information within a sys-
tem, or between systems.

The first example is a special-purpose computer that checks I/O operations
between a host and a secondary storage unit. It can be easily adapted to other purposes.

Bishop.book Page 281 Tuesday, September 28, 2004 1:46 PM

282 Chapter 15 Information Flow

A mail guard for electronic mail moving between a classified network and an unclas-
sified one follows. The goal of both mechanisms is to prevent the illicit flow of infor-
mation from one system unit to another.

15.4.1 Security Pipeline Interface

Hoffman and Davis [428] propose adding a processor, called a security pipeline
interface (SPI), between a host and a destination. Data that the host writes to the des-
tination first goes through the SPI, which can analyze the data, alter it, or delete it.
But the SPI does not have access to the host’s internal memory; it can only operate
on the data being output. Furthermore, the host has no control over the SPI. Hoffman
and Davis note that SPIs could be linked into a series of SPIs, or be run in parallel.

They suggest that the SPI could check for corrupted programs. A host requests
a file from the main disk. An SPI lies on the path between the disk and the host (see
Figure 15–2.) Associated with each file is a cryptographic checksum that is stored on
a second disk connected to the first SPI. When the file reaches the first SPI, it com-
putes the cryptographic checksum of the file and compares it with the checksum
stored on the second disk. If the two match, it assumes that the file is uncorrupted. If
not, the SPI requests a clean copy from the second disk, records the corruption in a
log, and notifies the user, who can update the main disk.

The information flow being restricted here is an integrity flow, rather than the
confidentiality flow of the other examples. The inhibition is not to prevent the corrupt
data from being seen, but to prevent the system from trusting it. This emphasizes
that, although information flow is usually seen as a mechanism for maintaining con-
fidentiality, its application in maintaining integrity is equally important.

15.4.2 Secure Network Server Mail Guard

Consider two networks, one of which has data classified SECRET4 and the other of
which is a public network. The authorities controlling the SECRET network need to

4 For this example, assume that the network has only one category, which we omit.

main disk

second disk

SPIhost

Figure 15–2 Use of an SPI to check for corrupted files.

Bishop.book Page 282 Tuesday, September 28, 2004 1:46 PM

15.4 Example Information Flow Controls 283

allow electronic mail to go to the unclassified network. They do not want SECRET
information to transit the unclassified network, of course. The Secure Network
Server Mail Guard (SNSMG) [844] is a computer that sits between the two net-
works. It analyzes messages and, when needed, sanitizes or blocks them.

The SNSMG accepts messages from either network to be forwarded to the
other. It then applies several filters to the message; the specific filters may depend on
the source address, destination address, sender, recipient, and/or contents of the mes-
sage. Examples of the functions of such filters are as follows.

• Check that the sender of a message from the SECRET network is
authorized to send messages to the unclassified network.

• Scan any attachments to messages coming from the unclassified network
to locate, and eliminate, any computer viruses.

• Require all messages moving from the SECRET to the unclassified
network to have a clearance label, and if the label is anything other than
UNCLASS (unclassified), encipher the message before forwarding it to
the unclassified network.

The SNSMG is a computer that runs two different message transfer agents
(MTAs), one for the SECRET network and one for the unclassified network (see Fig-
ure 15–3). It uses an assured pipeline [700] to move messages from the MTA to the
filter, and vice versa. In this pipeline, messages output from the SECRET network’s
MTA have type a, and messages output from the filters have a different type, type b.
The unclassified network’s MTA will accept as input only messages of type b. If a
message somehow goes from the SECRET network’s MTA to the unclassified net-
work’s MTA, the unclassified network’s MTA will reject the message as being of the
wrong type.

The SNSMG is an information flow enforcement mechanism. It ensures that
information cannot flow from a higher security level to a lower one. It can perform
other functions, such as restricting the flow of untrusted information from the unclas-
sified network to the trusted, SECRET network. In this sense, the information flow is
an integrity issue, not a confidentiality issue.

workstation workstation

SECRET network UNCLASSIFIED
network

MTA MTA

queue out queue in

filters

SNS Mail Guard

Figure 15–3 Secure Network Server Mail Guard. The SNSMG is processing a
message from the SECRET network. The filters are part of a highly trusted
system and perform checking and sanitizing of messages.

Bishop.book Page 283 Tuesday, September 28, 2004 1:46 PM

284 Chapter 15 Information Flow

15.5 Summary

Two aspects of information flow are the amount of information flowing and the way
in which it flows. Given the value of one variable, entropy measures the amount of
information that one can deduce about a second variable. The flow can be explicit, as
in the assignment of the value of one variable to another, or implicit, as in the ante-
cedent of a conditional statement depending on the conditional expression.

Traditionally, models of information flow policies form lattices. Should the
models not form lattices, they can be embedded in lattice structures. Hence, analysis
of information flow assumes a lattice model.

A compiler-based mechanism assesses the flow of information in a program
with respect to a given information flow policy. The mechanism either certifies that the
program meets the policy or shows that it fails to meet the policy. It has been shown
that if a set of statements meet the information flow policy, their combination (using
higher-level language programming constructs) meets the information flow policy.

Execution-based mechanisms check flows at runtime. Unlike compiler-based
mechanisms, execution-based mechanisms either allow the flow to occur (if the flow
satisfies the information flow policy) or block it (if the flow violates the policy).
Classifications of information may be static or dynamic.

Two example information flow control mechanisms, the Security Pipeline
Interface and the Secure Network Server Mail Guard, provide information flow con-
trols at the system level rather than at the program and program statement levels.

15.6 Further Reading

The Decentralized Label Model [660] allows one to specify information flow poli-
cies on a per-entity basis. Formal models sometimes lead to reports of flows not
present in the system; Eckmann [290] discusses these reports, as well as approaches
to eliminating them. Guttmann draws lessons from the failure of an information flow
analysis technique [385].

Foley [327] presented a model of confinement flow suitable for nonlattice
structures, and models nontransitive systems of infoormation flow. Denning [240]
describes how to turn a partially ordered set into a lattice, and presents requirements
for information flow policies.

The cascade problem is identified in the Trusted Network Interpretation [258].
Numerous studies of this problem describe analyses and approaches [320, 441, 631];
the problem of correcting it with minimum cost is NP-complete [440].

Gendler-Fishman and Gudes [351] examine a compile-time flow control
mechanism for object-oriented databases. McHugh and Good describe a flow analy-
sis tool [606] for the language Gypsy. Greenwald et al. [379], Kocher [522], Sands

Bishop.book Page 284 Tuesday, September 28, 2004 1:46 PM

15.7 Exercises 285

[787], and Shore [826] discuss guards and other mechanisms for control of informa-
tion flow.

A multithreaded environment adds to the complexity of constraints on infor-
mation flow [842]. Some architectural characteristics can be used to enforce these
constraints [462].

15.7 Exercises

1. Extend the semantics of the information flow security mechanism in
Section 15.2.1 for records (structures).

2. Why can we omit the requirement lub{ i, b[i] } ≤ a[i] from the
requirements for secure information flow in the example for iterative
statements (see Section 15.2.2.4)?

3. In the flow certification requirement for the goto statement in Section
15.2.2.5, the set of blocks along an execution path from bi to IFD(bi)
excludes these endpoints. Why are they excluded?

4. Prove that Fenton’s Data Mark Machine described in Section 15.3.1 would
detect the violation of policy in the execution time certification of the copy
procedure.

5. Discuss how the Security Pipeline Interface in Section 15.4.1 can prevent
information flows that violate a confidentiality model. (Hint: Think of
scanning messages for confidential data and sanitizing or blocking that
data.)

Bishop.book Page 285 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 286 Tuesday, September 28, 2004 1:46 PM

287

Chapter 16
Confinement Problem

TROILUS: This is the monstruosity in love, lady; that
the will is infinite and the execution confin’d; that
the desire is boundless and the act a slave to limit.

—Troilus and Cressida III, ii, 82–84.

When a program executes, it interacts with its environment. The security policy
allows some interactions and disallows others. The confinement problem deals with
prevention of processes from taking disallowed actions. Beginning with Lampson’s
characterization of this problem, this chapter continues with a discussion of methods
for confinement such as virtual machines and sandboxes. It concludes with a discus-
sion of covert channels. This chapter focuses on confinement. Chapter 19, “Mali-
cious Logic,” discusses tools and techniques used to breach confinement.

16.1 The Confinement Problem

Consider a client and a server. When the client issues a request to the server, the cli-
ent sends the server some data. The server then uses the data to perform some func-
tion and returns a result (or no result) to the client. Access control affects the function
of the server in two ways.

1. The server must ensure that the resources it accesses on behalf of the client
include only those resources that the client is authorized to access.

2. The server must ensure that it does not reveal the client’s data to any other
entity not authorized to see the client’s data.

The first requirement represents the goal of the service provider. That goal is to pre-
vent the client from sending messages to the server that cause it to access, alter,
transmit, or consume resources that the client is not authorized to access, alter, trans-
mit, or consume. The second requirement represents the goal of the service user.
That goal is to prevent the server from transmitting confidential information to the

Bishop.book Page 287 Tuesday, September 28, 2004 1:46 PM

288 Chapter 16 Confinement Problem

service provider. In both cases, the server must be confined to accessing only a spe-
cific set of resources.

EXAMPLE: A server balances accounts for subscribers. The subscribers use a client
to transmit the register entries, the current bank balance, and those withdrawals and
deposits that have cleared the bank to the server. The server returns the list of out-
standing checks and deposits and any discrepancy between the register balance and
the bank balance. Subscribers pay a fee for each use.

The service provider requires that the server correctly record who used the
service each time it is used. Otherwise, the service provider cannot bill for the use of
the service. The threat is that someone may use the service without being detected
(and therefore without being charged) or that the user may impersonate another sub-
scriber (resulting in the wrong subscriber being charged). The service provider also
does not want the server to transmit billing records or any other unauthorized infor-
mation to the client. The server should send only the information it derived from the
data that the client sent. So the server must be confined to operating only on the data
it is sent.

The subscriber expects certain security services from the server. The server
must correctly log the user’s invocation so that the user is not charged incorrectly.
(This matches the need of the service provider.) The server must not record or trans-
mit the data that the subscriber sends to it because the subscriber’s data is confiden-
tial to the subscriber and is not relevant to the service provider. So the server must be
confined to keeping the data to itself and to sending the results only to the subscriber.

Lampson [544] calls this the confinement problem.

Definition 16–1. The confinement problem is the problem of preventing a
server from leaking information that the user of the service considers
confidential.

One characteristic of processes that do not leak information comes from the
observation that a process must store data for later retrieval (the leaking). A process
that does not store information cannot leak it. However, in the extreme, such pro-
cesses also cannot perform any computations, because an analyst could observe the
flow of control (or state of the process) and from that flow deduce information about
the inputs. This leads to the observation that a process that cannot be observed and
cannot communicate with other processes cannot leak information. Lampson calls
this total isolation.

In practice, achieving total isolation is difficult. The processes to be confined
usually share resources such as CPUs, networks, and disk storage with other, uncon-
fined processes. The unconfined processes can transmit information over those
shared resources.

Definition 16–2. A covert channel is a path of communication that was not
designed to be used for communication.

Bishop.book Page 288 Tuesday, September 28, 2004 1:46 PM

16.1 The Confinement Problem 289

EXAMPLE: Process p is to be confined such that it cannot communicate with process
q. However, processes p and q share a file system. In order for process p to send a
message to process q, it creates a file called send in a directory that both processes
can read. Just before process q is to read the information, q deletes the send file. Pro-
cess p then transmits a bit by creating a file named 0bit or 1bit, as appropriate. When
q detects either file, it records the bit and deletes the file. This continues until p cre-
ates a file called end, at which point the communication ceases.

Confinement is transitive. Assume that a process p is confined to prevent leak-
age. If it invokes a second process q, then q must be similarly confined or q could
leak the information that p passes.

Definition 16–3. The rule of transitive confinement states that if a confined
process invokes a second process, the second process must be as confined as
the caller.

Confinement is a mechanism for enforcing the principle of least privilege (see
Section 12.2.1). A properly confined process cannot transmit data to a second pro-
cess unless the transmission is needed to complete their task. The problem is that the
confined process needs access to the data to be transmitted and so the confinement
must be on the transmission, not on the data access. To complicate matters, the pro-
cess may have to transmit some information to the second process. In this case, the
confinement mechanism must distinguish between transmission of authorized data
and transmission of unauthorized data.

The combination of these problems illustrates the difficulty of preventing
leakage. The dilemma is that modern computers are designed to share resources, and
yet by the act of sharing they create channels of communication along which infor-
mation can be leaked.

Lipner [570] examines the problem from a policy and modeling aspect. He
considers two types of covert channels. The first involves the use of storage to trans-
mit information. If a model correctly describes all ways in which information can be
stored and read, then the model abstracts both legitimate and covert channels along
which information can flow. The model constrains all accesses to storage. The only
accesses allowed are those authorized by the policy, so the flows of information are
legitimate. However, if the model does not capture all such flows, then unauthorized
flows, or covert channels, arise.

Lipner then notes that all processes can obtain at least a rough idea of time.
This makes time a communication channel. A program can “read” time by checking
the system clock or (alternatively) by counting the number of instructions it has exe-
cuted during a period of wall clock time. A program can “write” time by executing a
set number of instructions and stopping, allowing another process to execute. This
shared channel cannot be made exclusive unless a process does not share the com-
puter with another process, which suggests isolation as a remedy.

Kocher’s timing attacks on cryptosystems illustrate this problem [523].
Kocher notes that the instructions executed by implementations of cryptosystems

Bishop.book Page 289 Tuesday, September 28, 2004 1:46 PM

290 Chapter 16 Confinement Problem

depend on the setting of bits in the key. For example, the algorithm in Figure 16–1
implements a fast modular exponentiation function. If a bit is 1, two multiplications
occur; otherwise, one multiplication occurs. The extra multiplication takes extra
time. Kocher determines bits of the confidential exponent by measuring computation
time.

We explore the mechanism of isolation first. Then we examine covert chan-
nels in more detail and discuss other approaches to analyzing them, including tech-
niques for identifying covert channels and isolating them.

16.2 Isolation

Systems isolate processes in two ways. In the first, the process is presented with an
environment that appears to be a computer running only that process or those pro-
cesses to be isolated. In the second, an environment is provided in which process
actions are analyzed to determine if they leak information. The first type of environ-
ment prevents the process from accessing the underlying computer system and any
processes or resources that are not part of that environment. The second type of envi-
ronment does not emulate a computer. It merely alters the interface between the
existing computer and the process(es).

16.2.1 Virtual Machines

The first type of environment is called a virtual machine.

Definition 16–4. A virtual machine is a program that simulates the hardware
of a (possibly abstract) computer system.

A virtual machine uses a special operating system called a virtual machine
monitor to provide a virtual machine on which conventional operating systems can
run. Chapter 29 discusses virtual machines in more detail.

x := 1; atmp := a;
for i := 0 to k-1 do begin

if zi = 1 then
x := (x * atmp) mod n;

atmp := (atmp * atmp) mod n;
end;
result := x;

Figure 16–1 A fast modular exponentiation routine. This routine computes
x = az mod n. The bits of z are zk–1, . . . ,z0.

Bishop.book Page 290 Tuesday, September 28, 2004 1:46 PM

16.2 Isolation 291

The primary advantage of a virtual machine is that existing operating systems
do not need to be modified. They run on the virtual machine monitor. The virtual
machine monitor enforces the desired security policy. This is transparent to the user.
The virtual machine monitor functions as a security kernel.

In terms of policy, the virtual machine monitor deals with subjects (the sub-
jects being the virtual machines). Even if one virtual machine is running hundreds of
processes, the virtual machine monitor knows only about the virtual machine. Thus,
it can apply security checks to its subjects, and those controls apply to the processes
that those subjects are running. This satisfies the rule of transitive confinement.

EXAMPLE: The KVM/370 was a security-enhanced version of the IBM VM/370 vir-
tual machine monitor [363]. This system provided virtual machines for its users, and
one of its goals was to prevent communications between virtual machines of differ-
ent security classes, so users in different security classes could use the system at the
same time. Like VM/370, it provided virtual machines with minidisks and allowed
systems to share some areas of disk. Unlike VM/370, it used a security policy to
mediate access to shared areas of the disk to limit communications between systems.

EXAMPLE: Karger and colleagues at Digital Equipment Corporation developed a
virtual machine monitor (VMM) for the DEC VAX [498]. The monitor is a security
kernel and can run either the VMS or the Ultrix operating system. The VMM runs on
the native VAX hardware and is invoked whenever the virtual machine executes a
privileged instruction. Its structure is typical of virtual machines designed to provide
security.

The VAX has four levels of privilege: user, supervisor, executive, and kernel
modes. In order to provide a compatible virtual machine, the virtual machines must
also have four levels of privilege. However, the kernel mode allows a process to
access privileged instructions on the VAX hardware directly. Only the VMM is
allowed to do this. The virtual machines cannot access kernel mode. The solution is
to provide virtual modes. These modes are VM user (corresponding to user mode),
VM supervisor mode, and VM executive and VM kernel modes (both actually execu-
tive mode).1

The VMM subjects are users and virtual machines. VMM has a basic, flat file
system for its own use and partitions the remaining disk space among the virtual
machines. Those machines may use any file structure they desire, and each virtual
machine has its own set of file systems. Each subject and object has a multilevel
security and integrity label, and the security and integrity levels form an access class.
Two entities have the same access class if and only if their security and integrity
labels are the same, and one entity dominates another if and only if both the security
and integrity classes dominate.

An integral component of the VMM is an auditing mechanism. This mecha-
nism records actions for later analysis.

1 Chapter 29, “Virtual Machines,” discusses this approach in more detail.

Bishop.book Page 291 Tuesday, September 28, 2004 1:46 PM

292 Chapter 16 Confinement Problem

Because virtual machines provide the same interface for communication with
other virtual machines that computers provide, those channels of communication can
be controlled or severed. As mentioned earlier, if a single host runs multiple virtual
machines, those virtual machines share the physical resources of the host on which
they run. (They may also share logical resources, depending on how the virtualizing
kernel is implemented.) This provides a fertile ground for covert channels, a subject
explored in Section 16.3.

16.2.2 Sandboxes

A playground sandbox provides a safe environment for children to stay in. If the chil-
dren leave the sandbox without supervision, they may do things they are not supposed
to do. The computer sandbox is similar. It provides a safe environment for programs to
execute in. If the programs “leave” the sandbox, they may do things that they are not
supposed to do. Both types of sandboxes restrict the actions of their occupants.

Definition 16–5. A sandbox is an environment in which the actions of a pro-
cess are restricted according to a security policy.

Systems may enforce restrictions in two ways. First, the sandbox can limit the
execution environment as needed. This is usually done by adding extra security-
checking mechanisms to the libraries or kernel. The program itself is not modified.
For example, the VMM kernel discussed earlier is a sandbox because it constrains
the accesses of the (unmodified) operating systems that run on it. The Java virtual
machine is a sandbox because its security manager limits access of downloaded pro-
grams to system resources as dictated by a security policy [152].

EXAMPLE: The operational kernel of the Sidewinder firewall [900] uses type
enforcement to confine processes (see the example on page 254 in Section 14.3.1).
This is an example of a sandbox built into a kernel, and it has the property that the
sandbox is defined by the vendor. It is not intended to be altered at the site. Such a
design is typical for a turnkey system, which is the intended use for a Sidewinder
firewall.

The Java virtual machine, in which downloaded applets are executed, is
another example of a sandbox. The sandbox restricts the set of files that the applet
can access and the hosts to which the applet can connect. Other security mechanisms
enhance the sandbox [369].

DTE, the type enforcement mechanism for DTEL [50, 336], is an example in
which kernel modifications enable system administrators to configure their own
sandboxes. The kernel enforces the constraints.

The second enforcement method is to modify the program (or process) to be
executed. Dynamic debuggers [8, 296, 393, 867] and some profilers [101] use this
technique by adding breakpoints to the code and, when the trap occurs, analyzing the

Bishop.book Page 292 Tuesday, September 28, 2004 1:46 PM

16.2 Isolation 293

state of the running process. A variant, known as software fault isolation [841, 925],
adds instructions that perform memory access checks or other checks as the program
runs, so any attempt to violate the security policy causes an error.

EXAMPLE: Janus [364] implements a sandbox. It is an execution environment in
which system calls are trapped and checked. Users execute it to restrict the objects
and modes of access of an untrusted program. Janus consists of a framework, which
does the runtime checking, and modules, which determine which accesses are to be
allowed.

Janus first reads a configuration file. This file instructs it to load certain mod-
ules. Along with the module identification is a list of constraints. The following
example configuration file defines the environment variable IFS for the child and
restricts the child’s access to the file system. The child cannot access any files except
those that are named below (this meets the principle of fail-safe defaults discussed in
Section 12.2.2). The child can read or write to any file in the /usr file system except
for those in the /usr/lib and /usr/local/lib directories (which are read only) and in
/usr/bin (read and execute). The child can read any file in the /lib directory and can
read and execute any file in the /sbin and /bin directories. In the configuration file
below, the first word in each instruction line is the name of the module and the other
words are the arguments passed to the modules (“#” begins a comment).

basic module
basic

define subprocess environment variables
putenv IFS=”\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT

deny access to everything except files under /usr
path deny read,write *
path allow read,write /usr/*
allow subprocess to read files in library directories
needed for dynamic loading
path allow read /lib/* /usr/lib/* /usr/local/lib/*
needed so child can execute programs
path allow read,exec /sbin/* /bin/* /usr/bin/*

Each module constrains system calls. The framework uses the modules to build a
linked list for each monitored system call. The list defines allowed and disallowed
actions. Once this list has been constructed, the Janus framework invokes the pro-
gram in such a way that all monitored system calls are trapped.

When the program executes a monitored system call, the program traps and
the Janus framework is invoked. It has access to the arguments supplied to the sysem
call. It validates that the system call, with these specific parameters, is allowed. If the
system call is not allowed, the framework sets the child’s environment so that the
system call appears to have failed. If the system call is allowed, the framework

Bishop.book Page 293 Tuesday, September 28, 2004 1:46 PM

294 Chapter 16 Confinement Problem

returns control to the child, which in turn passes control to the kernel. On return, con-
trol goes to the framework, which updates any internal state and returns the results to
the child.

An example use would be in reading MIME mail. One could have set the mail
reading program to pass control to a Postscript display engine. Some such engines
have a mechanism for executing system-level commands embedded in the Postscript
file. Hence, an attacker could put a file deletion command in the Postscript file. The
recipient would run the display engine to read the file, and some of her files would be
deleted [191]. However, the user (or system administrator) can set up the Janus con-
figuration file to disallow execution of any subprograms. Then the embedded com-
mand will be detected (on the system call to execute it) and rejected.

Like a virtual machine monitor, a sandbox forms part of the trusted computing
base. If the sandbox fails, it provides less protection than it is believed to provide.
Hence, ensuring that the sandbox correctly implements a desired security policy is
critical to the security of the system.

16.3 Covert Channels

Covert channels use shared resources as paths of communication. This requires shar-
ing of space or sharing of time.

Definition 16–6. A covert storage channel uses an attribute of the shared
resource. A covert timing channel uses a temporal or ordering relationship
among accesses to a shared resource.

EXAMPLE: The covert channel in the example on page 289 is a covert storage chan-
nel. The shared resource is the directory and the names of the files in that directory.
The processes communicate by altering characteristics (file names and file existence)
of the shared resource.

EXAMPLE: A study of the security of the KVM/370 system [791] found that two vir-
tual machines could establish a covert channel based on the CPU quantum that each
virtual machine received. If the sending virtual machine wished to send a “0” bit, it
would relinquish the CPU immediately; to send a “1,” it would use its full quantum.
By determining how quickly it got the CPU, the second virtual machine could
deduce whether the first was sending a “1” or a “0.” The shared resource is the CPU.
The processes communicate by using a real-time clock to measure the intervals
between accesses to the shared resource. Hence, this is a covert timing channel.

A covert timing channel is usually defined in terms of a real-time clock or a
timer, but temporal relationships sometimes use neither. An ordering of events
implies a time-based relationship that involves neither a real-time clock nor a timer.

Bishop.book Page 294 Tuesday, September 28, 2004 1:46 PM

16.3 Covert Channels 295

EXAMPLE: Consider a variant of a channel identified in KVM/370 [363, 956]. Two
virtual machines share cylinders 100 through 200 on a disk. The disk uses a SCAN
algorithm [718] to schedule disk accesses. One virtual machine has security class
High, and the other has class Low. A process on the High machine is written to send
information to a process on the Low machine.

The process on the Low machine issues a read request for data on cylinder
150. When that request completes, it relinquishes the CPU. The process on the High
machine runs, issues a seek to cylinder 140, and relinquishes the CPU. The process
on the Low machine runs and issues seek requests to cylinders 139 and 161. Because
the disk arm is moving over the cylinders in descending order, the seek issued to cyl-
inder 139 is satisfied first, followed by the seek issued to cylinder 161. This ordering
represents a 1 bit.

To send a 0 bit, the process on the High machine issues a read request for data
on cylinder 160 instead of cylinder 140. Then the process on the Low machine’s
requests will be satisfied first on cylinder 161 and then on cylinder 139.

Is this a covert timing channel or a covert storage channel? Because it does
not involve a real-time clock or timer, the usual definition implies that it is a covert
storage channel.

Modify the example slightly to postulate a timer. The process on the Low
machine uses this timer to determine how long it takes for its requests to complete. If
the timer shows that the time required to satisfy the request for a seek to cylinder 139
is less than the time required to satisfy the request for a seek to cylinder 161, then a 1
bit is being sent. If the timings indicate the opposite, a 0 bit is being sent. This modi-
fication clearly uses a covert timing channel.

The difference between the modified example and the original example is the
presence of a timer. The timer changes nothing about the way the channel works. For
this reason, we include relative ordering of events as a covert timing channel.

A second property distinguishes between a covert channel that only the sender
and receiver have access to and a covert channel that others have access to as well.

Definition 16–7. A noiseless covert channel is a covert channel that uses a
resource available to the sender and receiver only. A noisy covert channel is a
covert channel that uses a resource available to subjects other than the sender
and receiver, as well as to the sender and receiver.

The difference between these two types of channels lies in the need to filter
out extraneous information. Any information that the receiver obtains from a noise-
less channel comes from the sender. However, in a noisy channel, the sender’s infor-
mation is mixed with meaningless information, or noise, from other entities using the
resource. A noisy covert channel requires a protocol to minimize this interference.

The key properties of covert channels are existence and bandwidth. Exist-
ence tells us that there is a channel along which information can be transmitted.
Bandwidth tells us how rapidly information can be sent. Covert channel analysis
establishes both properties. Then the channels can be eliminated or their band-
widths can be reduced.

Bishop.book Page 295 Tuesday, September 28, 2004 1:46 PM

296 Chapter 16 Confinement Problem

16.3.1 Detection of Covert Channels

Covert channels require sharing. The manner in which the resource is shared controls
which subjects can send and receive information using that shared resource. Detec-
tion methods begin with this observation.

Porras and Kemmerer have devised an approach to representing security vio-
lations that spring from the application of fault trees [725]. They model the flow of
information through shared resources with a tree. The paths of flow are identified in
this structure. The analyst determines whether each flow is legitimate or covert.

A covert flow tree is a tree-structured representation of the sequence of operations
that move information from one process to another. It consists of five types of nodes.

1. Goal symbols specify states that must exist for the information to flow.
There are several such states:

a. A modification goal is reached when an attribute is modified.
b. A recognition goal is reached when a modification of an attribute is

detected.
c. A direct recognition goal is reached when a subject can detect the

modification of an attribute by referencing it directly or calling a
function that returns it.

d. An inferred recognition goal is reached when a subject can detect
the modification of an attribute without referencing it directly and
without calling a function that references the attribute directly. For
example, the subject may call a function that performs one of two
computations depending on the value of the attribute in question.

e. An inferred-via goal is reached when information is passed from
one attribute to other attributes using a specified primitive operation
(such as a system call).

f. A recognize-new-state goal is reached when an attribute that was
modified when information was passed using it is specified by an
inferred-via goal. The value need not be determined, but the fact that
the attribute has been modified must be determined.

2. An operation symbol is a symbol that represents a primitive operation. The
operation symbols may vary among systems if they have different
primitive operations.

3. A failure symbol indicates that information cannot be sent along the path on
which it lies. It means that the goal to which it is attached cannot be met.

4. An and symbol is a goal that is reached when both of the following hold
for all children:

a. If the child is a goal, then the goal is reached.
b. The child is an operation.

Bishop.book Page 296 Tuesday, September 28, 2004 1:46 PM

16.3 Covert Channels 297

5. An or symbol is a goal that is reached when either of the following holds
for any children:

a. If the child is a goal, then the goal is reached.
b. The child is an operation.

Constructing the tree is a three-step process. To make the steps concrete, we
present a simple set of operations and then ask if they can create a covert channel.

EXAMPLE: Consider a file system in which each file has three attributes. The bool-
ean attributes locked and isopen are true when the file is locked or opened, respec-
tively, and are false otherwise. The third attribute, inuse, is a set that contains the
process ID of each process that has the file open. The function read_access(p, f) is
true if process p has read rights over file f, and empty(s) is true if set s has no mem-
bers. The function random returns one of its arguments chosen at random. The fol-
lowing operations are defined.

(* lock the file if it is not locked and not opened *)
(* otherwise indicate it is locked by returning false *)
procedure Lockfile(f: file): boolean;
begin

if not f.locked and empty(f.inuse) then
f.locked := true;

end;

(* unlock the file *)
procedure Unlockfile(f: file);
begin

if f.locked then
f.locked := false;

end;

(* say whether the file is locked *)
function Filelocked(f: file): boolean;
begin

Filelocked := f.locked;
end;

(* open the file if it isn’t locked and the *)
(* process has the right to read the file *)
procedure Openfile(f: file);
begin

if not f.locked and read_access(process_id, f) then
(* add the process ID to the inuse set *)
f.inuse = f.inuse + process_id;

end;

Bishop.book Page 297 Tuesday, September 28, 2004 1:46 PM

298 Chapter 16 Confinement Problem

(* if the process can read the file, say if the *)
(* file is open, otherwise return a value at random *)
function Fileopened(f: file): boolean;
begin

if not read_access(process_id, f) then
Fileopened := random(true, false);

else
Fileopened := not isempty(f.inuse);

end

Assuming that processes are not allowed to communicate with one another, the
reader is invited to try to find a covert storage channel.

The first step in constructing a covert flow tree is to determine what attributes
(if any) the primitive operations reference, modify, and return.

EXAMPLE: The functions in the preceding example affect file attributes in different
ways, as follows.

The symbol ∅ means that no attribute is affected in the specified manner.

The second step begins with the goal of locating a covert storage channel that
uses some attribute. The analyst constructs the covert flow tree. The type of goal con-
trols the construction, as follows.

1. The topmost goal requires that the attribute be modified and that the
modification be recognized. Hence, it has one child (an and symbol),
which in turn has two children (a modification goal symbol and a
recognition goal symbol).

2. A modification goal requires some primitive operation to modify the
attribute. Hence, it has one or child, which has one child operation symbol
per operation for all operations that modify the attribute.

3. A recognition goal requires that a subject either directly recognize or infer
a change in an attribute. It has an or symbol as its child. The or symbol has
two children, one a direct recognition goal symbol and the other an
inferred recognition goal symbol.

4. A direct recognition goal requires that an operation access the attribute.
Like the modification goal, it has one or child, and that child in turn has

Lockfile Unlockfile Filelocked Openfile Fileopened

reference locked, inuse locked locked locked, inuse inuse

modify locked ∅ ∅ inuse ∅
return ∅ ∅ locked ∅ inuse

Bishop.book Page 298 Tuesday, September 28, 2004 1:46 PM

16.3 Covert Channels 299

one child operation symbol for each operation that returns the attribute. If
no operation returns the attribute, a failure symbol is attached.

5. An inferred recognition goal requires that the modification be inferred on
the basis of one or more other attributes. Hence, it has one child, an or
symbol, which has one child inferred-via symbol for each operation that
references an attribute and that modifies some attribute (possibly the same
one that was referenced).

6. An inferred-via goal requires that the value of the attribute be inferred via
some operation and a recognition of the new state of the attribute resulting
from that operation. Hence, it has one child (an and symbol), which has
two children (an operation symbol representing the primitive operation
used to draw the inference and a recognize-new-state goal symbol).

7. A recognize-new-state goal requires that the value of the attribute be
inferred via some operation and a recognition of the new state of the
attribute resulting from that operation. The latter requires a recognition
goal for the attribute. So, the child node of the recognize-new-state goal
symbol is an or symbol, and for each attribute enabling the inference of
the modification of the attribute in question, the or symbol has a
recognition goal symbol child.

Tree construction ends when all paths through the tree terminate in either an
operation symbol or a failure symbol. Because the construction is recursive, the ana-
lyst may encounter a loop in the tree construction. Should this happen, a parameter
called repeat defines the number of times that the path may be traversed. This places
an upper bound on the size of the tree.

EXAMPLE: We build the covert flow tree for the attribute locked in our previous two
examples. The goal state is “covert storage channel via attribute locked.” The and
node beneath it has two children, “modification of attribute locked” and “recognition
of attribute locked.” At this point, the tree looks like this:

Covert storage channel
via attribute locked

Modification of
attribute locked

Recognition of
attribute locked

•

Bishop.book Page 299 Tuesday, September 28, 2004 1:46 PM

300 Chapter 16 Confinement Problem

From the table in the preceding example, the operations Lockfile and Unlock-
file modify the attribute locked. So that branch of the tree becomes:

The recognition branch expands into direct recognition and inferred recogni-
tion branches. The direct recognition branch has an and with one child, Filelocked,
because Filelocked returns the value of the locked attribute. The inferred recognition
branch has an or child with one child, an “inferred-via” node that infers locked from
inuse. This branch comes from comparing the “reference” row of the table in the pre-
ceding example with the “modify” row. If an operation references the locked
attribute and modifies another attribute, inference is possible (assuming that the
modification can be detected). At this point, the recognition branch looks like this:

Inferring that the attribute locked has changed from the attribute inuse
requires the operation Openfile. After that operation, the recognize-new-state goal
represents the change in the attribute inuse:

Modification of
attribute locked

Lockfile Unlockfile

+

Recognition of
attribute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attribute locked

+

Infer attribute locked
via attribute inuse

Bishop.book Page 300 Tuesday, September 28, 2004 1:46 PM

16.3 Covert Channels 301

This in turn requires the recognition of modification of the attribute inuse
(hence, a recognition state). The operation Fileopened recognizes this change
directly; nothing recognizes it indirectly. The result is:

Figure 16–2 shows the full covert flow tree.

The analyst now constructs two lists. The first list contains sequences of oper-
ations that modify the attribute, and the second list contains sequences of operations
that recognize modifications in the attribute. A sequence from the first list followed
by a sequence from the second list is a channel along which information can flow.
The analyst examines these channels to determine which are covert.

EXAMPLE: In the covert flow tree presented above, the first list has two sequences:

List 1 = ((Lockfile), (Unlockfile))

because both operations modify the attribute (and lie on the “modified” branch under
the root of the tree). The second list also has two sequences:

Openfile

Infer attribute locked
via attribute inuse

•

Recognition of
attribute inuse

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE

Bishop.book Page 301 Tuesday, September 28, 2004 1:46 PM

302 Chapter 16 Confinement Problem

Modification of
attribute locked

Lockfile Unlockfile

+

Recognition of
attribute locked

+

Direct recognition of
attribute locked

+

Filelocked

Indirect recognition of
attribute locked

+

Infer attribute locked
via attribute inuse

Openfile

•

Recognition of
attribute inuse

+

Direct recognition of
attribute inuse

Indirect recognition of
attribute inuse

+

Fileopened

+

FALSE

Figure 16–2 The covert flow tree for the operations.

Covert storage channel
via attribute locked

•

Bishop.book Page 302 Tuesday, September 28, 2004 1:46 PM

16.3 Covert Channels 303

List 2 = ((Filelocked), (Openfile, Fileopened))

—the first from the direct recognition of the modification of the attribute and the sec-
ond from the indirect recognition. These sequences result in four channels of
communication.

1. Lockfile followed by Filelocked
2. Unlockfile followed by Filelocked
3. Lockfile followed by Openfile, then Fileopened
4. Unlockfile followed by Openfile, then Fileopened.

If a High-level user transmits information to a Low-level user by locking and unlock-
ing a file, the first two channels (in combination) represent a direct covert storage
channel. The last two represent an indirect covert storage channel. To use the chan-
nel, the High-level process locks a file to send a 0 bit and unlocks a file to send a 1
bit. The Low process tries to open the locked file. It then uses Fileopened to see if it
has opened the file. If the file is opened, the High process did not lock the file (a 0
bit). If the file is not opened, the High process did lock the file (a 1 bit).

The shared resource matrix model and covert flow trees spring from the idea
of examining shared resources for modification and reference operations, and both
can be used at any point within the software development life cycle. One advantage
of covert flow trees over the SRM model is that the former identifies explicit
sequences of operations that cause information to flow from one process to another.
The latter identifies channels rather than sequences of operations. In comparisons
involving file system access operations and the Secure Ada Target, the covert flow
tree method identified sequences of operations corresponding to the covert storage
channels found by the SRM method and the noninterference method, as well as one
not found by the other two.

16.3.2 Mitigation of Covert Channels

Covert channels convey information by varying the use of shared resources. An obvi-
ous way to eliminate all covert channels is to require processes to state what
resources they need before execution and provide these resources in such a manner
that only the process can access them. This includes runtime, and when the stated
runtime is reached, the process is terminated and the resources are released. The
resources remain allocated for the full runtime even if the process terminates earlier.
Otherwise, a second process could infer information from the timing of the release of
the resources (including access to the CPU). This strategy effectively implements
Lampson’s idea of total isolation, but it is usually unworkable in practice.

An alternative approach is to obscure the amount of resources that a process uses.
A receiving process cannot determine what amount of resource usage is attributable

Bishop.book Page 303 Tuesday, September 28, 2004 1:46 PM

304 Chapter 16 Confinement Problem

to the sender and what amount is attributable to the obfuscation. This can be done in
two ways. First, the resources devoted to each process can be made uniform. This is
a variant of isolation, because each process gets the same amount of resources and
cannot tell whether a second process is accessing the resource by measuring the tim-
ing or amount of resources available. In essence, the system eliminates meaningful
irregularities in resource allocation and use. Second, a system can inject randomness
into the allocation and use of resources. The goal is to make the covert channel a
noisy one and to have the noise dominate the channel. This does not close the covert
channel (because it still exists) but renders it useless.

Both these techniques affect efficiency. Assigning fixed allocations and con-
straining use waste resources. Fixing the time slices on the KVM system means that
the CPU will be unused (or will execute an idle process) when another virtual
machine could run a non-idle process. Increasing the probability of aborts in the mul-
tilevel secure database system will abort some transactions that would normally
commit, increasing the expected number of tries to update the database. Whether the
closing of the covert channel or the limiting of the bandwidth compensates ade-
quately for the loss in efficiency is a policy decision.

A device known as a pump is the basis of several techniques for defeating
covert channels.

EXAMPLE: The pump [490] is a (hardware or software) tool for controlling a com-
munication path between a High process and a Low process. It consists of a buffer
for messages to and from the High process, a buffer for messages to and from the
Low process, and a communications buffer of length n that is connected to both of
the other buffers (see Figure 16–3). We assume that messages are numbered and that
the communications buffer preserves messages if the pump crashes. Under these

communications buffer

Low process High process

High
buffer

Low
buffer

Figure 16–3 The pump. Messages going between the High and Low processes
enter the pump (represented by the dashed oval). The pump controls the rate at
which the messages flow between the two processes. The pump acknowledges
each message as it is moved from the process buffer to the communications
buffer.

Bishop.book Page 304 Tuesday, September 28, 2004 1:46 PM

16.3 Covert Channels 305

assumptions, the processes can recover (so that either the messages in the pump are
delivered or the sender detects that they are lost and resends the message; see
Exercise 5).

A covert timing channel occurs when the High process can control the rate at
which the pump passes messages to it. The Low process fills the communications
buffer by sending messages to the pump until it fails to receive an acknowledgment.
At that point, the High and Low processes begin their trials. At the beginning of each
trial, if the High process wants to send a 1, it allows the pump to send it one of the
queued messages. If the High process wants to send a 0, it does not accept any mes-
sages from the pump. If the Low process receives an acknowledgment, it means that
a message has moved from the Low buffer to the communications buffer. This can
happen only if a space in the communications buffer opens. This occurs when the
High process reads a message. Hence, if the Low process gets an acknowledgment,
the High process is signaling a 1. By a similar argument, if the Low process does not
get an acknowledgment, the High process is signaling a 0. Following the trial, if the
Low process has received an acknowledgment, it must send another message to the
pump to enter the state required for the next trial.

In what follows, we assume that the Low process and the pump can process
messages more quickly than the High process. Three cases arise.

1. The High process can process messages in less time than it takes for the
Low process to get the acknowledgment. Because this contradicts our
assumption above, the pump must be artificially delaying
acknowledgments. This means that the Low process will wait for an
acknowledgment regardless of whether the communications buffer is full
or not. Although this closes the covert timing channel, it is not optimal
because the processes may wait even when they do not need to.

2. The Low process is sending messages into the pump faster than the High
process can remove them. Although it maximizes performance, it opens
the covert channel.

3. The pump and the processes handle messages at the same rate. It balances
security and performance by decreasing the bandwidth of the covert
channel (with respect to time) and increases performance. The covert
channel is open, however, and performance is not optimal.

Kang and Moskowitz [490] showed that adding noise to the channel in such a
way as to approximate the third case reduced the covert channel capacity to at most
1/nr, where r is the time between the Low process’ sending a message to the pump and
its receiving an acknowledgment when the communications buffer is not full. They
concluded that the pump substantially reduces the capacity of covert channels between
High and Low processes when compared with direct connection of those processes.

Bishop.book Page 305 Tuesday, September 28, 2004 1:46 PM

306 Chapter 16 Confinement Problem

16.4 Summary

The confinement problem is the problem of preventing a process from illicitly leak-
ing information. Its solutions lie in some form of separation or isolation. Virtual
machines provide a basis for these mechanisms, as do less restrictive sandbox envi-
ronments. Virtual machines and sandboxes limit the transfer of information by con-
trolling expected paths used to send (or receive) data.

Shared resources provide unexpected paths for transmission of information.
Detecting and analyzing these covert channels require deduction of common resources,
which processes can manipulate (alter) the resources, which processes can access
(read) the resources, and how much information per trial the channel can transmit.

Covert channels are difficult to eliminate. Countermeasures focus on making
the channel less useful by decreasing its capacity, usually through the addition of
randomness to obscure the regularity that sending and receiving requires.

16.5 Further Reading

Confinement mechanisms are used to limit the actions of downloaded or untrusted pro-
grams [23, 54, 160, 217, 588, 618]. McLean [613] raises questions about the effective-
ness of sandboxes. Dean, Felten, and Wallach examine the Java security model [235].
Nieh and Leonard [692] discuss VMware, a virtual machine system implemented for
Intel hardware, and Sugerman, Venkitachalam, and Lim [885] consider its performance.

Other methods have been used to detect covert channels, such as the Shared
Resource Matrix methodology [500, 501], methods based on noninterference [388,
389],and methods based on information flow analysis [905]. Millen [632] models
covert channels, and Costich and Moskowitz [211] examined the covert channel cre-
ated by a multilevel secure database that used replication to ensure data availability.

Millen [634] provides a retrospective of covert channel research, including an
amusing view of the disk-arm covert channel. Gold, Linde, and Cudney [362] review
the successes and failures of KVM/370. Karger and Wray [497] discuss covert stor-
age channels in disk accesses. Hu [449] discusses a countermeasure against covert
channels arising from process scheduling. Kocher, Jaffe, and Jun [524] extend the
timing analysis work to analysis of power consumption to obtain cryptographic keys,
with remarkable success.

Several studies describe the relationship between noise and the capacity of
timing channels [652, 653, 654, 956]. Gray [376] suggests alternating between
secure and nonsecure modes to limit bandwidth. Tsai and Gligor [906] examine a
Markov model for bandwidth computation in covert storage channels. Browne [140]
examines state transitions to place upper bounds on covert channels. Meadows [615]
discusses covert channels in integrity lock architectures, in which a trusted compo-
nent mediates access to databases. Venkatraman and Newman-Wolfe [913] examine

Bishop.book Page 306 Tuesday, September 28, 2004 1:46 PM

16.6 Exercises 307

the capacity of a covert channel on a network. The “light pink book” [261] looks at
covert channels in the context of government security requirements.

Hu [448] describes an interesting approach to limiting covert timing channels
on the VAX virtualizing security kernel;Trostle [903] improved on his technique.

Variations of the pump extend its concept to other arenas, including the net-
work [491, 492] and a nozzle for limiting the effectiveness of denial of service
attacks [882].

16.6 Exercises

1. Consider the rule of transitive confinement. Suppose a process needs to
execute a subprocess in such a way that the child can access exactly two
files, one only for reading and one only for writing.

a. Could capabilities be used to implement this? If so, how?
b. Could access control lists implement this? If so, how?

2. A company wishes to market a secure version of the Swiss Cheese
Operating System (SCOS), known as much for its advanced user and
database management features as for its security vulnerabilities. The
company plans to build a virtual machine to run SCOS and run that virtual
machine on a second system, the Somewhat Secure Operating System
(SSOS). The marketing literature claims that the VM running SCOS
provides total isolation, thereby eliminating any potential security
problems.

a. Does this arrangement provide total isolation? If your answer is not
“yes,” discuss what features the VM would need to include to
provide total isolation or show why this arrangement cannot provide
total isolation.

b. The literature states that “the VM mediates all accesses to real
system resources, providing an impenetrable barrier to any attacker
trying to break out of the SCOS and attack other copies of SCOS
running on the SSOS.” Do you agree or disagree with this
statement? Why? (If you would need more information in order to
make a decision, state what information you would need and why.)

3. In the Janus system, when the framework disallows a system call, the error
code EINTR (interrupted system call) is returned.

a. When some programs have read or write system calls terminated
with this error, they retry the calls. What problems might this create?

b. Why did the developers of Janus not devise a new error code (say,
EJAN) to indicate an unauthorized system call?

Bishop.book Page 307 Tuesday, September 28, 2004 1:46 PM

308 Chapter 16 Confinement Problem

4. In the covert flow tree technique, it is possible for some part of the tree to
enter a loop in which recognition of attribute a depends on recognition of
attribute b, which in turn is possible when attribute a is recognized.

a. Give a specific example of such a loop.
b. Should such a loop occur, the covert flow tree path is labeled with a

repeat parameter that dictates the maximum number of times that
branch may be traversed. Discuss the advantages and drawbacks of
this solution.

5. Prove that if the pump crashes, either every message in the pump has been
delivered or the sender detects that a message has been lost and resends it.

Bishop.book Page 308 Tuesday, September 28, 2004 1:46 PM

309

Chapter 17
Introduction to Assurance

BOTTOM: Not a whit: I have a device to make all
well. Write me a prologue; and let the prologue

seem to say, we will do no harm with our swords,
and that Pyramus is not killed indeed; and,

for the more better assurance, tell them that I,
Pyramus, am not Pyramus, but Bottom the

weaver: this will put them out of fear.

—A Midsummer Night’s Dream, III, i, 17–23.

This chapter presents an overview of the concepts of security assurance and trusted
systems. Assurance for secure and trusted systems must be an integral part of the
development process. The following chapters will elaborate on the concepts and
ideas introduced here.

17.1 Assurance and Trust

In previous chapters we have used the terms trusted system and secure system without
defining them precisely. When looked on as an absolute, creating a secure system is an
ultimate, albeit unachievable, goal. As soon as we have figured out how to address one
type of attack on a system, other types of attacks occur. In reality, we cannot yet build
systems that are guaranteed to be secure or to remain secure over time. However, ven-
dors frequently use the term “secure” in product names and product literature to refer
to products and systems that have “some” security included in their design and imple-
mentation. The amount of security provided can vary from a few mechanisms to spe-
cific, well-defined security requirements and well-implemented security mechanisms
to meet those requirements. However, providing security requirements and functional-
ity may not be sufficient to engender trust in the system.

Intuitively, trust is a belief or desire that a computer entity will do what it should to
protect resources and be safe from attack. However, in the realm of computer security,
trust has a very specific meaning. We will define trust in terms of a related concept.

Bishop.book Page 309 Tuesday, September 28, 2004 1:46 PM

310 Chapter 17 Introduction to Assurance

Definition 17–1. An entity is trustworthy if there is sufficient credible evi-
dence leading one to believe that the system will meet a set of given require-
ments. Trust is a measure of trustworthiness, relying on the evidence
provided.

These definitions emphasize that calling something “trusted” or “trustworthy”
does not make it so. Trust and trustworthiness in computer systems must be backed
by concrete evidence that the system meets its requirements, and any literature using
these terms needs to be read with this qualification in mind. To determine trustwor-
thiness, we focus on methodologies and metrics that allow us to measure the degree
of confidence that we can place in the entity under consideration. A different term
captures this notion.

Definition 17–2. Security assurance, or simply assurance, is confidence that
an entity meets its security requirements, based on specific evidence provided
by the application of assurance techniques.

Examples of assurance techniques include the use of a development method-
ology, formal methods for design analysis, and testing. Evidence specific to a partic-
ular technique may be simplistic or may be complex and fine-grained. For example,
evidence that measures a development methodology may be a brief description of the
methodology to be followed. Alternatively, development processes may be measured
against standards under a technique such as the System Security Engineering Capa-
bility Maturity Model (SSE-CMM; see Section 18.5).

Assurance techniques can be categorized as informal, semiformal, or formal.
Informal methods use natural languages for specifications and justifications of
claims. Informal methods impose a minimum of rigor on the processes used. Semi-
formal methods also use natural languages for specifications and justifications but
apply a specific overall method that imposes some rigor on the process. Often these
methods mimic formal methods. Formal methods use mathematics and other
machine-parsable languages with tools and rigorous techniques such as formal math-
ematical proofs.

Security assurance is acquired by applying a variety of assurance techniques
that provide justification and evidence that the mechanism, as implemented and oper-
ated, meets the security requirements described in the security policy for the mecha-
nism (or collection of mechanisms). Figure 17–1 illustrates this process.

A related term, information assurance, refers to the ability to access informa-
tion and preserve the quality and security of that information [679]. It differs from
security assurance, because the focus is on the threats to information and the mecha-
nisms used to protect information and not on the correctness, consistency, or com-
pleteness of the requirements and implementation of those mechanisms. However,
we use the word “assurance” to mean “security assurance” unless explicitly stated
otherwise.

We are now in a position to define a trusted system.

Bishop.book Page 310 Tuesday, September 28, 2004 1:46 PM

17.1 Assurance and Trust 311

Definition 17–3. A trusted system is a system that has been shown to meet
well-defined requirements under an evaluation by a credible body of experts
who are certified to assign trust ratings to evaluated products and systems.

Specific methodologies aggregate evidence of assurance, and results are inter-
preted to assign levels of trustworthiness. The Trusted Computer System Evaluation
Criteria [257] and the Information Technology Security Evaluation Criteria [186] are
two standards that have been replaced by the Common Criteria [668, 669, 670].
These methodologies provide increasing “levels of trust,” each level having more
stringent assurance requirements than the previous one. When experts evaluate and
review the evidence of assurance, they provide a check that the evidence amassed by
the vendor is credible to disinterested parties and that the evidence supports the
claims of the security requirements. Certification by these experts signifies that they
accept the evidence.

17.1.1 The Need for Assurance

Applying assurance techniques is time-consuming and expensive. Operating sys-
tems, critical applications, and computer systems are often marketed as “secure,”
whereas in reality they have serious flaws that undermine their security features, or
they are used in environments other than those for which their security features were
developed. The marketing creates a false sense of well-being, which in turn encour-
ages the users, system administrators, and organizations to act as though their sys-
tems were protected. So they fail to develop the defenses needed to protect critical
information.

Accidental or unintentional failures of computer systems, as well as inten-
tional compromises of security mechanisms, can lead to security failures. Neumann
[688] describes nine types of problem sources in computer systems.

Policy

Mechanisms

Assurance

Statement of requirements that explicitly defines
the security expectations of the mechanism(s)

Provides justification that the mechanism meets policy
through assurance evidence and approvals based on
evidence

Executable entities that are designed and implemented
to meet the requirements of the policy

Figure 17–1 Assurance, policy, and mechanisms.

Bishop.book Page 311 Tuesday, September 28, 2004 1:46 PM

312 Chapter 17 Introduction to Assurance

1. Requirements definitions, omissions, and mistakes
2. System design flaws
3. Hardware implementation flaws, such as wiring and chip flaws
4. Software implementation errors, program bugs, and compiler bugs
5. System use and operation errors and inadvertent mistakes
6. Willful system misuse
7. Hardware, communication, or other equipment malfunction
8. Environmental problems, natural causes, and acts of God
9. Evolution, maintenance, faulty upgrades, and decommissions

Assurance addresses each of these problem sources (except for natural causes
and acts of God). Design assurance techniques applied to requirements address items
1, 2, and 6. A specification of requirements must be rigorously analyzed, reviewed,
and verified to address completeness, consistency, and correctness. If the security
requirements are faulty, the definition of security for that system is faulty, so the sys-
tem cannot be “secure.” Proper identification of threats and appropriate selection of
countermeasures reduce the ability to misuse the system. Design assurance tech-
niques can detect security design flaws, allowing their correction prior to costly
development and deployment of flawed systems.

Implementation assurance deals with hardware and software implementation
errors (items 3, 4, and 7), errors in maintenance and upgrades (item 9), willful mis-
use (item 6), and environmentally induced problems (item 8). Thorough security
testing as well as detailed and significant vulnerabilities assessment find flaws that
can be corrected prior to deployment of the system.

Operational assurance can address system use and operational errors (item 5)
as well as some willful misuse issues (item 6).

Neumann’s list is not exclusive to security problems. It also addresses risks to
safety, reliability, and privacy.

EXAMPLE: [688] The space shuttle Challenger exploded on January 28, 1986, kill-
ing everyone on board. An essential failure was a decision to take shortcuts to meet
an accelerated launch schedule. Among other steps, several sensors were removed
from the booster rockets. The sensors might have enabled analysts to detect that the
cold weather was affecting the booster rockets adversely and to delay the launch.
Better assurance techniques might have detected the possible effects of removing the
sensors, as well as other problems in the design of the booster rockets.

EXAMPLE: [688] Three patients died from a radiation overdose attributed to a
Therac 25 computer-based electron accelerator radiation therapy system. The flaws
in the system resulted from two flaws in the design of the system’s software and the
removal of a hardware safety interlock. Assurance techniques would have detected
the flaws in the software’s design, and ongoing assurance techniques would have
detected the removal of the interlock.

Bishop.book Page 312 Tuesday, September 28, 2004 1:46 PM

17.1 Assurance and Trust 313

EXAMPLE: [688] Although the most significant root cause of the Three Mile Island
nuclear failure was a hardware problem (nonstandard instruments were used to mea-
sure core temperature), design and software problems contributed significantly.
When the temperature rose very high, the system printed a string of question marks
rather than the measured temperature. In addition, the intended, rather than the
actual, valve settings were displayed. Assurance techniques would have detected
these software flaws.

Sometimes safety and security measures can backfire. Assurance techniques
highlight the consequences of these errors.

EXAMPLE: [688] The Bell V22 Osprey is a high-technology helicopter. After a fifth
Osprey had crashed, an analysis traced the cause to a failure to correct for malfunction-
ing components. The Osprey implemented a majority-voting algorithm, and the cross-
wiring of two roll-rate sensors allowed two faulty components to outvote the third,
correctly functioning, component. Although assurance techniques might not have
prevented the incorrect voting, they would have emphasized the results that could have
occurred if faulty components overrode the correctly functioning components.

Other failures have had less serious consequences. When bugs were found in
the trigonometric functions of the Intel 486 chip, Intel’s public reputation was dam-
aged, and replacing the chips cost Intel time and money. As a result, Intel began
using high-assurance methods to verify the correctness of requirements in their chip
design [732].

17.1.2 The Role of Requirements in Assurance

Although security policies define security for a particular system, the policies them-
selves are created to meet needs. These needs are the requirements.

Definition 17–4. A requirement is a statement of goals that must be satisfied.

A statement of goals can vary from generic, high-level goals to concrete,
detailed design considerations. The term security objectives refers to the high-level
security issues and business goals, and the term security requirements refers to the
specific and concrete issues.

A brief review of definitions will prove helpful. Definition 4–1 states that a
security policy is a statement that partitions the states of the system into a set of
authorized or secure states and a set of unauthorized or nonsecure states. Equiva-
lently, we can consider a security policy to be a set of specific statements that, when
enforced, result in a secure system. The individual statements are the security
requirements for the entity and describe what behavior must take place (or not take
place) in order to define the authorized states of the system. Typically, requirements

Bishop.book Page 313 Tuesday, September 28, 2004 1:46 PM

314 Chapter 17 Introduction to Assurance

do not contain implementation details, which are the realm of the implementing
mechanism (see Definition 4–7). On the other hand, a security model describes a
family of policies, systems, or entities (see Definition 4–8) and is more abstract than
a policy, which is specific to a particular entity or set of entities.

EXAMPLE: Suppose a high-level security goal for an entity is to ensure the confiden-
tiality of certain data that the entity must process. A set of individual security
requirements that specify an access control mechanism to restrict access to the infor-
mation would address this objective. Individual requirements might describe the
access control policy, the rules it implements, the security attributes associated with
the data, and other specific issues. Another group of requirements that could address
this objective might require encryption of the information when it is in transit from
one part of the entity to another.

Selecting the right security requirements for a computer entity requires an
understanding of the intended use of that entity as well as of the environment in
which it must function. One can then examine policy models to determine if any are
appropriate. Earlier chapters described several types of policies and models that have
been used in the past. These models have been subjected to significant analysis and
peer review, and most have had corrections during their life spans. This process of
acceptance is like the acceptance of mathematical proofs over the centuries. Typi-
cally, mathematicians study a mathematical proof to find its flaws and weaknesses.
Some proofs have survived this test of time, and others have not.

17.1.3 Assurance Throughout the Life Cycle

The goal of assurance is to show that an implemented and operational system meets
its security requirements throughout its life cycle. Because of the difference in the
levels of abstraction between high-level security requirements and low-level imple-
mentation details, the demonstration is usually done in stages. Different assurance
techniques apply to different stages of system development. For this reason, it is con-
venient to classify assurance into policy assurance, design assurance, implementa-
tion assurance, and operational or administrative assurance.

Definition 17–5. Policy assurance is the evidence establishing that the set of
security requirements in the policy is complete, consistent, and technically
sound.

Policy assurance is based on a rigorous evaluation of the requirements. Com-
pleteness and consistency are demonstrated by identifying security threats and objec-
tives and by showing that the requirements are sufficient to counter the threats or
meet the requirements. If a security policy model is used, the justifications in the
model can support the technical soundness of the requirements.

Bishop.book Page 314 Tuesday, September 28, 2004 1:46 PM

17.1 Assurance and Trust 315

Once the proper requirements have been defined, justified, and approved for
the system, the design and development process can begin with confidence. The
developers create the system design to implement the security requirements and pro-
vide assurance evidence that the design meets the security requirements. The next
step is to show that the system implements the design correctly. The design and
development approach is illustrated in Figure 17–2. As that figure shows, following
every design and implementation refinement step is an assurance justification step
that shows that the requirements continue to be met at successive levels of develop-
ment of the trusted system.

This process is usually iterative, because assurance steps identify flaws that
must be corrected. When this happens, the affected steps must be rechecked.

EXAMPLE: If assurance step 4 indicates a flaw in the implementation, the implemen-
tation will have to be adjusted and the affected parts of step 4 redone. If this flaw in
the implementation in turn indicates a flaw in the design, the design must be
adjusted, causing steps 1, 2, 3, and 4 to be revisited. On rare occasions, a flaw in the
implementation or design may point to a flaw in the requirements.

Assurance must continue throughout the life of the system. Because mainte-
nance and patching usually affect the system design and implementation, the assur-
ance requirements are similar to those described above.

Definition 17–6. Design assurance is the evidence establishing that a design
is sufficient to meet the requirements of the security policy.

Design assurance includes the use of good security engineering practices to
create an appropriate security design to implement the security requirements. It
also includes an assessment of how well the system design meets the security
requirements.

Security requirements

Design

Implementation

1

3
2

4

Figure 17–2 Development of a trusted system. There may be multiple levels of
design and implementation. Note that the refinement steps alternate with the
assurance steps.

Assurance
justification

Design and
implementation
refinement

Bishop.book Page 315 Tuesday, September 28, 2004 1:46 PM

316 Chapter 17 Introduction to Assurance

Design assessment techniques use a policy or model of the security require-
ments for the system as well as a description or specification of the system design.
Claims are made about the correctness of the design with respect to security require-
ments. The design assurance techniques provide a justification or proof of such claims.

Definition 17–7. Implementation assurance is the evidence establishing that
the implementation is consistent with the security requirements of the security
policy.

In practice, implementation assurance shows that the implementation is consis-
tent with the design, which design assurance showed was consistent with the security
requirements found in the security policy. Implementation assurance includes the use
of good security engineering practices to implement the design correctly, both during
development and through the maintenance and repair cycles. It also includes an assess-
ment of how well the system as implemented meets its security requirements through
testing and proof of correctness techniques, as well as vulnerability assessment.

Design assurance and implementation assurance verify that the security policy
requirements are properly designed and built into the system. However, computer
systems and applications must be delivered, installed, and operated as assumed dur-
ing design and implementation. Typically, the vendor provides procedures and pro-
cesses in the form of supporting automated tools and documentation. The customer
is responsible for ensuring their correct use.

Definition 17–8. Operational or administrative assurance is the evidence
establishing that the system sustains the security policy requirements during
installation, configuration, and day-to-day operation.

One fundamental operational assurance technique is a thorough review of prod-
uct or system documentation and procedures, to ensure that the system cannot acciden-
tally be placed into a nonsecure state. This emphasizes the importance of proper and
complete documentation for computer applications, systems, and other entities.

17.2 Building Secure and Trusted Systems

Building secure and trusted systems depends on standard software engineering tech-
niques augmented with specific technologies and methodologies. Hence, a review of
the life cycles of systems will clarify much of what follows.

17.2.1 Life Cycle

The concept of a life cycle addresses security-relevant decisions that often are made out-
side the engineering disciplines in business situations. There is more to building a product

Bishop.book Page 316 Tuesday, September 28, 2004 1:46 PM

17.2 Building Secure and Trusted Systems 317

or system than just the engineering steps. Security goals may impact both the life cycle
and the engineering process used. Such processes establish both discipline and control
and provide confidence in the consistency and quality of the resulting system. Assurance
requires a life cycle model and engineering process in every situation, although the size
and complexity of the project, the project team, and the organization guide selection of
the appropriate model and process. In a small operation, where individuals play multiple
roles, an informal structure of the life cycle process may work best. In a larger company
with complex roles and interactions among several projects and project team members, a
more rigorous and formal process might be more appropriate.

A life cycle starts when a system is considered for development and use. The
life cycle ends when the system is no longer used. A life cycle includes a set of pro-
cesses that define how to perform activities, as well as methods for managing activi-
ties. Examples of such activities are writing of marketing literature, sales training,
and design and development of code. Management activities include planning, con-
figuration management, and selection and use of standards. Both types of activities
follow the system from its initial conception through the decision to create the sys-
tem, the steps required to develop, sell, and deploy the system, the maintenance of
the system, and the decommissioning and retirement of the system.

A typical life cycle process is defined in stages. Some stages depend on previ-
ous stages, whereas others do not. Each stage describes activities of all the involved
disciplines and controls interdiscipline interactions. As work progresses, the project
ideally transitions from one stage to the next. In practice, there is often some itera-
tion of the stages—for example, when a more advanced stage uncovers flaws or
omissions in the work of the previous stage.

Consider a very general life cycle “metamodel” to illustrate these concepts.
This model captures the fundamental areas of system life for any type of project,
although the focus is on software engineering projects. An actual, functioning life
cycle process may be more detailed, but this metamodel addresses the needs of any
business application. It incorporates the four stages of conception, manufacture,
deployment, and fielded product life. Engineering processes tend to focus on manu-
facture and, to a lesser degree, on fielded product life, although engineering function
responsibilities may exceed this typical view.

17.2.1.1 Conception
The conception stage starts with an idea. Ideas come from anywhere—for example,
from customers, engineers, other disciplines, user groups, or others. The organiza-
tion decision makers may decide to

• fund the idea and make it a project,
• reject the idea, or
• ask for further information or for a demonstration that the idea has merit.

How decisions are made varies. A decision may be rather spontaneous in a very
small and self-contained organization, where communication is ubiquitous and

Bishop.book Page 317 Tuesday, September 28, 2004 1:46 PM

318 Chapter 17 Introduction to Assurance

informal. A larger company may have formalized processes for initiation of new
projects requiring many layers of approval.

Definition 17–9. A proof of concept is a demonstration that an idea has merit.

The decision makers may ask for a proof of concept if they are unsure, or not
convinced, that the idea is worth pursuing. Developing proofs of concept typically
involves small projects. A request for a proof of concept may result in a rapid proto-
type, an analysis, or another type of proof. It need not involve the engineering staff,
and it need not use steps in the engineering process.

The output of the conception stage must provide sufficient information for all
disciplines to begin their tasks in the next stage. This information may be an over-
view of the project; high-level requirements that the project should meet; or sched-
ule, budget, staffing, or planning information. The planning information could be a
detailed project plan or more general high-level plans for each of the disciplines
involved in the project. The exact nature of the information depends on the size and
complexity of the project.

Security feasibility and high-level requirement analysis should begin during
this stage of the life cycle. Before time and resources are invested in development or
in proof of concept activities, the following questions should be considered.

• What does “secure” mean for this concept?
• Is it possible for this concept to meet this meaning of security?
• Is the organization willing to support the additional resources required to

make this concept meet this meaning of security?

Identification of threats comprises another important set of security issues. It
is especially important to determine the threats that are visible at the conception
stage. This allows those threats to be addressed in rapid prototypes and proofs of
concept. It also helps develop realistic and meaningful requirements at later stages. It
provides the basis for a detailed threat analysis that may be required in the manufac-
turing phase to refine requirements.

Development of assurance considerations is important at this stage. A deci-
sion to incorporate assurance, and to evaluate mechanisms and other evidence of
assurance, will influence every subsequent step of development. Assurance decisions
will affect schedules and time to market.

17.2.1.2 Manufacture
Once a project has been accepted, funded, approved, and staffed, the manufacturing
stage begins. Each required discipline has a set of substages or steps determined in
part by the size of, complexity of, and market for the system. For most disciplines,
the manufacturing stage is the longest.

Manufacturing begins with the development of more detailed plans for each
of the involved disciplines, which could include marketing plans, sales training

Bishop.book Page 318 Tuesday, September 28, 2004 1:46 PM

17.2 Building Secure and Trusted Systems 319

plans, development plans, and test plans. These documents describe the specific tasks
for this stage of the life cycle within each discipline. The actual work required by
each discipline depends on the nature of the system. For example, a system designed
for internal use would not have sales requirements, and marketing requirements
might target internal groups who may use the completed entity. Alternatively, a prod-
uct designed for commercial use could require massive marketing campaigns and
significant effort on the part of the sales force.

The software development or engineering process lies in this stage. It
includes procedures, tools, and techniques used to develop and maintain the sys-
tem. Technical work may include design techniques, development standards and
guidelines, and testing tools and methods. Management aspects may include plan-
ning, scheduling, review processes, documentation guidelines, metrics, and config-
uration management such as source code control mechanisms and documentation
version controls.

The output of this stage from each discipline should be the materials neces-
sary to determine whether to proceed. Marketing groups could complete marketing
collateral such as white papers and data sheets. Sales groups could develop docu-
mented leads and sales channels, as well as training materials for the sales force.
Engineering groups would develop a tested, debugged system that is ready for use.
Documentation groups would complete manuals and guides. Service groups would
add staffing to handle telephone calls, installation support, bug tracking, and the like.
The focus of this book is on the engineering steps of this stage.

17.2.1.3 Deployment
Once the system has passed the acceptance criteria in the manufacturing stage, it is
ready for deployment. This stage is the process of getting the system out to the cus-
tomer. It is divided into two substages.

The first substage is the domain of production, distribution, and shipping. The
role of the other disciplines (such as engineering and marketing) is to deliver masters
to the production staff. That staff creates and packages the materials that are actually
shipped. If there is no assurance that masters have been appropriately protected from
modification, and that copies are replicas of the masters, then the painstaking assur-
ance steps taken during manufacture may be for naught.

The distribution organization ships systems to customers and to other sales
organizations. In the case of an internal system, this step may be small. Users of the
system may require specific types of documentation. Security and assurance issues in
this part of deployment include knowing that what was received is actually what was
shipped.

The second substage of deployment is proper installation and configuration of
the system in its production setting. The developers must ensure that the system will
work appropriately in this environment. The developers are also responsible for
appropriate assurance measures for functionality, tools, and documentation. Service
personnel must know appropriate security procedures as well as all other aspects of
the system.

Bishop.book Page 319 Tuesday, September 28, 2004 1:46 PM

320 Chapter 17 Introduction to Assurance

17.2.1.4 Fielded Product Life
The primary tasks of fielded product life are patching or fixing of bugs, maintenance, and
customer service. Routine maintenance and emergency patching may be the responsibil-
ity of engineering in smaller organizations, or for systems in internal use only. Alterna-
tively, maintenance and patching may the responsibility of an organization entirely
separate from the product development organization. Wherever this responsibility lies, an
engineering process must track maintenance and patches, and a deployment process must
distribute patches and new releases. Modifications and enhancements must meet the
same level of assurance rigor as the original development.

Commercial systems often have separate customer service and support orga-
nizations and engineering organizations. The support organization tasks could
include answering questions, recording bugs, and solving routine customer prob-
lems. The engineering organization handles maintenance and patching.

Product retirement, or the decision to take a product out of service, is a critical
part of this stage of the life cycle. Vendors need to consider migration plans for cus-
tomers, routine maintenance for retired products still in use, and other issues.

17.2.2 The Waterfall Life Cycle Model

We have discussed life cycles in terms of stages. The waterfall model captures this.

Definition 17–10. [760] The waterfall life cycle model is the model of build-
ing in stages, whereby one stage is completed before the next stage begins.

This model is not the only technique for building secure and trusted systems,
but it is perhaps the most common. It consists of five stages, pictured in Figure 17–3.
The solid arrows show the flow from each stage to the next.

17.2.2.1 Requirements Definition and Analysis
In this phase, the high-level requirements are expanded. Development of the overall
architecture of the system may lead to more detailed requirements. It is likely that
there will be some iteration between the requirements definition step and the archi-
tecture step before either can be completed.

Requirements may be functional requirements or nonfunctional requirements.
Functional requirements describe interactions between the system and its environ-
ment. Nonfunctional requirements are constraints or restrictions on the system that
limit design or implementation choices. Requirements describe what and not how.
They should be implementation-independent.

Often, two sets of requirements are defined. A requirements definition of what
the customer can expect the system to do is generally presented in natural language.
A technical description of system characteristics, sometimes called a requirements
specification, may be presented in a more precise form. The analysis of the require-

Bishop.book Page 320 Tuesday, September 28, 2004 1:46 PM

17.2 Building Secure and Trusted Systems 321

ments may include a feasibility study and may examine whether or not the require-
ments are correct, consistent, complete, realistic, verifiable, and traceable.

System design includes the development of the overall system architecture by
partitioning requirements into hardware and/or software systems. The nature of the
overall architecture may place additional constraints or requirements on the system,
thus creating the need for iteration between this step and the previous one. An archi-
tecture document may or may not be required. In projects that are revisions or new
releases of previous products, the basic architecture may be already defined. The
architecture and the requirements must be reconciled to be consistent—that is, the
architecture must be able to support the requirements.

17.2.2.2 System and Software Design
Software design further partitions the requirements into specific executable pro-
grams. Typically, at this stage, external functional specifications and internal design
specifications are written. The external functional specifications describe the inputs,
outputs, and constraints on functions that are external to the entity being specified,
whereas the internal design specifications describe algorithms to be used, data struc-
tures, and required internal routines.

This stage is sometimes broken into the two phases system design, in which
the system as a whole is designed, and program design, in which the programs of the
system are individually designed.

17.2.2.3 Implementation and Unit Testing1

Implementation is the development of software programs based on the software
design from the previous step. Typically, the work is divided into a set of programs or

1 Some authors break this phase into two parts: implementation testing and unit testing. In
practice, the developer of a program is usually responsible for the unit testing of that program.
Because the two are often done concurrently, it seems appropriate to treat them as a single phase.

Requirements
definition and
analysis

System and
software
design

Implementation
and unit
testing Integration

and system
testing

Operation
and
maintenance

Figure 17–3 The waterfall life cycle model. The solid arrows represent the flow
of development in the model. The dashed arrows represent the paths along
which information about errors may be sent.

Bishop.book Page 321 Tuesday, September 28, 2004 1:46 PM

322 Chapter 17 Introduction to Assurance

program units. Unit testing is the process of establishing that the unit as implemented
meets its specifications. It is in this phase that many of the supporting processes
described earlier come into play.

17.2.2.4 Integration and System Testing
Integration is the process of combining all the unit-tested program units into a com-
plete system. Automated tools and guidelines governing the integration process may
be in place. System testing is the process of ensuring that the system as a whole
meets the requirements. System testing is an iterative step because invariably bugs
and errors are found that have to be corrected. Typically, the errors are sent back to
the development team to be corrected. This requires iteration with the previous step.
The corrected code is reintegrated into the system, and system testing is repeated.

17.2.2.5 Operation and Maintenance
Once the system is finished,2 it is moved into production. This is called fielding the
system. Maintenance involves correction of errors that have been reported from the
field and that have not been corrected at earlier stages. This stage also involves rou-
tine maintenance and the release of new versions of the system. Finally, retirement of
the system also falls under this phase.

17.2.2.6 Discussion
In reality, there is usually some iteration between the processes at each stage of the
waterfall because a later process may uncover deficiencies in a previous stage, caus-
ing it to be revisited. For example, implementation errors in the fielded system may
not become clear until the operation and maintenance stage. Correction of such a
deficiency will “trickle down” through the waterfall of phases. For example, if an
error discovered in system testing is found to impact the software design, that change
would feed into the system and software design phase, through implementation and
unit testing to integration and system testing. An error found in the field may affect
any stage from requirements to integration and system testing. Figure 17–3 shows
the waterfall model, depicted by the solid arrows, and the potential error paths, repre-
sented by the dotted arrows.

Use of good system engineering practices provides discipline and process
control during development and maintenance. Security analysis and development of
assurance evidence on a regular basis, and as an integral part of the development and
maintenance activities, increase confidence that the resulting system meets its secu-
rity requirements. Use of a life cycle model and reliable supporting tools cannot
ensure freedom from flaws or compliance with requirements. However, an appropri-

2 By “finished,” we mean that the system meets the criteria established to define when it has
been completed.

Bishop.book Page 322 Tuesday, September 28, 2004 1:46 PM

17.2 Building Secure and Trusted Systems 323

ate process may help limit the number of flaws, especially those that can lead to
security violations. Hence, building security into a product increases its trustworthi-
ness. This demonstrates that the methods used to build a system are critical to the
security of that system.

17.2.3 Other Models of Software Development

A few words on other life cycle models will illuminate the differences between those
models and the waterfall model with respect to assurance [855].

17.2.3.1 Exploratory Programming
In exploratory programming approaches, a working system is developed quickly and
then modified until it performs adequately. This approach is commonly used in artifi-
cial intelligence (AI) system development, in which users cannot formulate a
detailed requirements specification and in which adequacy rather than correctness is
the aim of the system designers. The key to using this approach successfully is to use
techniques that allow for rapid system iterations. Using a very high-level program-
ming language may facilitate rapid changes.

In this technique, there are no requirements or design specifications. Hence,
assurance becomes difficult. A system subjected to continual modification suffers the
same vulnerabilities that plague any add-on system. The focus on adequacy rather
than correctness leaves the implementation potentially vulnerable to attack. There-
fore, this model is not particularly useful for building secure and trusted systems
because such systems need precise requirements and detailed verification that they
meet those requirements as implemented.

17.2.3.2 Prototyping
Prototyping is similar to exploratory programming. The first phase of development
involves rapid development of a working system. However, in this case, the objective
of the rapid development is specifically to establish the system requirements. Then
the software is reimplemented to create a production-quality system. The reimple-
mentation can be done using another model that is more conducive to development
of secure and trusted systems.

17.2.3.3 Formal Transformation
In the formal transformation model, developers create a formal specification of the
software system. They transform this specification into a program using correctness-
preserving transformations. The act of formal specification, if tied to well-formed
security requirements, is beneficial to security and to design in general. The use of
correctness-preserving transformations and automated methods can assist in

Bishop.book Page 323 Tuesday, September 28, 2004 1:46 PM

324 Chapter 17 Introduction to Assurance

developing a correct implementation. However, a system developed by such a
method should be subjected to the same rigorous implementation testing and vulner-
abilities analysis that are applied to any other methodology.

17.2.3.4 System Assembly from Reusable Components
This technique assumes that systems are made up mostly of components that already
exist. The system development process becomes one of assembly rather than cre-
ation. Developing trusted systems out of trusted components is complex because of
the need to reconcile the security models and requirements of each component, and
developing trusted systems out of untrusted components is even more complex.
However, this is a common approach to building secure and trusted systems.

17.2.3.5 Extreme Programming
Extreme programming is a development methodology based on rapid prototyping
and best practices such as separate testing of components, frequent reviewing, fre-
quent integration of components, and simple design. A project is driven by business
decisions, not by project stakeholders, and requirements are open until the project is
complete. The design evolves as needed to remove complexity and add flexibility.
Programmers work in teams or pairs. Component testing procedures and mecha-
nisms are developed before the components are developed. The components are inte-
grated and tested several times a day. One objective of this model is to put a minimal
system into production as quickly as possible and then enhance it as appropriate.

Use of this technique for security has several benefits and several drawbacks.
The nature of an evolving design leaves the product vulnerable to the problems of an
add-on product. Leaving requirements open does not ensure that security requirements
will be properly implemented into the system. However, if threats were analyzed and
appropriate security requirements developed before the system was designed, a secure
or trusted system could result. However, evidence of trustworthiness would need to be
adduced after the system was developed and implemented.

17.3 Building Security In or Adding Security Later

Like performance, security is an integral part of a computer system. It should be inte-
grated into the system from the beginning, rather than added on later.

Imagine trying to create a high-performance product out of one that has poor
performance. If the poor performance is attributable to specific functions, those func-
tions must be redesigned. However, the fundamental structure, design, and style of
the system are probably at the heart of the performance problem. Fixing the underly-
ing structure and system design is a much harder problem. It might be better to start
over, redesigning the system to address performance as a primary goal. Creating a

Bishop.book Page 324 Tuesday, September 28, 2004 1:46 PM

17.3 Building Security In or Adding Security Later 325

high-security system from one that previously did not address security is similar to
creating a high-performance system. Products claiming security that are created from
previous versions without security cannot achieve high trust because they lack the
fundamental and structural concepts required for high assurance.

A basic concept in the design and development of secure computer systems is
the concept of a reference monitor and its implementation—the reference validation
mechanism.

Definition 17–11. [25] A reference monitor is an access control concept of an
abstract machine that mediates all accesses to objects by subjects.

Definition 17–12. [25] A reference validation mechanism (RVM) is an
implementation of the reference monitor concept. An RVM must be tamper-
proof, must always be invoked (and can never be bypassed), and must be
small enough to be subject to analysis and testing, the completeness of which
can be assured.

Any secure or trusted system must obviously meet the first two requirements.
The “analysis and testing” of the reference monitor provides evidence of assurance.
The third requirement engenders trust by providing assurance that the operational
system meets its requirements.

Definition 17–13. [25] A security kernel is a combination of hardware and
software that implements a reference monitor.

Security kernels were early examples of reference validation mechanisms.
The idea of a security kernel was later generalized by the definition of a trusted com-
puting base, which applies the reference validation mechanism rules to additional
security enforcement mechanisms.

Definition 17–14. [257] A trusted computing base (TCB) consists of all pro-
tection mechanisms within a computer system—including hardware, firm-
ware, and software—that are responsible for enforcing a security policy.

A TCB consists of one or more components that together enforce the security
policy of a system. The ability of a TCB to enforce a security policy depends solely
on the mechanisms within the TCB and on the correct input of parameters (such as a
user’s clearance) related to the security policy.

If a system is designed and implemented so as to be “small enough to be sub-
ject to analysis and testing, the completeness of which can be assured,” it will be
more amenable to assurance than a system that is not so designed and implemented.
Design analysis is possible using a variety of formal and informal methods. More
thorough testing is possible because what must be tested is clear from the structured,
analyzed design. More and deeper assurance leads to a higher level of trust in the
resulting system. However, trade-offs may occur between features and simplicity.

Bishop.book Page 325 Tuesday, September 28, 2004 1:46 PM

326 Chapter 17 Introduction to Assurance

Inclusion of many features often leads to complexity, which limits the ability to ana-
lyze the system, which in turn lowers the potential level of assurance.

Systems in which security mechanisms are added to a previous product are
not as amenable to extensive analysis as those that are specifically built for security.
Often the functions are spread throughout the system in such a way that a thorough
design analysis must analyze the entire system. Rigorous analysis of large and com-
plex designs is difficult. So, it may not be feasible to determine how well the design
implements the requirements. Assurance may be limited to test results. Testing of
conformance to a flawed design is similar to designing a system to meet inappropri-
ate requirements. The gap in abstraction between security requirements and imple-
mentation code may prohibit complete requirements testing. Hence, systems with
security mechanisms added after development has been completed are inherently
less trustworthy.

Building a system with security as a significant goal may provide the best
opportunity to create a truly secure system. In the future, this may be the norm. How-
ever, many products today, including many high-assurance products, are developed
by rearchitecting existing products and reusing parts as much as possible while
addressing fundamental structure as well as adding new security features.

EXAMPLE: Multics [703] was one of the early general-purpose operating systems
that was built for secure applications. It borrowed much from the other operating sys-
tems of the day. Although it is no longer in use, many security experts consider Mul-
tics to be the best example of an operating system built for security.

EXAMPLE: Gemsos [793] is a high-assurance, formally verified operating system
that has a minimal UNIX-like kernel and limited functionality. Seaview [583] was
a high-assurance database management system that was intended to run on the
Gemsos operating system. Seaview was designed for security but was implemented
by rearchitecting an existing database product.

EXAMPLE: Information flow control mechanisms, called guards (see Section 15.4),
are often high-assurance devices. The RECON guard [27] controls the flow of infor-
mation from a highly classified reconnaissance database to an unclassified network.
The Restricted Access Processor [733] controlled the flow of information between
two differently classified networks. Firewalls are a form of guards, although they are
usually single-purpose applications built on security-hardened versions of existing
operating systems rather than systems developed specifically for high assurance.

EXAMPLE: In the late 1980s and early 1990s, AT&T undertook two projects to pro-
vide secure versions of UNIX System V that supported mandatory access controls.
The first project was market-driven, in response to specific requests from customers.
The underlying goals of this project were quick time to market and minimal impact
on the user interface and on the look and feel of the resulting UNIX system, called
SV/MLS [130, 325]. The chosen approach was to add security functionality to AT&T

Bishop.book Page 326 Tuesday, September 28, 2004 1:46 PM

17.3 Building Security In or Adding Security Later 327

UNIX System V Release 3.2. The second project was focused on restructuring and
re-creating a UNIX system to provide a medium-to-high level of trust. This version,
called SVR4.1ES, involved significant rearchitecting of the UNIX system with secu-
rity built in [765]. The technical differences between these two products illustrate the
superiority of building security in over adding it on.

The SVR4.1ES project involved extensive restructuring of the UNIX kernel to
meet high-modularity requirements and to incorporate an implementation of the
principle of least privilege that was integral to the UNIX kernel. SV/MLS used the
existing UNIX kernel modular structure and did not provide an implementation of
least privilege. The basic architecture of SVR4.1ES was new, and the architecture of
SV/MLS was essentially unchanged from its parent product.

In UNIX systems, the inode structure contains attribute information about
each file or object, such as access permission information and file owner. The inode
also has a pointer to the file or object itself. There is insufficient space in the inode to
house security labels of any significant size. SV/MLS chose not to disturb the exist-
ing inode structure. The designers created a separate table to hold mandatory access
control labels and used a free location in the inode structure to point to the table.
When an object is created, a code defining both the mandatory access control label
and the discretionary security attributes is stored in the table. Security attributes for
subjects are stored internally in the same code structure. An access control check
becomes a comparison of the codes for the subject and object, effectively doing a
mandatory access control check and a discretionary access control check in one
operation.

Even if the implementation of this table is correct and the comparison of the
codes properly reflects the mandatory and discretionary access control requirements,
there are potential weaknesses in this design. The coupling between the table and the
file is inherently weaker than the coupling between the inode and the file. Two
accesses are required to reach the coded mandatory and discretionary access control
attributes of the object (first to the inode, then to the table), potentially weakening the
tie between the actual object and its security attributes. Updating of discretionary
access control security attributes is done to the inode version of the discretionary
access control requirements. An additional step to update the table entry occurs
whenever the permissions or owner is changed. This introduces the potential for
inconsistency between the inode attributes and the coded interpretation. During a
table update, the mandatory access control information for that object may be
exposed. Finally, if the table is corrupted, the mandatory and discretionary access
permissions for the entire file system may be impacted. Although the SV/MLS
implementations addressed these issues satisfactorily, the potential for these vulnera-
bilities still existed.

The SVR4.1ES implementation simply redefined the inode structure. These
new inodes, called vnodes, contained the mandatory access control label as well as
the discretionary access control attributes in the vnode. Access to the vnode provided
access to the mandatory and discretionary attributes. SVR4.1ES reused the UNIX
discretionary access control mechanisms and augmented them with access control
lists. Checks of mandatory and discretionary access were independent checks.

Bishop.book Page 327 Tuesday, September 28, 2004 1:46 PM

328 Chapter 17 Introduction to Assurance

SVR4.1ES was not constrained by minimal impact requirements, resulting in a
stronger set of access control mechanisms. Because of the structural change,
SVR4.1ES was able to reuse other parts of the system with little impact.

17.4 Summary

Assurance is the foundation for determining the trustworthiness of a computer sys-
tem. Assurance techniques test the appropriateness of requirements and the effective-
ness of specification, design, implementation, and maintenance. These techniques
cannot guarantee system security or safety, but they can significantly increase the
likelihood of finding security flaws during requirements definition, design, and
implementation. Errors found early can be corrected early. A well-defined life cycle
process provides rigorous, well-defined steps with checks and balances that contrib-
ute significantly to the quality of the software developed and also increases the cred-
ibility of the measures of assurance that are used.

17.5 Further Reading

Any serious student of assurance should read James Anderson’s seminal paper [25].
This paper defines many key concepts on which assurance is based.

Assurance techniques have been developed for a variety of environments,
including outer space [691, 758], systems that control trains [355, 597], telephone
and electronic switching systems [32, 533], and aviation [87, 154].

Metrics have been used to measure assurance with respect to specific proper-
ties, such as failure tolerance [918], abnormal system behavior [305], and test cover-
age [17]. The Visual Network Rating Methodology (VNRM) [709] helps users
organize and document assurance arguments.

Pfleeger’s book [720] presents an excellent description of software engineer-
ing. Berzins and Luqi [85] discuss applications of formal methods to software engi-
neering. Brooks’ description of the development of OS/360 [136] focuses on the
human practices and problems as well as the technical ones. It is a classic in the field
of software engineering.

Bishop.book Page 328 Tuesday, September 28, 2004 1:46 PM

17.6 Exercises 329

17.6 Exercises

1. Definition 17–2 defines assurance in terms of “confidence.” A vendor
advertises that its system was connected to the Internet for three months,
and no one was able to break into it. It claims that this means that the
system cannot be broken into from any network.

a. Do you share the vendor’s confidence? Why or why not?
b. If a commercial evaluation service had monitored the testing of this

system and confirmed that, despite numerous attempts, no attacker
had succeeded in breaking into it, would your confidence in the
vendor’s claim be increased, decreased, or left unchanged? Justify
your answer.

2. A computer security expert contends that most break-ins to computer
systems today are attributable to flawed programming or incorrect
configuration of systems and products. If this claim is true, do you think
design assurance is as important as implementation and operational
assurance? Why or why not?

3. Suppose you are the developer of a computer product that can process
critical data and will likely run in a hostile environment. You have an
outstanding design and development team, and you are very confident in
the quality of their work.

a. Explain why you would add assurance steps to your development
environment.

b. What additional information (if any) would you need in order to
decide whether or not the product should be formally evaluated?

4. Requirements are often difficult to derive, especially when the
environment in which the system will function, and the specific tasks it
will perform, are unknown. Explain the problems that this causes during
development of assurance.

5. Why is the waterfall model of software engineering the most commonly
used method for development of trusted systems?

6. The goal of a researcher is to develop new ideas and then test them to see if
they are feasible. Software developed to test a new idea is usually similar
to software developed for proof of concept (see Definition 17–9). A
commercial firm trying to market software that uses a new idea decides to
use the software that the researchers developed.

a. What are the problems with this decision from an assurance point of
view?

b. What should the company do to improve the software (and save its
reputation)?

Bishop.book Page 329 Tuesday, September 28, 2004 1:46 PM

330 Chapter 17 Introduction to Assurance

7. A company develops a new security product using the extreme
programming software development methodology. Programmers code,
then test, then add more code, then test, and continue this iteration. Every
day, they test the code base as a whole. The programmers work in pairs
when writing code to ensure that at least two people review the code. The
company does not adduce any additional evidence of assurance. How
would you explain to the management of this company why their software
is in fact not “high-assurance” software?

Bishop.book Page 330 Tuesday, September 28, 2004 1:46 PM

331

Chapter 18
Evaluating Systems

LEONATO: O, she tore the letter into a thousand
halfpence; railed at herself, that she should be

so immodest to write to one that she knew would
flout her; ‘I measure him,’ says she, ‘by my own

spirit; for I should flout him, if he writ to me;
yea, though I love him, I should.’

—Much Ado About Nothing, II, iii, 150–161.

Evaluation is a process in which the evidence for assurance is gathered and ana-
lyzed against criteria for functionality and assurance. It can result in a measure of
trust that indicates how well a system meets particular criteria. The criteria used
depend on the goals of the evaluation and the evaluation technology used. The
Trusted Computer System Evaluation Criteria (TCSEC) was the first widely used
formal evaluation methodology, and subsequent methodologies built and improved
on it over time. This chapter explores several past and present evaluation methodol-
ogies, emphasizing the differences among them and the lessons learned from each
methodology.

18.1 Goals of Formal Evaluation

Perfect security is an ultimate, but unachievable, goal for computer systems. As the
complexity of computer systems increases, it becomes increasingly difficult to
address the reference validation mechanism concept of a system being simple
enough to analyze. A trusted system is one that has been shown to meet specific
security requirements under specific conditions. The trust is based on assurance evi-
dence. Although a trusted system cannot guarantee perfect security, it does provide a
basis for confidence in the system within the scope of the evaluation.

Bishop.book Page 331 Tuesday, September 28, 2004 1:46 PM

332 Chapter 18 Evaluating Systems

Formal security evaluation techniques were created to facilitate the develop-
ment of trusted systems. Typically, an evaluation methodology provides the follow-
ing features.

• A set of requirements defining the security functionality for the system or
product.

• A set of assurance requirements that delineate the steps for establishing
that the system or product meets its functional requirements. The
requirements usually specify required evidence of assurance.

• A methodology for determining that the product or system meets the
functional requirements based on analysis of the assurance evidence.

• A measure of the evaluation result (called a level of trust) that indicates
how trustworthy the product or system is with respect to the security
functional requirements defined for it.

Definition 18–1. A formal evaluation methodology is a technique used to
provide measurements of trust based on specific security requirements and
evidence of assurance.

Several evaluation standards have affected formal evaluation methodologies.
Among the major standards have been the Trusted Computer System Evaluation Cri-
teria (TCSEC) [257] and the Information Technology Security Evaluation Criteria
(ITSEC) [186]. The Common Criteria (CC) [668, 669, 670] has supplanted these
standards as a standard evaluation methodology. This chapter discusses components
of each standard.

Even when a system is not formally evaluated, the security functional require-
ments and assurance requirements provide an excellent overview of the consider-
ations that improve assurance. These considerations are invaluable to any
development process.

18.1.1 Deciding to Evaluate

A decision to evaluate a system formally must take into consideration the many
trade-offs between security and cost, such as time to market and the number of fea-
tures. Groups seeking formal evaluation may have to pay the evaluator’s charge as
well as staffing costs for skilled experts to develop security documentation and assur-
ance evidence. Interaction with the evaluator for training, clarification, or cor-
rections takes development staff time and could affect development and delivery
schedules. Unfortunately, security evaluation cannot prove that a system is invulner-
able to attack. Most systems today must operate in hostile environments, and the sys-
tems must provide their own protections from attacks and inadvertent errors.

Security and trust are no longer the exclusive realm of the government and
military, nor are they of concern only to financial institutions and online businesses.

Bishop.book Page 332 Tuesday, September 28, 2004 1:46 PM

18.1 Goals of Formal Evaluation 333

Computers are at the heart of the economy, medical processes and equipment, power
infrastructures, and communications infrastructures. Systems having no security are
unacceptable in most environments today. Systems providing some security are a
step in the right direction, but a trusted system that reliably addresses specifically
defined security issues engenders stronger confidence. Evaluation provides an inde-
pendent assessment by experts and a measure of assurance, which can be used to
compare products.

The independent assessment by experts of the effectiveness of security mech-
anisms and the correctness of their implementation and operation is invaluable in
finding vulnerabilities and flaws in a product or system. An evaluated product has
been scrutinized by security experts who did not design or implement the product
and can bring a fresh eye to the analysis. Hence, the evaluated product is less likely
to contain major flaws than a product that has not been evaluated. The analysis of
such a system begins with an assessment of requirements. The requirements must be
consistent, complete, technically sound, and sufficient to counter the threats to the
system. Assessing how well the security features meet the requirements is another
part of the evaluation. Evaluation programs require specific types of administrative,
user, installation, and other system documentation, which provide the administrators
and maintainers the information needed to configure and administer the system prop-
erly, so that the security mechanisms will work as intended.

The level of risk in the environment affects the level of trust required in the
system. The measure of trust associated with an evaluated product helps find the opti-
mum combination of trust in the product and in the environment to meet the security
needs.

18.1.2 Historical Perspective of Evaluation Methodologies

Government and military establishments were the early drivers of computer security
research. They also drove the creation of a security evaluation process. Before evalu-
ation methodologies were available for commercial products, government and mili-
tary establishments developed their own secure software and used internal
methodologies to make decisions about their security. With the rapid expansion of
technology, government and military establishments wanted to use commercial prod-
ucts for their systems rather than developing them. This drove the development of
methodologies to address the security and trustworthiness of commercial products.

Evaluation methodologies provide functional requirements, assurance
requirements, and levels of trust in different formats. Some list requirements and use
them to build trust categories. Others list the requirements only within the descrip-
tion of a trust category. To help the reader compare the development of the methodol-
ogies, we present each methodology in a standard manner. We first present overview
information about the methodology. Descriptions of functional requirements (when
they exist), assurance requirements, and levels of trust follow. If the methodology
was widely used to evaluate systems, we describe the evaluation process. The final
discussion for each methodology addresses its strengths, its weaknesses, and the

Bishop.book Page 333 Tuesday, September 28, 2004 1:46 PM

334 Chapter 18 Evaluating Systems

contributions it makes to the evaluation technology. Unfortunately, the methodolo-
gies use slightly different terminologies. In the discussion of each methodology, we
will describe the terminology specific to that technique and relate it to the specific
terminologies of previous methodologies.

18.2 TCSEC: 1983–1999

The Trusted Computer System Evaluation Criteria (TCSEC), also known as the
Orange Book, was developed by the U.S. government and was the first major computer
security evaluation methodology. It presents a set of criteria for evaluating the security
of commercial computer products. The TCSEC defined criteria for six different evalua-
tion classes identified by their rating scale of C1, C2, B1, B2, B3, and A1. Each evalu-
ation class contains both functional and assurance requirements, which are cumulative
and increasing throughout the evaluation classes. Classes were subdivided into three
different “divisions” of lesser importance to our discussion than individual evaluation
classes. A fourth division, D, was provided for products that attempted evaluation but
failed to meet all the requirements of any of the six classes. The vendor could select the
level of trust to pursue by selecting an evaluation class but otherwise had no say in
either the functional or assurance requirements to be met.

The reference monitor concept (see Section 17.3) and the Bell-LaPadula secu-
rity policy model (see Section 5.2) heavily influenced the TCSEC criteria and
approach. Recall that a trusted computing base (TCB) is a generalization of the refer-
ence validation mechanism (RVM). The TCB is not required to meet the RVM
requirements (always invoked, tamperproof, and small enough to analyze) for all
classes. In the TCSEC, the TCB need not be a full RVM until class B3.

The TCSEC emphasizes confidentiality, with a bias toward the protection of
government classified information. Although there is no specific reference to data
integrity in the TCSEC, it is indirectly addressed by the *-property of the embedded
Bell-LaPadula Model.1 However, this is not a complete data integrity solution,
because it does not address the integrity of data outside the mandatory access control
policy. System availability is not addressed.

During the first few years that the TCSEC was available, the National Com-
puter Security Center published a large collection of documents that expanded on
requirement areas from the TCSEC. These “Rainbow Series”2 documents discussed
the requirements in specific contexts such as networks, databases, and audit systems,
and some are still applicable today.

The TCSEC provides seven levels of trust measurement called ratings, which
are represented by the six evaluation classes C1, C2, B1, B2, B3, and A1, plus an

1 Recall that the *-property addresses writing of data, which provides some controls on the
unauthorized modification of information. See Section 5.2.1.
2 Each document had a different color cover.

Bishop.book Page 334 Tuesday, September 28, 2004 1:46 PM

18.2 TCSEC: 1983–1999 335

additional class, D. An evaluated product is a rated product. Under the TCSEC, some
requirements that this text considers to be functional in nature appear under headings
that use the word assurance. These requirements are identified in the text below.

18.2.1 TCSEC Requirements

The TCSEC is organized by evaluation class and uses an outline structure to identify
named requirement areas. It defines both functional and assurance requirements
within the context of the evaluation classes. The actual requirements are embedded
in a prose description of each named area. The divisions and subdivisions of the doc-
ument are of lesser importance than the actual requirement areas found within them.

18.2.1.1 TCSEC Functional Requirements
Discretionary access control (DAC) requirements identify an access control mecha-
nism that allows for controlled sharing of named objects by named individuals and/
or groups. Requirements address propagation of access rights, granularity of control,
and access control lists.

Object reuse requirements address the threat of an attacker gathering informa-
tion from reusable objects such as memory or disk memory. The requirements
address the revocation of access rights from a previous owner when the reusable
object is released and the inability of a new user to read the previous contents of that
reusable object.

Mandatory access control (MAC) requirements, not required until class B1,
embody the simple security condition and the *-property from the Bell-LaPadula
Model. These requirements include a description of the hierarchy of labels. Labels
attached to subjects reflect the authorizations they have and are derived from approv-
als such as security clearances. Labels attached to objects reflect the protection
requirements for objects. For example, a file labeled “secret” must be protected at
that level by restricting access to subjects who have authorizations reflecting a secret
(or higher) clearance.

Label requirements, also not required until class B1, enable enforcement of
mandatory access controls. Both subjects and objects have labels. Other require-
ments address accurate representation of classifications and clearances, exporting of
labeled information, and labeling of human-readable output and devices.

Identification and authentication (I&A) requirements specify that a user iden-
tify herself to the system and that the system authenticate that identity before allow-
ing the user to use the system. These requirements also address the granularity of the
authentication data (per group, per user, and so on), protecting authentication data,
and associating identity with auditable actions.

Trusted path requirements, not required until class B2, provide a communica-
tions path that is guaranteed to be between the user and the TCB.

Audit requirements address the existence of an audit mechanism as well as
protection of the audit data. They define what audit records must contain and what

Bishop.book Page 335 Tuesday, September 28, 2004 1:46 PM

336 Chapter 18 Evaluating Systems

events the audit mechanism must record. As other requirements increase, the set of
auditable events increases, causing the auditing requirements to expand as one
moves to higher classes.

The TCSEC presents other requirements that it identifies as system architec-
ture requirements. They are in fact functional requirements, and they include a
tamperproof reference validation mechanism, process isolation, the principle of least
privilege, and well-defined user interfaces.

TCSEC operational assurance requirements that are functional in nature
include the following. Trusted facility management requires the separation of opera-
tor and administrator roles and are required starting at class B2. Trusted recovery
procedure requirements ensure a secure recovery after a failure (or other discontinu-
ity). These requirements are unique to class A1. Finally, a system integrity require-
ment mandates hardware diagnostics to validate the on-site hardware and firmware
elements of the TCB.

18.2.1.2 TCSEC Assurance Requirements
Configuration management requirements for the TCSEC begin at class B2 and
increase for higher classes. They require identification of configuration items, consis-
tent mappings among all documentation and code, and tools for generating the TCB.

The trusted distribution requirement addresses the integrity of the mapping
between masters and on-site versions as well as acceptance procedures for the cus-
tomer. This requirement is unique to class A1.

TCSEC system architecture requirements mandate modularity, minimization
of complexity, and other techniques for keeping the TCB as small and simple as pos-
sible. These requirements begin at class C1 and increase until class B3, where the
TCB must be a full reference validation mechanism.

The design specification and verification requirements address a large number
of individual requirements, which vary dramatically among the evaluation classes.
Classes C1 and C2 have no requirements in this area. Class B1 requires an informal
security policy model that is shown to be consistent with its axioms. Class B2
requires that the model be formal and be proven consistent with its axioms and that
the system have a descriptive top-level specification (DTLS). Class B3 requires that
the DTLS be shown to be consistent with the security policy model. Finally, class A1
requires a formal top level specification (FTLS) and that approved formal methods
be used to show that the FTLS is consistent with the security policy model. Class A1
also requires a mapping between the FTLS and the source code.

The testing requirements address conformance with claims, resistance to pen-
etration, and correction of flaws followed by retesting. A requirement to search for
covert channels includes the use of formal methods at higher evaluation classes.

Product documentation requirements are divided into a Security Features
User’s Guide (SFUG) and an administrator guide called a Trusted Facility Manual
(TFM). The SFUG requirements include a description of the protection mechanisms,
how they interact, and how to use them. The TFM addresses requirements for run-

Bishop.book Page 336 Tuesday, September 28, 2004 1:46 PM

18.2 TCSEC: 1983–1999 337

ning the product securely, including generation, start-up, and other procedures. All
classes require this documentation, and as the level of the class increases, the func-
tional and assurance requirements increase.

Internal documentation includes design and test documentation. The design
documentation requirements and the design specification and verification requirements
overlap somewhat. Other documentation requirements include a statement of the phi-
losophy of protection and a description of interfaces. Test documentation requirements
specify test plans, procedures, tests, and test results. As with the user and administrator
documentation, requirements for test and design documentation increase as the func-
tional and assurance requirements increase as the classes increase.

18.2.2 The TCSEC Evaluation Classes

Class C1, called discretionary protection, has minimal functional requirements only
for identification and authentication and for discretionary access controls. The assur-
ance requirements are also minimal, covering testing and documentation only. This
class was used only briefly, and no products were evaluated under this class after 1986.

Class C2, called controlled access protection, requires object reuse and audit-
ing in addition to the class C1 functional requirements and contains somewhat more
stringent security testing requirements. This was the most commonly used class for
commercial products. Most operating system developers incorporated class C2
requirements into their primary product by the end of the lifetime of the TCSEC.

Class B1, called labeled security protection, requires mandatory access con-
trols, but these controls can be restricted to a specified set of objects. Labeling supports
the MAC implementation. Security testing requirements are more stringent. An infor-
mal model of the security policy, shown to be consistent with its axioms, completes
class B1. Many operating system vendors offered a class B1 product in addition to their
primary products. Unfortunately, the B1 products did not always receive the updates in
technology that the main line received, and they often fell behind technically.

Class B2, called structured protection, is acceptable for some government appli-
cations. At class B2, mandatory access control is required for all objects. Labeling is
expanded, and a trusted path for login is introduced. Class B2 requires the use of the
principle of least privilege to restrict the assignment of privilege to the users least
required to perform the specific task. Assurance requirements include covert channel
analysis, configuration management, more stringent documentation, and a formal
model of the security policy that has been proven to be consistent with its axioms.

Class B3, called security domains, implements the full reference validation
mechanism. It increases the trusted path requirements and constrains how the code
is developed in terms of modularity, simplicity, and use of techniques such as lay-
ering and data hiding. It has significant assurance requirements that include all the
requirements of class B2 plus more stringent testing, more requirements on the
DTLS, an administrator’s guide, and design documentation.

Class A1, called verified protection, has the same functional requirements as
class B3. The difference is in the assurance. Class A1 requires significant use of formal

Bishop.book Page 337 Tuesday, September 28, 2004 1:46 PM

338 Chapter 18 Evaluating Systems

methods in covert channel analysis, design specification, and verification. It also
requires trusted distribution and increases both test and design documentation
requirements. A correspondence between the code and the FTLS is required.

18.2.3 The TCSEC Evaluation Process

Government-sponsored evaluators staffed and managed TCSEC evaluations at no fee
to the vendor. The evaluation had three phases: application, preliminary technical
review (PTR), and evaluation. If the government did not need a particular product,
the application might be denied. The PTR was essentially a readiness review, includ-
ing comprehensive discussions of the evaluation process, schedules, the development
process, product technical content, requirement discussions, and the like. The PTR
determined when an evaluation team would be provided, as well as the fundamental
schedule for the evaluation.

The evaluation phase was divided into design analysis, test analysis, and a
final review. In each part, the results obtained by the evaluation team were presented
to a technical review board (TRB), which approved that part of the evaluation before
the evaluation moved to the next step. The TRB consisted of senior evaluators who
were not on the evaluation team being reviewed.

The design analysis consisted of a rigorous review of the system design based
on the documentation provided. Because TCSEC evaluators did not read the source
code, they imposed stringent requirements on the completeness and correctness of the
documentation. Evaluators developed the initial product assessment report (IPAR) for
this phase. Test analysis included a thorough test coverage assessment as well as an
execution of the vendor-supplied tests. The evaluation team produced a final evaluation
report (FER) after approval of the initial product assessment report and the test review.
Once the technical review board had approved the final evaluation report, and the eval-
uators and vendor had closed all items, the rating was awarded.

The Ratings Maintenance Program (RAMP) maintained assurance for new
versions of an evaluated product. The vendor took the responsibility for updating the
assurance evidence to support product changes and enhancements. A technical
review board reviewed the vendor’s report and, when the report had been approved,
the evaluation rating was assigned to the new version of the product. RAMP did not
accept all enhancements. For example, structural changes and the addition of some
new functions could require a new evaluation.

18.2.4 Impacts

The TCSEC created a new approach to identifying how secure a product is. The approach
was based on the analysis of design, implementation, documentation, and procedures.
The TCSEC was the first evaluation technology, and it set several precedents for future
methodologies. The concepts of evaluation classes, assurance requirements, and
assurance-based evaluations are fundamental to evaluation today. The TCSEC set high

Bishop.book Page 338 Tuesday, September 28, 2004 1:46 PM

18.2 TCSEC: 1983–1999 339

technical standards for evaluation. The technical depth of the TCSEC evaluation came
from the strength of the foundation of requirements and classes, from the rigor of the
evaluation process, and from the checks and balances provided by reviews from within
the evaluation team and the technical review boards from outside the evaluation team.

However, the TCSEC was far from perfect. Its scope was limited. The evalua-
tion process was difficult and often lacked needed resources. The TCSEC bound
assurance and functionality together in the evaluation classes, which troubled some
users. Finally, the TCSEC evaluations were recognzed only in the United States, and
evaluations from other countries were not valid in the United States.

18.2.4.1 Scope Limitations
The TCSEC was written for operating systems and does not translate well to other
types of products or to systems. Also, the TCSEC focused on the security needs of
the U.S. government and military establishments, who funded its development. All
evaluation classes except C1 and C2 require mandatory access control, which most
commercial environments do not use. Furthermore, the TCSEC did not address
integrity, availability, or other requirements critical to business applications.

The National Computer Security Center (NCSC) tried to address the scope
problems by providing criteria for other types of products. After an attempt to define
a criteria document for networks, the NCSC chose to develop the Trusted Network
Interpretation (TNI) of the TCSEC [258], released in 1987. The TNI offered two
approaches: evaluation of networks and evaluation of network components. The TNI
network approach addressed centralized networks with a single accreditation author-
ity, policy, and Network TCB (NTCB). In the first part of the TNI, the TCSEC crite-
ria were interpreted for networks, and one could evaluate a network at the same
levels offered by the TCSEC. The second part of the TNI offered evaluation of net-
work components. A network component may be designed to provide a subset of the
security functions of the network as a whole. The TNI could provide an evaluation
based on the specific functionality that the component offered.

In 1992, a Trusted Database Management System Interpretation (TDI) [260]
of the TCSEC was released. In the early 1990s, IBM and Amdahl pushed for a
Trusted Virtual Machine Monitor Interpretation [904] of the TCSEC, but this project
was eventually dropped. The interpretations had to address issues that were outside
the scope of the TCSEC, and each had limitations that restricted their utility. Not
many evaluations resulted from the TNI or the TDI.

18.2.4.2 Process Limitations
The TCSEC evaluation methodology had two fundamental problems. The first was
“criteria creep,” or the gradual expansion of the requirements that defined the
TCSEC evaluation classes. Evaluators found that they needed to interpret the criteria
to apply them to specific products. Rather than publish frequent revisions of the
TCSEC to address these requirement interpretations, the NCSC chose to develop a
process for approval of interpretations and to publish them as an informal addendum

Bishop.book Page 339 Tuesday, September 28, 2004 1:46 PM

340 Chapter 18 Evaluating Systems

to the TCSEC. The interpretations were sometimes clearer and more specific than the
original requirement. Over time, the list became quite large and expanded the scope
of the individual criteria in the TCSEC and its interpretations. The requirements of
the classes became the union of the requirements in the TCSEC and the set of appli-
cable interpretations. Thus, a class C2 operating system may have been required to
meet stronger requirements than a system evaluated a few years before. This put an
additional burden on the newer products under evaluation and meant that the
minimum-security enforcement of all C2 operating systems was not the same.
Although there were many problems with these differences, it caused the security
community to learn more about security and create better security products.

The second problem with the evaluation process was that evaluations took too
much time. Three factors contributed to this problem. Many vendors misunderstood
the depth of the evaluation and the required interactions with the evaluation teams.
The practices of the evaluation management caused misunderstandings and schedul-
ing problems. Finally, the motivation to complete a free evaluation was often lacking.
Typically, both vendors and evaluators caused delays in the schedule. Vendors often
had to do additional unanticipated work. Evaluators were assigned to multiple evalu-
ations, and the schedule of one evaluation could cause delays for another vendor.
Many evaluations took so long to complete that the product was obsolete before the
rating was awarded. Toward the end of the life of the TCSEC, commercial labs
approved by the government were allowed to do TCSEC evaluations for a fee. Ven-
dors had to be prepared for evaluation, and there was significantly less interaction
between evaluators and vendors. This change addressed much of the timeliness prob-
lem, with labs completing evaluations in roughly a year.

A related problem was that RAMP cycles were as difficult as full evaluations
and suffered from similar delays. Consequently, RAMP was not used very much.

18.2.4.3 Contributions
The TCSEC provided a process for security evaluation of commercial products. Its
existence heightened the awareness of the commercial sector to the needs for computer
security. This awareness would have arisen later if not for the influence of the TCSEC.

In the 1990s, new varieties of products emerged, including virus checkers,
firewalls, virtual private networks, IPsec implementations, and cryptographic mod-
ules. The TCSEC remained centered on operating systems, and its interpretations
were insufficient to evaluate all types of networks or the new varieties of products.
The commercial sector was dissatisfied with the functional requirements of the eval-
uation classes. These inadequacies of the TCSEC stimulated a wave of new
approaches to evaluation that significantly affected evaluation technology. Commer-
cial organizations wrote their own criteria. Other commercial organizations offered a
pass-fail “certification” based on testing. The Computer Security Act of 1987 gave
the responsibility to the National Security Agency (NSA) for security of computer
systems processing classified and national security–relevant information. The
National Institute of Standards and Technology (NIST) received a charter for sys-

Bishop.book Page 340 Tuesday, September 28, 2004 1:46 PM

18.3 FIPS 140: 1994–Present 341

tems processing sensitive and unclassified information. In 1991, NIST and the NSA
began working on new evaluation criteria called the Federal Criteria (FC). All these
activities sprang from the impact of the TCSEC.

18.3 FIPS 140: 1994–Present

During the time of the TCSEC, the U.S. government had no mechanism for evaluating
cryptographic modules. Evaluation of such modules was needed in order to ensure
their quality and security enforcement. Evaluation of cryptographic modules outside
the United States under the ITSEC or within the United States under the commercial
pass-or-fail techniques did not meet these needs. In 1994, U.S. government agencies
and the Canadian Security Establishment (CSE) jointly established FIPS 140-1 as an
evaluation standard for cryptographic modules for both countries. This standard was
updated in 2001 to FIPS 140-2 [671] to address changes in technology and process
since 1994. The program is now sponsored jointly by NIST and CSE under the Crypto-
graphic Module Validation (CMV) Program. Certification laboratories are accredited in
Canada and the United States to perform the evaluations, which are validated jointly
under the CMV Program, sponsored by CSE and NIST. This scheme for evaluating
cryptographic products has been highly successful and is actively used today. Cur-
rently, the United Kingdom is negotiating to enter the CMV program.

A cryptographic module is a set of hardware, firmware, or software, or some
combination thereof, that implements cryptographic logic or processes. If the crypto-
graphic logic is implemented in software, then the processor that executes the soft-
ware is also a part of the cryptographic module. The evaluation of software
cryptographic modules automatically includes the operating system.

18.3.1 FIPS 140 Requirements

FIPS 140-1 and FIPS 140-2 provide the security requirements for a cryptographic mod-
ule implemented within federal computer systems. Each standard defines four increas-
ing, qualitative levels of security (called security levels) intended to cover a wide range
of potential environments. The requirements for FIPS 140-1 cover basic design and doc-
umentation, module interfaces, roles and services, physical security, software security,
operating system security, key management, cryptographic algorithms, electromagnetic
interference/electromagnetic compatibility, and self-testing. The requirements for FIPS
140-2 include areas related to the secure design and implementation of cryptographic
modules: specification; ports and interfaces; roles, services, and authentication; a finite
state model; physical security; the operational environment; cryptographic key manage-
ment; electromagnetic interference/electromagnetic compatibility; self-testing; design
assurance; and mitigation of other attacks.

Bishop.book Page 341 Tuesday, September 28, 2004 1:46 PM

342 Chapter 18 Evaluating Systems

18.3.2 FIPS 140-2 Security Levels

In this section we present an overview of the security levels of FIPS 140-2. Changes
from those of FIPS 140-1 reflect changes in standards (particularly the move from
the TCSEC to the Common Criteria), changes in technology, and comments from
users of FIPS 140-1.

Security Level 1 provides the lowest level of security. It specifies that the
encryption algorithm be a FIPS-approved algorithm but does not require physical
security mechanisms in the module beyond the use of production-grade equipment.
Security Level 1 allows the software and firmware components of a cryptographic
module to be executed on a general-purpose computing system using an unevaluated
operating system. An example of a Level 1 cryptographic module is a personal com-
puter board that does encryption.

Security Level 2 dictates greater physical security than Security Level 1 by
requiring tamper-evident coatings or seals, or pick-resistant locks. Level 2 provides
for role-based authentication, in which a module must authenticate that an operator is
authorized to assume a specific role and perform a corresponding set of services.
Level 2 also allows software cryptography in multiuser timeshared systems when
used in conjunction with an operating system evaluated at EAL2 or better under the
Common Criteria (see Section 18.4) using one of a set of specifically identified
Common Criteria protection profiles.

Security Level 3 requires enhanced physical security generally available in
many existing commercial security products. Level 3 attempts to prevent potential
intruders from gaining access to critical security parameters held within the module. It
provides for identity-based authentication as well as stronger requirements for entering
and outputting critical security parameters. Security Level 3 requirements on the
underlying operating system include an EAL3 evaluation under specific Common Cri-
teria protection profiles (see Section 18.4.1), a trusted path, and an informal security
policy model. An equivalent evaluated trusted operating system may be used.

Security Level 4 provides the highest level of security. Level 4 physical security
provides an envelope of protection around the cryptographic module with the intent of
detecting and responding to all unauthorized attempts at physical access. Level 4 also
protects a cryptographic module against a security compromise resulting from environ-
mental conditions or fluctuations outside the module’s normal operating ranges of volt-
age and temperature. Level 4 allows the software and firmware components of a
cryptographic module to be executed on a general-purpose computing system using an
operating system that meets the functional requirements specified for Security Level 3
and that is evaluated at the CC evaluation assurance level EAL4 (or higher). An equiv-
alent evaluated trusted operating system may be used.

18.3.3 Impact

The CMV program has improved the quality and security of cryptographic modules.
By 2002, 164 modules and 332 algorithms had been tested. Of the 164 modules,

Bishop.book Page 342 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 343

approximately half had security flaws and more than 95% had documentation errors.
Of the 332 algorithms, approximately 25% had security flaws and more than 65%
had documentation errors. Vendors were able to correct these problems before their
modules and algorithms were deployed and used.

18.4 The Common Criteria: 1998–Present

The Common Criteria (CC) approach to security evaluation draws from the strengths
of TCSEC, ITSEC, CTCPEC, and FC, as well as from commercial efforts. The orig-
inal participants in the Common Criteria Project included Canada, NIST and the
NSA from the United States, the United Kingdom, France, Germany, and the Nether-
lands. Although all participants had the common goal of developing a technically
strong, easy to use, mutually reciprocal evaluation technology, each of the partici-
pants represented previous methodologies. The United Kingdom, France, Germany,
and the Netherlands represented the ITSEC community. NIST and the NSA repre-
sented the work done for the Federal Criteria Project, and the NSA also represented
the TCSEC and the interests of the U.S. military establishment for very high-
assurance systems. Canada represented the CTCPEC. In 1998, the first signers of the
Arrangement on the Recognition of the Common Criteria Certifications in the Field
of Information Technology Security were the United States, the United Kingdom,
France, Germany, and Canada. This arrangement is called the Common Criteria Rec-
ognition Arrangement (CCRA), and also the Mutual Recognition Arrangement
(MRA), in the literature. As of May 2002, Australia, New Zealand, Finland, Greece,
Israel, Italy, the Netherlands, Spain, Sweden, and Norway have signed the CCRA.
Japan, Russia, India, and South Korea are working on developing appropriate evalu-
ation schemes (see below), which is a requirement for any country signing the
CCRA. To date, Canada, the United Kingdom, the United States, and Germany have
been the most prolific in producing CC evaluated products. The CC is also Standard
15408 of the International Standards Organization (ISO).

The CC became the de facto security evaluation standard in the United States
in 1998. The TCSEC was retired in 2000, when the last TCSEC evaluation was com-
pleted. European countries that used the ITSEC similarly retired it, although rem-
nants of the old evaluation programs still exist.

The Common Criteria evaluation methodology has three parts: the CC docu-
ments, the CC Evaluation Methodology (CEM), and a country-specific evaluation
methodology called an Evaluation Scheme or National Scheme. The CC provides an
overview of the methodology and identifies functional requirements, assurance
requirements, and Evaluation Assurance Levels (EALs). The CEM provides detailed
guidelines for the evaluation of products and systems at each EAL. This document is
useful to developers and invaluable to evaluators. Currently, the CEM is complete for
only the first four EALs defined in the CC. The first four EALs address low and
medium levels of trust, whereas the higher three levels are specific to what are called

Bishop.book Page 343 Tuesday, September 28, 2004 1:46 PM

344 Chapter 18 Evaluating Systems

high-assurance products and systems. Individual country Evaluation Schemes pro-
vide the infrastructure necessary to implement CC evaluation. Each country imple-
ments the methodology in its own way. The CC documents and the CEM set the
fundamental criteria, EALs, and evaluation strategy, but countries may have different
methods of selecting evaluators, awarding certifications, structuring interactions
between evaluators and vendors, and the like. In the United States, for example, the
Evaluation Scheme is the Common Criteria Evaluation and Validation Scheme
(CCEVS), which is implemented within NIST. Under this scheme, NIST accredits
commercial evaluation laboratories, which then perform product and system or pro-
tection profile evaluations. The sponsoring agencies of NIST then validate the evalu-
ation and award the appropriate EALs.

The CC uses the following terms.

Definition 18–2. A TOE Security Policy (TSP) is a set of rules that regulate
how assets are managed, protected, and distributed within a product or sys-
tem.

Definition 18–3. The TOE Security Functions (TSF) is a set consisting of all
hardware, software, and firmware of the product or system that must be relied
on for the correct enforcement of the TSP.

Notice that the TSF is a generalization of the TCSEC concept of a trusted
computing base (TCB).

The following discussion is based on Version 2.1 of the Common Criteria.

18.4.1 Overview of the Methodology

The CC supports two kinds of evaluations: evaluations of protection profiles and
evaluations of products or systems against security targets (STs). Product evaluations
are awarded at one of seven predefined EALs or at another, user-defined, EAL. All
CC evaluations are reciprocal to the signers of the CCRA.

The concept of a protection profile evolved from the Federal Criteria, the
CTCPEC profiles, and the ITSEC functionality classes. The form, structure, and ter-
minology of a CC protection profile differs from that of an FC protection profile,
although the concepts are similar.

Definition 18–4. A CC protection profile (PP) is an implementation-independent
set of security requirements for a category of products or systems that meet
specific consumer needs.

The PP provides a thorough description of a family of products in terms of
threats, environmental issues and assumptions, security objectives, and CC require-
ments. The requirements include both functional requirements, chosen from the CC
functional requirements by the PP author, and assurance requirements, which include

Bishop.book Page 344 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 345

one of the seven EALs and may include additional assurance requirements as well. The
final section of the PP provides the assurance evidence in the form of a rationale that
the PP is complete, consistent, and technically sound. PPs do not have to be evaluated
and validated. PPs that are evaluated must undergo evaluation in accordance with the
methodology outlined in the CC assurance class APE: Protection Profile Evaluation.

A PP consists of six sections.

1. Introduction. This section contains

a. the PP Identification, which is precise information used to identify,
catalogue, register, and cross reference the PP; and

b. the PP Overview, which is a narrative summary of the PP that should
be acceptable as a stand-alone abstract for use in catalogues and
registries.

2. Product or System Family Description. This section includes a description of
the type and the general IT features of the product or system. If the primary
function of the product or system is security, this section may describe the
wider application context into which the product or system will fit.

3. Product or System Family Security Environment. This section presents

a. assumptions about the intended usage and the environment of use;
b. threats to the assets requiring protection, in terms of threat agents,

types of attacks, and assets that are the targets of the attacks; and
c. organizational security policies by which the product or system must

abide.

4. Security Objectives. There are two types of security objectives:

a. the security objectives for the product or system must be traced back
to aspects of identified threats and/or organizational security
policies; and

b. the security objectives for the environment must be traced back to
threats not completely countered by the product or system and/or
organizational policies or assumptions not completely met by the
product or system.

5. IT Security Requirements. This section covers functional and assurance
requirements.

a. The security functional requirements are drawn from the CC. If no
CC requirements are appropriate, the PP author may supply other
requirements explicitly without reference to the CC.

b. The security assurance requirements are based on an EAL. The PP
author may augment an EAL by adding extra security assurance
requirements from the CC or may supply other requirements

Bishop.book Page 345 Tuesday, September 28, 2004 1:46 PM

346 Chapter 18 Evaluating Systems

explicitly without reference to the CC. This includes security
requirements for the environment, as applicable.

6. Rationale. This section includes both objectives and requirements.

a. The security objectives rationale demonstrates that the stated
objectives are traceable to all of the assumptions, threats, and
organizational policies.

b. The security requirements rationale demonstrates that the
requirements for the product or system and the requirements for the
environment are traceable to the objectives and meet them.

The second form of evaluation offered by the CC is the evaluation of a product
or system against a security target (ST). The results of the evaluation are recognized
by all signatories to the CCRA. This type of evaluation has two parts. The first is the
evaluation of the ST in accordance with assurance class ASE: Security Target Evalua-
tion (see Section 18.4.4). The product or system itself is then evaluated against the ST.

Under the CC, the functional requirements for a specific product or system are
defined in an ST, just as was done under the ITSEC. The concept of a security target
evolved from the ITSEC, and the idea of evaluating a security target against an eval-
uated protection profile evolved from the FC.

Definition 18–5. A security target (ST) is a set of security requirements and
specifications to be used as the basis for evaluation of an identified product or
system.

There are two approaches to developing an ST. The first approach is to
develop an ST based on a PP. The second approach is to develop an ST directly from
the CC. If an evaluated PP is used, the ST process is generally simpler because much
of the rationale in the ST can reference the PP directly. The ST addresses the same
fundamental issues as the PP, with some notable differences. A significant difference
is that the ST addresses the issues for the specific product or system, not for a family
of potential products or systems.

An ST consists of eight sections.

1. Introduction. This section has three parts.

a. The ST Identification gives precise information that is used to
control and identify the ST and the product or system to which it
refers.

b. The ST Overview is a narrative summary of the ST that should be
acceptable as a stand-alone abstract for use in evaluated product
lists.

c. The CC Conformance Claim is a statement of conformance to the
CC. An ST is part 2 conformant if it uses only functional
requirements found in part 2 of the CC. If it uses extended

Bishop.book Page 346 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 347

requirements defined by the vendor, it is called part 2 extended. Part
3 conformant and part 3 extended are similarly defined. An ST is
conformant to a PP only if it is compliant with all parts of the PP.

2. Product or System Description. This section includes a description of the
TOE as an aid to understanding its security requirements. It addresses the
product or system type and the scope and boundaries of the TOE (both
physically and logically).

3. Product or System Family Security Environment. This section includes

a. assumptions about the intended usage and about the environment of
use;

b. threats to the assets requiring protection, in terms of threat agents,
types of attacks, and assets that are the targets of attacks; and

c. organizational security policies by which the product or system must
abide.

4. Security Objectives. There are two types of security objectives:

a. the security objectives for the product or system must be traced back
to aspects of identified threats and/or organizational security
policies; and

b. the security objectives for the environment must be traced back to
threats not completely countered by the product or system and/or
organizational policies or assumptions not completely met by the
product or system.

5. IT Security Requirements. This section covers functional and assurance
requirements.

a. The security functional requirements are drawn from the CC. If no
CC requirements are appropriate, the ST author may supply other
requirements explicitly without reference to the CC.

b. The security assurance requirements are based on an EAL. The ST
author may augment an EAL by adding extra security assurance
requirements from the CC or may supply other requirements
explicitly without reference to the CC. This includes security
requirements for the environment, as applicable.

6. Product or System Summary Specification. This specification defines the
instantiation of the security requirements for the product or system and
includes

a. a statement of security functions and a description of how these
functions meet the functional requirements; and

b. a statement of assurance measures specifying how the assurance
requirements are met.

Bishop.book Page 347 Tuesday, September 28, 2004 1:46 PM

348 Chapter 18 Evaluating Systems

7. PP Claims. This section makes claims of conformance with the
requirements of one or more protection profiles.

8. Rationale. This section explains various aspects of the ST.

a. The security objectives rationale demonstrates that the stated
objectives are traceable to all of the assumptions, threats, and
organizational policies.

b. The security requirements rationale demonstrates that the
requirements for the product or system and the requirements for the
environment are traceable to the objectives and meet them.

c. The TOE summary specification rationale demonstrates how the
TOE security functions and assurance measures meet the security
requirements.

d. A rationale for not meeting all dependencies.
e. The PP claims rationale explains differences between the ST

objectives and requirements and those of any PP to which
conformance is claimed.

As shown in the list above, in addition to the PP issues, the ST includes a
product or system summary specification that identifies specific security functions
and mechanisms. It also describes the strength of the functional requirements and the
assurance measures used to analyze those requirements. A PP claims section identi-
fies claims made to PPs that the ST implements. The ST rationale section contains a
summary specification rationale that shows how the security functional requirements
are met, how any strength-of-function claims are met, and that the assurance mea-
sures are sufficient for the assurance requirements. An ST that claims to implement a
PP must state those claims and justify them in the rationale.

The CC also has a scheme for assurance maintenance. The goal of such activ-
ities is to build confidence that assurance already established for a product or system
will be maintained and that the product or system will continue to meet the security
requirements through changes in the product or system or its environment.

18.4.2 CC Requirements

The heart of the CC is the requirements themselves. The CC defines both functional
and assurance requirements and then builds EALs out of the assurance requirements.
The requirements are organized into a somewhat elaborate naming and numbering
scheme. However, this scheme is much easier to use than the textual descriptions of
multiple requirements in a single section, as is done in other methodologies. Func-
tional and assurance requirements are divided into classes based on common pur-
pose. Classes are broken into smaller groups called families. Families contain
components, which contain definitions of detailed requirements as well as dependent
requirements and a definition of hierarchy of requirements.

Bishop.book Page 348 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 349

18.4.3 CC Security Functional Requirements

There are 11 classes of security functional requirements, each having one or more
families. Two of the security functional requirement classes are auditing and security
management. The related requirements are unique in the sense that many require-
ments in other classes generate auditing and/or management requirements. A man-
agement section of each family overview provides specific information about
management issues relevant to the subdivisions and requirements of the family. Sim-
ilarly, the audit section of the family overview identifies relevant auditable events
associated with the requirements of the family. Requirements may be hierarchical in
nature. Requirement A is hierarchical to requirement B if the functional elements of
requirement B contain the functional elements of requirement A along with some
additions. Finally, nonhierarchical dependencies, which may cross classes, are also
identified with each requirement. These four structural approaches (identification of
management requirements, audit requirements, hierarchical issues, and nonhierarchi-
cal dependencies) help define a consistent and complete specification using the CC.

Consider the security functional requirements of the CC by class and family.
The class is indicated by the title, and the families are identified in the descriptive
text. All other requirements are derived from previously discussed methodologies.

Class FAU: Security Audit. This class contains six families of requirements
that address audit automatic response, audit data generation, audit analysis, audit
review, audit event selection, and audit event storage.

Class FCO: Communication. This class contains two families that address
nonrepudiation of origin and nonrepudiation of receipt. The CC is the first methodol-
ogy to contain this requirement.

Class FCS: Cryptographic Support. This class contains two families that
address cryptographic key management and cryptographic operation. Encryption
algorithms and other implementation issues can be addressed using FIPS 140-2.

Class FDP: User Data Protection. This class has 13 families. It includes two
different types of security policies, each with one family for each type of policy and
another family that defines the functions for that type of policy. These are access
control and information flow policies. The difference between these two types of pol-
icies is essentially that an access control policy makes decisions based on discrete
sets of information, such as access control lists or access permissions, whereas an
information flow control policy addresses the flow of information from one reposi-
tory to another. A discretionary access control policy is an access control policy and
a mandatory access control policy is an information flow control policy. These fami-
lies are also represented in other methodologies, but they are generalized in the CC,
for flexibility.

The residual information protection family addresses the issues called “object
reuse” in previous criteria. Other families address data authentication, rollback,
stored data integrity, inter-TSF user data confidentiality transfer protection, inter-
TSF user data integrity transfer protection, exporting to outside the TSF control, and
importing from outside the TSF control.

Bishop.book Page 349 Tuesday, September 28, 2004 1:46 PM

350 Chapter 18 Evaluating Systems

Class FIA: Identification and Authentication. This class has six families that
include authentication failures, user attribute definition, specification of secrets, user
authentication, user identification, and user/subject binding.

Class FMT: Security Management. This class contains six families that
include management of security attributes, management of TSF data, management
roles, management of functions in TSF, and revocation.

Class FPR: Privacy. The CC is the first evaluation methodology to support
this class. Its families address anonymity, pseudonymity, unlinkability, and unob-
servability.

Class FPT: Protection of Security Functions. This class has 16 families. TSF
physical protection, reference mediation, and domain separation represent the refer-
ence monitor requirements. Other families address underlying abstract machine tests,
TSF self-tests, trusted recovery, availability of exported TSF data, confidentiality of
exported TSF data, integrity of exported TSF data, internal product or system TSF data
transfer, replay detection, state synchrony protocol, timestamps, inter-TSF data consis-
tency, internal product or system TSF data relocation consistency, and TSF self-tests.

Class FRU: Resource Utilization. The three families in this class deal with
fault tolerance, resource allocation, and priority of service (first used in the CC).

Class FTA: TOE Access. This class has six families. They include limitations
on multiple concurrent sessions, session locking, access history and session estab-
lishment, product or system access banners, and limitations on the scope of select-
able attributes (system entry constraints).

Class FTP: Trusted Path. This class has two families. The inter-TSF trusted
channel family is new to the CC, but the trusted path family was in all previous criteria.

EXAMPLE: As indicated above, Class FAU contains six families. The management
section for each family identifies potential management functions of class FMT that
should be considered relative to the components of that family. The audit section for
each family description identifies auditable events that must be addressed if the com-
ponent FAU_GEN is selected in the PP or ST.

Component FAU_SAA addresses security audit analysis. Within FAU_SAA
there are four components, two of which are described here. FAU_SAA.1, potential
violation analysis, is a component that is hierarchical to no other components. This
means that there is no lesser requirement in this family on this topic. FAU_SAA.1
depends on requirement FAU_GEN.1, a requirement from another FAU family. This
means that if FAU_SAA.1 is selected, FAU_GEN.1 must also be selected. Within
FAU_SAA.1 there are two functional requirements. The next component is
FAU_SAA.2, profile-based anomaly detection. It is hierarchical to FAU_SAA.1,
meaning that the requirements of FAU_SAA.2 are more stringent than those of
FAU_SAA.1 and subsume the requirements of FAU_SAA.1. FAU_SAA.2 is also
dependent on FIA_UID.1, a requirement for a family in another class. FAU_SAA.2
contains two individual requirements.

Bishop.book Page 350 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 351

18.4.4 Assurance Requirements

There are ten security assurance classes. One assurance class relates to protection
profiles, one to security targets, and one to the maintenance of assurance. The other
seven directly address assurance for the product or system.

Class APE: Protection Profile Evaluation. This class has six families, one for
each of the first five sections of the PP and one for non-CC requirements.

Class ASE: Security Target Evaluation. This class contains eight families, one
for each of the eight sections of the ST. They are similar to the PP families and
include families for product or system summary specification, PP claims, and non-
CC requirements. Like the requirements of class APE, these requirements are unique
to the CC.

Class ACM: Configuration Management (CM). This class has three families:
CM automation, CM capabilities, and CM scope.

Class ADO: Delivery and Operation. This class has two families: delivery and
installation, and generation and start-up.

Class ADV: Development. This class contains seven families: functional spec-
ification, low-level design, implementation representation, TSF internals, high-level
design, representation correspondence, and security policy modeling.

Class AGD: Guidance Documentation. The two families in this class are
administrator guidance and user guidance.

Class ALC: Life Cycle. There are four families in this class: development
security, flaw remediation, tools and techniques, and life cycle definition.

Class ATE: Tests. There are four families in this class: test coverage, test
depth, functional tests, and independent testing.

Class AVA: Vulnerabilities Assessment. There are four families in this class:
covert channel analysis, misuse, strength of functions, and vulnerability analysis.

Class AMA: Maintenance of Assurance. This class has four families: assur-
ance maintenance plan, product or system component categorization report, evidence
of assurance maintenance, and security impact analysis. These were not formal
requirements in any of the previous methodologies, but the TCSEC Ratings Mainte-
nance Program (RAMP) addressed all of them. The ITSEC had a similar program
that included all these families.

18.4.5 Evaluation Assurance Levels

The CC has seven levels of assurance.
EAL1: Functionally Tested. This level is based on an analysis of security

functions using functional and interface specifications, examining the guidance doc-
umentation provided, and is supported by independent testing. EAL1 is applicable to
systems in which some confidence in correct operation is required but security
threats are not serious.

Bishop.book Page 351 Tuesday, September 28, 2004 1:46 PM

352 Chapter 18 Evaluating Systems

EAL2: Structurally Tested. This level is based on an analysis of security func-
tions, including the high-level design in the analysis. The analysis is supported by
independent testing, as in EAL1, as well as by evidence of developer testing based
on the functional specification, independent confirmation of developer test results,
strength-of-functions analysis, and a vulnerability search for obvious flaws. EAL2 is
applicable to systems for which a low to moderate level of independent assurance is
required but the complete developmental record may not be available, such as legacy
systems.

EAL3: Methodically Tested and Checked. At this level, the analysis of secu-
rity functions is the same as at EAL2. The analysis is supported as in EAL2, with the
addition of high-level design as a basis for developer testing and the use of develop-
ment environment controls and configuration management.

EAL4: Methodically Designed, Tested, and Reviewed. This level adds low-
level design, a complete interface description, and a subset of the implementation to
the inputs for the security function analysis. An informal model of the product or
system security policy is also required. Other assurance measures at EAL4 require
additional configuration management including automation. This is the highest EAL
that is likely to be feasible for retrofitting of an existing product line. It is applicable
to systems for which a moderate to high level of independently assured security is
required.

EAL5: Semiformally Designed and Tested. This level adds the full implemen-
tation to the inputs for the security function analysis for EAL4. A formal model, a
semiformal functional specification, a semiformal high-level design, and a semifor-
mal correspondence among the different levels of specification are all required. The
product or system design must also be modular. The vulnerability search must
address penetration attackers with moderate attack potential and must provide a
covert channel analysis. Configuration management must be comprehensive. This
level is the highest EAL at which rigorous commercial development practices sup-
ported by a moderate amount of specialist computer security engineering will suf-
fice. This EAL is applicable to systems for which a high level of independently
assured security is needed.

EAL6: Semiformally Verified Design and Tested. This level requires a struc-
tured presentation of the implementation in addition to the inputs for the security
function analysis for EAL5. A semiformal low-level design must be included in the
semiformal correspondence. The design must support layering as well as modularity.
The vulnerability search at EAL6 addresses penetration attackers with high attack
potential, and the covert channel analysis must be systematic. A structured develop-
ment process must be used.

EAL7: Formally Verified Design and Tested. The final level requires a formal
presentation of the functional specification and a high-level design, and formal and
semiformal demonstrations must be used in the correspondence, as appropriate. The
product or system design must be simple. The analysis requires that the implementa-
tion representation be used as a basis for testing. Independent confirmation of the
developer test results must be complete. EAL 7 is applicable in extremely high-risk
situations and requires substantial security engineering.

Bishop.book Page 352 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 353

The following table gives a rough matching of the levels of trust of various
methodologies. Although the correspondences are not exact, they are reasonably
close. The table indicates that the CC offers a level that is lower than any previously
offered level.

18.4.6 Evaluation Process

The CC evaluation process in the United States is controlled by the CC Evaluation
Methodology (CEM) and NIST. Evaluations are performed by NIST-accredited com-
mercial laboratories that do evaluations for a fee. Many of the evaluation laboratories
have separate organizations or partner organizations that can support vendors in get-
ting ready for evaluations. Teams of evaluators are provided to evaluate protection
profiles as well as systems or products and their respective security targets. Typically
the size of the team is close to the size of a TCSEC team (four to six individuals) but
this may vary from laboratory to laboratory.

Typically, a vendor selects an accredited laboratory to evaluate a PP or a prod-
uct or system. The laboratory performs the evaluation on a fee basis. Once negotia-
tions and a baseline schedule have been developed, the laboratory must coordinate
with the validating body. Under the U.S. scheme, the evaluation laboratory must
develop a work plan and must coordinate on the evaluation project with the validator
and with an oversight board. The evaluation of a PP procedes precisely as outlined in
the CEM and according to schedules agreed to by the evaluation laboratory and the
PP authors. When the PP evaluation is complete, the laboratory presents its findings
to the validating agency, which decides whether or not to validate the PP evaluation
and award the EAL rating.

Evaluation of a product or system is slightly more complex because there are
more steps involved and more evaluation evidence deliverables. A draft of the prod-
uct or system ST must be provided before the laboratory can coordinate the project with
the validating organization. The vendor and the evaluation laboratory must coordi-
nate schedules for deliverables of evaluation evidence, but otherwise the process is

TCSEC ITSEC CC Other

D E0 No equivalent

No equivalent No equivalent EAL1 Private testing labs

C1 E1 EAL2 OS for FIPS 140-2 L2

C2 E2 EAL3 OS for FIPS 140-2 L3

B1 E3 EAL4 OS for FIPS 140-2 L4

B2 E4 EAL5

B3 E5 EAL6

A1 E6 EAL7

Bishop.book Page 353 Tuesday, September 28, 2004 1:46 PM

354 Chapter 18 Evaluating Systems

the same as described above for a PP. When the laboratory finishes the evaluation, it
presents its findings to the validating agency, which decides whether or not to vali-
date the product or system evaluation and award the EAL rating.

18.4.7 Impacts

The CC addresses many issues with which other evaluation criteria and methodologies
have struggled. However, the CC is not perfect. At first glance, one might think that the
protection profiles and security targets of the CC suffer the same weaknesses as those
that plagued the security targets of the ITSEC. In some sense, this is true. A PP or ST
may not be as strong as TCSEC classes because fewer security experts have reviewed it
and it has not yet faced the test of time. Some of the CC requirements were derived
from requirements of the previous methodologies. Such requirements may inherently
have more credibility. Mature requirements and the CC process of identifying depen-
dencies, audit requirements, and management requirements can contribute to the com-
pleteness, consistency, and technical correctness of a resulting PP or ST. The clarity of
presentation of the requirements also helps, but ultimately the correctness of an ST lies
in the hands of the vendor and the evaluation team.

The CC is much more complete than the functional requirements of most pre-
ceding technologies. However, it is not immune to “criteria creep.” A CC project
board manages interpretations to support consistent evaluation results. Interpreta-
tions can be submitted by any national scheme for international review. The final
interpretations agreed on become required on all subsequent evaluations under the
CC and form the basis for future CC updates. Although this is a well-managed pro-
cess, it does not address the fact that a newer evaluation may have more stringent
requirements levied on it than an older evaluation of the same type.

Having a team member who is not motivated by financial issues to complete
the evaluation quickly lends support to the depth of the evaluation and in some
respects addresses the functions of a technical review board by providing impartial
review. The evaluation process itself is very well-defined and well-monitored by the
validating body. The process itself is less subjective than some of the preceding
methodologies because every step is well-defined and carefully applied. Because
many U.S. CC evaluators were part of the TCSEC evaluation system, the U.S. CC
evaluations are probably close to the TCSEC evaluations in depth.

18.4.8 Future of the Common Criteria

The CC documentation and methodology continue to evolve. A new version of the
CC is planned for release in mid-2003. The revision will include approved interpreta-
tions as well as other changes currently under consideration.

Bishop.book Page 354 Tuesday, September 28, 2004 1:46 PM

18.4 The Common Criteria: 1998–Present 355

18.4.8.1 Interpretations
The Common Criteria Interpretation Management Board (CCIMB) is an interna-
tional body responsible for maintaining the Common Criteria. Each signatory of the
CCRA has a representative on the CCIMB. This group has the responsibility of
accepting or rejecting interpretations of the CC submitted by national schemes or the
general public. The charter of the CCIMB is to facilitate consistent evaluation results
under the CCRA. Interpretations begin as Requests for Interpretation (RIs) that
national schemes or the general public submit to the CCIMB for consideration. RIs
fall into the following categories.

• A perceived error that some content in the CC or CEM requires correction
• An identified need for additional material in the CC or CEM
• A proposed method for applying the CC or CEM in a specific

circumstance for which endorsement is sought
• A request for information to assist with understanding the CC or CEM

The CCIMB prioritizes the RIs, responds to each RI, and posts the RI on its Web site for
approximately 3 months of public review. The CCIMB then reviews the feedback and
finalizes the interpretation. Final interpretations agreed to by the CCIMB are posted and
are levied on all subsequent evaluations certified by organizations party to the CCRA.

18.4.8.2 Assurance Class AMA and Family ALC_FLR
Class AMA is Maintenance of Assurance, which allows for assurance ratings to be
applied to later releases of an evaluated product in specific cases. Family FLR is flaw
remediation, which specifies the requirements for fixing flaws in a certified, released
product. The combination of these activities creates a program along the lines of
RAMP, which was initiated under the TCSEC. The updates to these areas will be
released in a supplement prior to release 3.0 of the CC and will be incorporated in
release 3.0 of the CC.

18.4.8.3 Products Versus Systems
Although the CC has been used successfully for many computer products, evalua-
tions of systems are less frequent and less well-defined. The process for systems is
being refined, with the intention of having significantly more information available
for system evaluation in the next release.

18.4.8.4 Protection Profiles and Security Targets
The requirements and content of a PP or an ST are defined in several locations within
the three parts of Common Criteria Version 2.1. These sections are being consoli-
dated into part 3 of the CC. In addition to consolidation, there are some contextual

Bishop.book Page 355 Tuesday, September 28, 2004 1:46 PM

356 Chapter 18 Evaluating Systems

changes in these documents. In addition, low-assurance PP and ST documents are to
be substantially simplified. These changes are targeted for CC Version 3.0.

18.4.8.5 Assurance Class AVA
The assurance class AVA, Vulnerability Assessment, is currently under revision to
make it better suited to the market and to ensure more consistent application between
schemes. This class is the most common area for augmentation. Family AVA_VLI is
being revised to address attack methods, vulnerability exploitation determination,
and vulnerability identification. These changes are also targeted for CC Version 3.0.

18.4.8.6 EAL5
Currently the CEM defines the steps an evaluator must take for evaluations at levels
EAL1 through EAL4. An effort is underway to increase the scope of the CEM to
include the detailed evaluation methodology for level EAL5.

18.5 SSE-CMM: 1997–Present

The System Security Engineering Capability Maturity Model (SSE-CMM) [412,
413, 528, 889] is a process-oriented methodology for developing secure systems
based on the Software Engineering Capability Maturity Model (SE-CMM). SSE-
CMM was developed by a team of security experts from the U.S. government and
industries to advance security engineering as a defined, mature, and measurable dis-
cipline. It helps engineering organizations define practices and processes and to
focus on improvement efforts. The SSE-CMM became ISO Standard 21827 in 2002.

Taking a very abstract view, there is a similarity between evaluation of pro-
cesses using a capability model and evaluation of security functionality using an
assurance model. Capability models define requirements for processes, whereas
methodologies such as the CC and its predecessors define requirements for security
functionality. Capability models assess how mature a process is, whereas the CC
type methodology evaluates how much assurance is provided for the functionality.
SSE-CMM provides maturity levels, whereas the other methodologies provide levels
of trust. In each case, there are specific requirements for the process or functionality
and different levels of maturity or trust that can be applied to each.

The SSE-CMM can be used to assess the capabilities of security engineering
processes and provide guidance in designing and improving them, thereby improv-
ing an organization’s security engineering capability. The SSE-CMM provides an
evaluation technique for an organization’s security engineering. Applying the SSE-
CMM can support assurance evidence and increase confidence in the trustworthiness
of a product or system.

Bishop.book Page 356 Tuesday, September 28, 2004 1:46 PM

18.5 SSE-CMM: 1997–Present 357

18.5.1 The SSE-CMM Model

The SSE-CMM is organized into processes and maturity levels. Generally speak-
ing, the processes define what needs to be accomplished by the security engineer-
ing process and the maturity levels categorize how well the process accomplishes
its goals.

Definition 18–6. A process capability is the range of expected results that
can be achieved by following the process. It is a predictor of future project
outcomes.

Definition 18–7. Process performance is a measure of the actual results
achieved.

Definition 18–8. Process maturity is the extent to which a process is explic-
itly defined, managed, measured, controlled, and effective.

The SSE-CMM contains 11 process areas.

• Administer Security Controls
• Assess Impact
• Assess Security Risk
• Assess Threat
• Assess Vulnerability
• Build Assurance Argument
• Coordinate Security
• Monitor System Security Posture
• Provide Security Input
• Specify Security Needs
• Verify and Validate Security

The definition of each process area contains a goal for the process area and a set of
base processes that support the process area. The SSE-CMM defines more than 60
base processes within the 11 process areas.

EXAMPLE: The definition of the Assess Threat process area contains the goal that
threats to the security of the system be identified and characterized. The base pro-
cesses are

• Identify Natural Threats
• Identify Human-Made Threats

Bishop.book Page 357 Tuesday, September 28, 2004 1:46 PM

358 Chapter 18 Evaluating Systems

• Identify Threat Units of Measure
• Assess Threat Agent Capability
• Assess Threat Likelihood
• Monitor Threats and Their Characteristics

Eleven additional process areas related to project and organizational practices
adapted from the SE-CMM are

• Ensure Quality
• Manage Configuration
• Manage Project Risk
• Monitor and Control Technical Effort
• Plan Technical Effort
• Define Organization’s Systems Engineering Process
• Improve Organization’s Systems Engineering Process
• Manage Product Line Evolution
• Manage Systems Engineering Support Environment
• Provide Ongoing Skills and Knowledge
• Coordinate with Suppliers

The five Capability Maturity Levels that represent increasing process maturity are as
follows.

1. Performed Informally. Base processes are performed.
2. Planned and Tracked. Project-level definition, planning, and performance

verification issues are addressed.
3. Well-Defined. The focus is on defining and refining a standard practice and

coordinating it across the organization.
4. Quantitatively Controlled. This level focuses on establishing measurable

quality goals and objectively managing their performance.
5. Continuously Improving. At this level, organizational capability and

process effectiveness are improved.

18.5.2 Using the SSE-CMM

Application of the SSE-CMM is a straightforward analysis of existing processes to
determine which base processes have been met and the maturity levels they have
achieved. The same process can help an organization determine which security engi-
neering processes they may need but do not currently have in practice.

Bishop.book Page 358 Tuesday, September 28, 2004 1:46 PM

18.6 Summary 359

This is accomplished using the well-defined base processes and capability
maturity levels that were overviewed in the preceding section. One starts with a pro-
cess area, identifying the area goals and base processes that SSE-CMM defines for
the process area. If all the processes within a process area are present, then the next
step of the analysis involves determining how mature the base processes are by
assessing them against the Capability Maturity Levels. Such an analysis is not simple
and may involve interactions with engineers who actually use the process. The result
of the analysis culminates in identification of the current level of maturity for each
base process in the process area.

The analysis continues as described above for each process area. Processes
within an area may have varying levels of maturity, and the level of maturity for the
process area would be the lowest level represented by the set of levels for the base
process. A useful way of looking at the result of a complete SSE-CMM analysis is to
use a Rating Profile, which is a tabular representation of process areas versus matu-
rity levels. An example of such a profile is provided in Figure 18–1. In a similar fash-
ion, process area rating profiles can be used to show the ratings provided for
individual base processes within a process area.

18.6 Summary

Since the early 1980s, the international computer security community has been
developing criteria and methodologies for the security evaluation of IT products and
systems. The first public and widely used technique was provided by the Trusted
Computer System Evaluation Criteria (TCSEC), which was driven by the U.S.
Department of Defense. Although the TCSEC was widely used for nearly two
decades, criticisms of it inspired research and development of other approaches that
addressed many areas of concern, including limitations of scope, problems with the

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

rating

PA
1

PA
2

PA
3

PA
4

PA
5

PA
6

PA
7

PA
8

PA
9

PA
10

PA
11

process area

Figure 18–1 Example of a rating profile for the 11 process areas of the SSE-
CMM (from [315]) .

Rating

Process area

Bishop.book Page 359 Tuesday, September 28, 2004 1:46 PM

360 Chapter 18 Evaluating Systems

evaluation process, binding of assurance and functionality, lack of recognition of
evaluations in one country by the authorities of another, and inflexibility in selection
of requirements, to name the most significant ones. New methodologies were devel-
oped to address these issues. Most notable of these were the Information Technology
Security Evaluation Criteria (ITSEC) in Europe, the Canadian Trusted Computer
Product Evaluation Criteria (CTCPEC), and the Federal Criteria (FC) in the United
States. These foundational methodologies have culminated in the Common Criteria,
which today has world-wide support.

Other evaluation techniques include a special-purpose evaluation of crypto-
graphic modules, jointly managed by NIST and the Canadian CSE, and the process-
oriented System Security Engineering Capability Maturity Model (SSE-CMM).

18.7 Further Reading

The evaluation process of the TCSEC has been widely discussed and critiqued [35, 74,
172, 471, 687, 729, 811], and changes have been proposed for specific environments
such as real-time embedded systems [16]. Several products and systems aimed at levels
of the TCSEC have also been analyzed [130, 272, 301, 765, 898, 948]. Pfleeger [719]
compares the TCSEC with then-current European evaluation methodologies.

The Canadian Trusted Computer Product Evaluation Criteria (CTCPEC)
[153] in 1989 was influenced by the TCSEC. Several nations developed another cri-
terion, the Information Technology Security Evaluation Criteria (ITSEC). The results
of ITSEC evaluations have been presented [148, 447]. Straw [881] compares the
ITSEC with the Federal Criteria, and Borrett [126] discusses the differences between
evaluation under the TCSEC and under the U.K. ITSEC.

Individuals from American Express and Electronic Data Systems (EDS)
joined forces to develop the Commercial International Security Requirements
(CISR) [227]. The 1992 Federal Criteria [675] attempted to address the shortcom-
ings of the TCSEC and of the ITSEC and to address the concerns of the CISR
authors.

The basis for CC requirements arises in several papers, including one that
describes the functional criteria for distributed systems [224]. Other papers discuss
various aspects of CC ratings [121, 453] and protection profiles, including the use of
SSE-CMM processes to develop those profiles [37, 945]. Some evaluations have also
been discussed [5, 400].

Hefner [412, 413] and Menk [620] discuss the origins and evaluation partner-
ships under the SSE-CMM. Some papers [507, 508] discuss the relationships
between product-oriented evaluation and process-oriented evaluation. In particular,
Ferraiolo [315] discusses the contribution of process capability to assurance and the
definition of metrics to support process-based assurance arguments. Ferraiolo’s tuto-
rial [316] provides a good introduction to SSE-CMM.

Bishop.book Page 360 Tuesday, September 28, 2004 1:46 PM

18.8 Exercises 361

Some systems have demanded their own specialized certification processes
[324], as have some environments [163, 295].

Lipner [572] gives a short, interesting historical retrospective on evaluation,
and Snow [847] briefly discusses the future.

Many organizations keep the most current information on evaluation stan-
dards and processes on the World Wide Web. For example, the FIPS 140-2 Web site
[674] gives information about NIST’s cryptographic module verification program.
The Common Criteria Web site [187] contains copies of the Common Criteria and
various national schemes, such as that of the United States [673]. It also offers histor-
ical information, information about current projects, registries of evaluated and
unevaluated protection profiles, evaluated product and system listings (most of
which include the security target for the product or system), products and PPs cur-
rently being evaluated, and information on testing laboratories and recognition
agreements among the participating countries. Detailed information about SSE-
CMM is also on the WWW [806].

18.8 Exercises

1. The issue of binding assurance requirements to functional requirements
versus treating them as mutually exclusive sets has been debated over the
years. Which approach do you think is preferable, and why?

2. What are the values of doing formal evaluation? What do you see as the
drawbacks of evaluation?

3. Recall that “criteria creep” is the process of refining evaluation
requirements as the industry gains experience with them, making the
evaluation criteria something of a moving target. (See Section 18.2.4.2.)
This issue is not confined to the TCSEC, but rather is a problem universal
to all evaluation technologies. Discuss the benefits and drawbacks of the
CC methodology for handling criteria creep.

4. What are the conceptual differences between a reference validation
mechanism, a trusted computing base, and the TOE Security Functions?

5. Choose a Common Criteria protection profile and a security target of a
product that implements that profile (see the Common Criteria Web site
[187]). Identify the differences between the PP and the ST that
implements the PP.

6. Identify the specific requirements in the Common Criteria that describe a
reference validation mechanism. Hint: Look in both security functional
classes and security assurance classes.

7. Use the Common Criteria to write security requirements for identifying
the security functional and assurance requirements that define a security
policy that implements the Bell-LaPadula Model.

Bishop.book Page 361 Tuesday, September 28, 2004 1:46 PM

362 Chapter 18 Evaluating Systems

8. Map the assurance requirements of the TCSEC (as defined in this
chapter) to the assurance requirements of the CC.

9. Map the security functional requirements of the CC to the functional
requirements of the TCSEC (as described in this chapter).

10. Describe a family of security functional requirements that is not covered
in the Common Criteria. Using the CC style and format, develop several
requirements.

Bishop.book Page 362 Tuesday, September 28, 2004 1:46 PM

363

Chapter 19
Malicious Logic

TITUS ANDRONICUS: Ah!, wherefore dost thou urge the name of hands?
To bid Aeneas tell the tale twice o’er,

How Troy was burnt and he made miserable?
—The Tragedy of Titus Andronicus, III, ii, 26–28.

Computer viruses, worms, and Trojan horses are effective tools with which to attack
computer systems. They assume an authorized user’s identity. This makes most tradi-
tional access controls useless. This chapter presents several types of malicious logic,
focusing on Trojan horses and computer viruses, and discusses defenses.

19.1 Introduction

Odysseus, of Trojan War fame, found the most effective way to breach a hitherto-
impregnable fortress was to have people inside bring him in without knowing they
were doing so [432, 916]. The same approach works for computer systems.

Definition 19–1. Malicious logic is a set of instructions that cause a site’s
security policy to be violated.

EXAMPLE: The following UNIX script is named ls and is placed in a directory.

cp /bin/sh /tmp/.xxsh
chmod u+s,o+x /tmp/.xxsh
rm ./ls
ls $*

It creates a copy of the UNIX shell that is setuid to the user executing this program (see
Section 13.3). This program is deleted, and then the correct ls command is executed. On
most systems, it is against policy to trick someone into creating a shell that is setuid to
themselves. If someone is tricked into executing this script, a violation of the (implicit)
security policy occurs. This script is an example of malicious logic.

Bishop.book Page 363 Tuesday, September 28, 2004 1:46 PM

364 Chapter 19 Malicious Logic

19.2 Trojan Horses

A critical observation is the notion of “tricked.” Suppose the user root executed this
script unintentionally (for example, by typing “ls” in the directory containing this
file). This would be a violation of the security policy. However, if root deliberately
typed

cp /bin/sh /tmp/.xxsh
chmod o+s,w+x /tmp/.xxsh

the security policy would not be violated. This illustrates a crucial component of the
problems with malicious logic. The system cannot determine whether the instruc-
tions being executed by a process are known to the user or are a set of instructions
that the user does not intend to execute. The next definition makes this distinction
explicit.

Definition 19–2. A Trojan horse is a program with an overt (documented or
known) effect and a covert (undocumented or unexpected) effect.

EXAMPLE: In the preceding example, the overt purpose is to list the files in a direc-
tory. The covert purpose is to create a shell that is setuid to the user executing the
script. Hence, this program is a Trojan horse.

Dan Edwards was the first to use this term [25]. Trojan horses are often used
in conjunction with other tools to attack systems.

EXAMPLE: The NetBus program allows an attacker to control a Windows NT work-
station remotely. The attacker can intercept keystrokes or mouse motions, upload and
download files, and act as a system administrator would act. In order for this program
to work, the victim Windows NT system must have a server with which the NetBus
program can communicate. This requires someone on the victim’s system to load and
execute a small program that runs the server.

This small program was placed in several small game programs as well as in
some other “fun” programs, which could be distributed to Web sites where unsus-
pecting users would be likely to download them.

Trojan horses can make copies of themselves. One of the earliest Trojan
horses was a version of the game animal. When this game was played, it created an
extra copy of itself. These copies spread, taking up much room. The program was
modified to delete one copy of the earlier version and create two copies of the modi-
fied program. Because it spread even more rapidly than the earlier version, the modi-
fied version of animal soon completely supplanted the earlier version. After a preset
date, each copy of the later version deleted itself after it was played [262].

Bishop.book Page 364 Tuesday, September 28, 2004 1:46 PM

19.3 Computer Viruses 365

Definition 19–3. A propagating Trojan horse (also called a replicating Tro-
jan horse) is a Trojan horse that creates a copy of itself.

Karger and Schell [496], and later Thompson [899], examined detection of
Trojan horses. They constructed a Trojan horse that propagated itself slowly and in a
manner that was difficult to detect. The central idea is that the Trojan horse modifies
the compiler to insert itself into specific programs, including future versions of the
compiler itself.

EXAMPLE: Thompson [899] added a Trojan horse to the login program. When a user
logged in, the Trojan horse would accept a fixed password as well as the user’s nor-
mal password. However, anyone reading the source code for the login program
would instantly detect this Trojan horse. To obscure it, Thompson had the compiler
check the program being compiled. If that program was login, the compiler added
the code to use the fixed password. Now, no code needed to be added to the login
program. Thus, an analyst inspecting the login program source code would see noth-
ing amiss. If the analyst compiled the login program from that source, she would
believe the executable to be uncorrupted.

The extra code is visible in the compiler source. To eliminate this problem,
Thompson modified the compiler. This second version checked to see if the compiler
(actually, the C preprocessor) was being recompiled. If so, the code to modify the
compiler so as to include both this Trojan horse and the login Trojan horse code
would be inserted. He compiled the second version of the compiler and installed the
executable. He then replaced the corrupted source with the original version of the
compiler. As with the login program, inspection of the source code would reveal
nothing amiss, but compiling and installing the compiler would insert the two Trojan
horses.

Thompson took special pains to ensure that the second version of the compiler
was never released. It remained on the system for a considerable time before some-
one overwrote the executable with a new version from a different system [751].
Thompson’s point1 was that “no amount of source-level verification or scrutiny will
protect you from using untrusted code,” a point to be reiterated later.

19.3 Computer Viruses

This type of Trojan horse propagates itself only as specific programs (in the preced-
ing example, the compiler and the login program). When the Trojan horse can propa-
gate freely and insert a copy of itself into another file, it becomes a computer virus.

1 See [899], p. 763.

Bishop.book Page 365 Tuesday, September 28, 2004 1:46 PM

366 Chapter 19 Malicious Logic

Definition 19–4. A computer virus is a program that inserts itself into one or
more files and then performs some (possibly null) action.

The first phase, in which the virus inserts itself into a file, is called the inser-
tion phase. The second phase, in which it performs some action, is called the execu-
tion phase. The following pseudocode fragment shows how a simple computer virus
works.

beginvirus:
if spread-condition then begin

for some set of target files do begin
if target is not infected then begin

determine where to place virus instructions
copy instructions from beginvirus to endvirus

into target
alter target to execute added instructions

end;
end;

end;
perform some action(s)
goto beginning of infected program

endvirus:

As this code indicates, the insertion phase must be present but need not always be exe-
cuted. For example, the Lehigh virus [421] would check for an uninfected boot file (the
spread-condition mentioned in the pseudocode) and, if one was found, would infect
that file (the set of target files). Then it would increment a counter and test to see if the
counter was at 4. If so, it would erase the disk. These operations were the action(s).

Authorities differ on whether or not a computer virus is a type of Trojan horse.
Most equate the purpose of the infected program with the overt action and consider
the insertion and execution phases to be the covert action. To them, a computer virus
is a Trojan horse [280, 464]. However, others argue that a computer virus has no
covert purpose. Its overt purpose is to infect and execute. To these authorities, it is
not a Trojan horse [180, 659]. In some sense this disagreement is semantic. In any
case, defenses against a Trojan horse inhibit computer viruses.

According to Ferbrache [314], programmers wrote the first computer viruses
on Apple II computers. A virus developed for research purposes in 1980 wrote itself
to the disk boot sectors when the catalogue command was executed. Another one
infected many copies of the game “Congo,” which stopped working. Friends of its
author had released it before it was fully debugged. The author rewrote it to replace
existing copies of itself with the fully debugged version. Released into the wild, it
rapidly supplanted the buggy copies.

In 1983, Fred Cohen was a graduate student at the University of Southern Cal-
ifornia. During a seminar on computer security, he described a type of Trojan horse
that the teacher, Len Adleman, christened a computer virus [181]. To demonstrate the

Bishop.book Page 366 Tuesday, September 28, 2004 1:46 PM

19.3 Computer Viruses 367

effectiveness of the proposed attack, Cohen designed a computer virus to acquire
privileges on a VAX-11/750 running the UNIX operating system. He obtained all
system rights within half an hour on the average, the longest time being an hour and
the shortest being less than 5 minutes. Because the virus did not degrade response
time noticeably, most users never knew the system was under attack.

In 1984, an experiment involving a UNIVAC 1108 showed that viruses could
spread throughout that system, too. Unlike the UNIX system, the UNIVAC partially
implemented the Bell-LaPadula Model, using mandatory protection mechanisms.2

Cohen’s experiments indicated that the security mechanisms of systems that did not
inhibit writing using mandatory access controls did little if anything to inhibit com-
puter virus propagation [180, 181].

The Brain (or Pakistani) virus, written for IBM PCs, is thought to have been
created in early 1986 [314] but was first reported in the United States in October
1987. It alters the boot sectors of floppy disks, possibly corrupting files in the pro-
cess. It also spreads to any uninfected floppy disks inserted into the system. Since
then, numerous variations of this virus have been reported [422].

In 1987, computer viruses infected Macintosh, Amiga, and other computers.
The MacMag Peace virus would print a “universal message of peace” on March 2,
1988, and then delete itself [321]. This computer virus infected copies of the Aldus
FreeHand program, which were recalled by their manufacturer [314].

In 1987, Tom Duff experimented on UNIX systems with a small virus that
copied itself into executable files. The virus was not particularly virulent, but when
Duff placed 48 infected programs on the most heavily used machine in the comput-
ing center, the virus spread to 46 different systems and infected 466 files, including
at least one system program on each computer system, within 8 days. Duff did not
violate the security mechanisms in any way when he seeded the original 48 programs
[282]. He wrote another virus in a Bourne shell script. It could attach itself to any
UNIX program. This demonstrated that computer viruses are not intrinsically
machine-dependent and can spread to systems of varying architectures.

In 1989, Dr. Harold Joseph Highland developed a virus for Lotus 1-2-3 [422].
This virus, stored as a set of commands for that spreadsheet, was loaded automati-
cally when a file was opened. Because the virus was intended for a demonstration
only, it changed the value in a specific row and column and then spread to other files.
This demonstrated that macros for office-type programs on personal computers could
contain viruses.

Several types of computer viruses have been identified.

19.3.1 Boot Sector Infectors

The boot sector is the part of a disk used to bootstrap the system or mount a disk.
Code in that sector is executed when the system “sees” the disk for the first time.

2 Specifically, it implemented the simple security condition but not the *-property [464].

Bishop.book Page 367 Tuesday, September 28, 2004 1:46 PM

368 Chapter 19 Malicious Logic

When the system boots, or the disk is mounted, any virus in that sector is executed.
(The actual boot code is moved to another place, possibly another sector.)

Definition 19–5. A boot sector infector is a virus that inserts itself into the
boot sector of a disk.

EXAMPLE: The Brain virus for the IBM PC is a boot sector infector. When the sys-
tem boots from an infected disk, the virus is in the boot sector and is loaded. It moves
the disk interrupt vector (location 13H or 19) to an alternative interrupt vector (loca-
tion 6DH or 109) and sets the disk interrupt vector location to invoke the Brain virus
now in memory. It then loads the original boot sector and continues the boot.

Whenever the user reads a floppy, the interrupt at location 13H is invoked. The
Brain virus checks for the signature 1234H in the word at location 4. If the signature
is present, control is transferred to the interrupt vector at location 6DH so that a nor-
mal read can proceed. Otherwise, the virus infects the disk.

To do this, it first allocates to itself three contiguous clusters (of two contigu-
ous sectors each). The virus then copies the original boot sector to the first of the six
contiguous sectors and puts copies of itself into the boot sector and the remaining
five sectors.

If there are no unused clusters, the virus will not infect the disk. If it finds only
one unused cluster, it will simply overwrite the next two. This accounts for the some-
times destructive nature of the Brain virus.

19.3.2 Executable Infectors

Definition 19–6. An executable infector is a virus that infects executable pro-
grams.

The PC variety of executable infectors are called COM or EXE viruses because they
infect programs with those extensions. Figure 19–1 illustrates how infection can

Header Executable code and data

0 100 1000

Header Executable code and data

0 100 1000 1100

Virus code

Figure 19–1 How an executable infector works. It inserts itself into the program
so that the virus code will be executed before the application code. In this
example, the virus is 100 words long and prepends itself to the executable code.

200

First program instruction to be executed

Bishop.book Page 368 Tuesday, September 28, 2004 1:46 PM

19.3 Computer Viruses 369

occur. The virus can prepend itself to the executable (as shown in the figure) or
append itself.

EXAMPLE: The Jerusalem virus (also called the Israeli virus) is triggered when an
infected program is executed. The virus first puts the value 0E0H into register ax and
invokes the DOS service interrupt (21H). If on return the high eight bits of register ax
contain 03H, the virus is already resident on the system and the executing version
quits, invoking the original program. Otherwise, the virus sets itself up to respond to
traps to the DOS service interrupt vector.

The Jerusalem virus then checks the date. If the year is 1987, it does nothing.
Otherwise, if it is not a Friday and not the 13th (of any month), it sets itself up to
respond to clock interrupts (but it will not infect on clock calls). It then loads and
executes the file originally executed. When that file finishes, the virus puts itself in
memory. It then responds to calls to the DOS service interrupt.

If it is a Friday and the 13th (of any month), and the year is not 1987, the virus
sets a flag in memory to be destructive. This flag means that the virus will delete files
instead of infecting them.

Once in memory, the virus checks all calls to the DOS service interrupt, look-
ing for those asking that files be executed (function 4B00H). When this happens, the
virus checks the name of the file. If it is COMND.COM, the virus does nothing. If
the memory flag is set to be destructive, the file is deleted. Otherwise, the virus
checks the last five bytes of the file. If they are the string “MsDos,” the file is
infected.3 If they are not, the virus checks the last character of the file name. If it is
“M,” the virus assumes that a .COM file is being executed and infects it; if it is “E,”
the virus assumes that a .EXE file is being executed and infects it. The file’s
attributes, especially the date and time of modification, are left unchanged.

19.3.3 Multipartite Viruses

Definition 19–7. A multipartite virus is one that can infect either boot sectors
or applications.

Such a virus typically has two parts, one for each type. When it infects an executable,
it acts as an executable infector; when it infects a boot sector, it works as a boot sec-
tor infector.

3 According to Compulit, as cited in [422], “[t]he author of the virus apparently forgot to set the
signature during .EXE file infection. This will cause multiple infections of .EXE files” (p. 47).
Analysts at the Hebrew University of Jerusalem found that the size of a .COM file increased
only one time, but the size of a .EXE file increased every time the file was executed.

Bishop.book Page 369 Tuesday, September 28, 2004 1:46 PM

370 Chapter 19 Malicious Logic

19.3.4 TSR Viruses

Definition 19–8. A terminate and stay resident (TSR) virus is one that stays
active (resident) in memory after the application (or bootstrapping, or disk
mounting) has terminated.

TSR viruses can be boot sector infectors or executable infectors. Both the Brain and
Jerusalem viruses are TSR viruses.

Viruses that are not TSR execute only when the host application is executed
(or the disk containing the infected boot sector is mounted). An example is the
Encroacher virus, which appends itself to the ends of executables.

19.3.5 Stealth Viruses

Definition 19–9. Stealth viruses are viruses that conceal the infection of files.

These viruses intercept calls to the operating system that access files. If the call is to
obtain file attributes, the original attributes of the file are returned. If the call is to
read the file, the file is disinfected as its data is returned. But if the call is to execute
the file, the infected file is executed.

EXAMPLE: The Stealth virus (also called the IDF virus or the 4096 virus) is an exe-
cutable infector. It modifies the DOS service interrupt handler (rather than the inter-
rupt vector; this way, checking the values in the interrupt vector will not reveal the
presence of the virus). If the request is for the length of the file, the length of the
uninfected file is returned. If the request is to open the file, the file is temporarily dis-
infected; it is reinfected on closing. The Stealth virus also changes the time of last
modification of the file in the file allocation table to indicate that the file is infected.

19.3.6 Encrypted Viruses

Computer virus detectors often look for known sequences of code to identify com-
puter viruses (see Section 19.6.4). To conceal these sequences, some viruses enci-
pher most of the virus code, leaving only a small decryption routine and a random
cryptographic key in the clear. Figure 19–2 summarizes this technique.

Virus code Enciphered virus codeDeciphering
routine

Deciphering key
Figure 19–2 An encrypted virus. The ordinary virus code is at the left. The
encrypted virus, plus encapsulating decryption information, is at the right.

Bishop.book Page 370 Tuesday, September 28, 2004 1:46 PM

19.3 Computer Viruses 371

Definition 19–10. An encrypted virus is one that enciphers all of the virus
code except for a small decryption routine.

EXAMPLE: Ferbrache4 cites the following as the decryption code in the 1260 virus.
It uses two keys, stored in k1 and k2. The virus code itself begins at the location sov
and ends at the location eov. The pseudocode is as follows.

(* initialize the registers with the keys *)
rA ← k1;
rB ← k2;
(* initialize rC with the message *)
rC ← sov;
(* the encipherment loop *)
while (rC != eov) do begin

(* encipher the byte of the message *)
(*rC) ← (*rC) xor rA xor rB;
(* advance all the counters *)
rC ← rC + 1;
rA ← rA + 1;

end

The dual keys and the shifting of the first key prevent a simple xor’ing from
uncovering the deciphered virus.

19.3.7 Polymorphic Viruses

Definition 19–11. A polymorphic virus is a virus that changes its form each
time it inserts itself into another program.

Consider an encrypted virus. The body of the virus varies depending on the key cho-
sen, so detecting known sequences of instructions will not detect the virus. However,
the decryption algorithm can be detected. Polymorphic viruses were designed to pre-
vent this. They change the instructions in the virus to something equivalent but dif-
ferent. In particular, the deciphering code is the segment of the virus that is changed.
In some sense, they are successors to the encrypting viruses and are often used in
conjunction with them.

Consider polymorphism at the instruction level. All of the instructions

add 0 to operand
or 1 with operand
no operation
subtract 0 from operand

4 See [314], p. 75.

Bishop.book Page 371 Tuesday, September 28, 2004 1:46 PM

372 Chapter 19 Malicious Logic

have exactly the same effect, but they are represented as different bit patterns on
most architectures. A polymorphic virus would insert these instructions into the deci-
phering segment of code.

EXAMPLE: A polymorphic version of the 1260 computer virus might look like the
following. (The lines marked “random line” do nothing and are changed whenever
the virus replicates.)

(* initialize the registers with the keys *)
rA ← k1;
rD ← rD + 1;(* random line *)
rB ← k2;
(* initialize rC with the message *)
rC ← sov;
rC ← rC + 1;(* random line *)
(* the encipherment loop *)
while (rC != eov) do begin

rC ← rC - 1;(* random line X *)
(* encipher the byte of the message *)
(*rC) ← (*rC) xor rA xor rB;
(* advance all the counters *)
rC ← rC + 2;(* counter incremented ... *)
(* to handle random line X *)
rD ← rD + 1;(* random line *)
rA ← rA + 1;

end
while (rC != sov) do begin(* random line *)

rD ← rD – 1;(* random line *)
end(* random line *)

Examination shows that these instructions have the same effect as the four
instructions listed above.

The production of polymorphic viruses at the instruction level has been auto-
mated. At least two tool kits, the Mutation Engine (MtE) and the Trident Polymor-
phic Engine (TPE), were available in 1992 [958].

Polymorphism can exist at many levels. For example, a deciphering algorithm
may have two completely different implementations, or two different algorithms may
produce the same result. In these cases, the polymorphism is at a higher level and is
more difficult to detect.

19.3.8 Macro Viruses

Definition 19–12. A macro virus is a virus composed of a sequence of
instructions that is interpreted, rather than executed directly.

Bishop.book Page 372 Tuesday, September 28, 2004 1:46 PM

19.4 Computer Worms 373

Conceptually, macro viruses are no different from ordinary computer viruses. Like
Duff’s sh computer virus, they can execute on any system that can interpret the
instructions. For example, a spreadsheet virus executes when the spreadsheet inter-
prets these instructions. If the macro language allows the macro to access files or
other systems, the virus can access them, too.

EXAMPLE: The Melissa virus infected Word 97 and 98 documents on Windows and
Macintosh systems. It is invoked when the program opens an infected file. It installs
itself as the “open” macro and copies itself into the Normal template (so any files
that are opened are infected). It then invokes a mail program and sends copies of
itself to people in the user’s address book associated with the program.

A macro virus can infect either executables or data files (the latter leads to the
name data virus). If it infects executable files, it must arrange to be interpreted at
some point. Duff’s experiments did this by wrapping the executables with shell
scripts. The resulting executables invoked the Bourne shell, which interpreted the
virus code before invoking the usual executable.

Macro viruses are not bound by machine architecture. They use specific pro-
grams, and so, for example, a macro virus targeted at a Microsoft Word program will
work on any system running Microsoft Word. The effects may differ. For example,
most Macintosh users do not use the particular mail program that Melissa invoked,
so although Macintosh Word files could have been infected, and the infection could
have been spread, the virus did not mail itself to other users. On a Windows system,
where most users did use that mail program, the infection was spread by mail.

19.4 Computer Worms

A computer virus infects other programs. A variant of the virus is a program that
spreads from computer to computer, spawning copies of itself on each one.

Definition 19–13. A computer worm is a program that copies itself from one
computer to another.

Research into computer worms began in the mid-1970s. Schoch and Hupp
[797] developed distributed programs to do computer animations, broadcast mes-
sages, and perform other computations. These programs probed workstations. If the
workstation was idle, the worm copied a segment onto the system. The segment was
given data to process and communicated with the worm’s controller. When any activ-
ity other than the segment’s began on the workstation, the segment shut down.

EXAMPLE: On November 2, 1988, a program targeting Berkeley and Sun UNIX-
based computers entered the Internet; within hours, it had rendered several thousand

Bishop.book Page 373 Tuesday, September 28, 2004 1:46 PM

374 Chapter 19 Malicious Logic

computers unusable [292, 293, 757, 808, 809, 857, 858, 879]. Among other tech-
niques, this program used a virus-like attack to spread: it inserted some instructions
into a running process on the target machine and arranged for those instructions to be
executed. To recover, these machines had to be disconnected from the network and
rebooted, and several critical programs had to be changed and recompiled to prevent
reinfection. Worse, the only way to determine if the program had suffered other mali-
cious side effects (such as deletion of files) was to disassemble it. Fortunately, the
only purpose of this virus turned out to be self-propagation. Infected sites were
extremely lucky that the worm5 did not infect a system program with a virus
designed to delete files and did not attempt to damage attacked systems.

Since then, there have been several incidents involving worms. The Father
Christmas worm was interesting because it was a form of macro worm.

EXAMPLE: Slightly before the Internet worm, an electronic “Christmas card” passed
around several IBM-based networks. This card was an electronic letter instructing
the recipient to save the message and run it as a program. The program drew a Christ-
mas tree (complete with blinking lights) and printed “Merry Christmas!” It then
checked the recipient’s list of previously received mail and the recipient’s address
book to create a new list of e-mail addresses. It then sent copies of itself to all these
addresses. The worm quickly overwhelmed the IBM networks and forced the net-
works and systems to be shut down [377].

This worm had the characteristics of a macro worm. It was written in a high-
level job control language, which the IBM systems interpreted. Like the Melissa
virus, which was written in the Visual Basic programming language, the Father
Christmas worm was never directly executed—but its effects (spreading from system
to system) were just as serious.

19.5 Other Forms of Malicious Logic

Malicious logic can have other effects, alone or in combination with the effects dis-
cussed in Sections 19.2 to 19.4.

19.5.1 Rabbits and Bacteria

Some malicious logic multiplies so rapidly that resources become exhausted. This
creates a denial of service attack.

5 We use the conventional terminology of calling this program a “computer worm” because its
dominant method of propagation was from computer system to computer system. Others,
notably Eichin and Rochlis [292], have labeled it a “computer virus.”

Bishop.book Page 374 Tuesday, September 28, 2004 1:46 PM

19.5 Other Forms of Malicious Logic 375

Definition 19–14. A bacterium or a rabbit is a program that absorbs all of
some class of resource.

A bacterium is not required to use all resources on the system. Resources of a
specific class, such as file descriptors or process table entry slots, may not affect cur-
rently running processes. They will affect new processes.

EXAMPLE: Dennis Ritchie [752] presented the following shell script as something
that would quickly exhaust either disk space or inode tables on a UNIX Version 7
system.

while true
do

mkdir x
chdir x

done

He pointed out, however, that the user who caused a crash using this program would
be immediately identified when the system was rebooted.

19.5.2 Logic Bombs

Some malicious logic triggers on an external event, such as a user logging in or the
arrival of midnight, Friday the 13th.

Definition 19–15. A logic bomb is a program that performs an action that
violates the security policy when some external event occurs.

Disaffected employees who plant Trojan horses in systems use logic bombs.
The events that cause problems are related to the troubles the employees have, such
as deleting the payroll roster when that user’s name is deleted.

EXAMPLE: In the early 1980s, a program posted to the USENET news network
promised to make administering systems easier. The directions stated that the shar
archive containing the program had to be unpacked, and the program compiled and
installed, as root. Midway down the shar archive were the lines

cd /
rm -rf *

Anyone who followed the instructions caused these lines to be executed. These com-
mands deleted all files in the system. Some system administrators executed the pro-
gram with unlimited privileges, thereby damaging their systems.

Bishop.book Page 375 Tuesday, September 28, 2004 1:46 PM

376 Chapter 19 Malicious Logic

19.6 Defenses

Defending against malicious logic takes advantage of several different characteristics
of malicious logic to detect, or to block, its execution. The defenses inhibit the sus-
pect behavior. The mechanisms are imprecise. They may allow malicious logic that
does not exhibit the given characteristic to proceed, and they may prevent programs
that are not malicious but do exhibit the given characteristic from proceeding.

19.6.1 Malicious Logic Acting as Both Data and Instructions

Some malicious logic acts as both data and instructions. A computer virus inserts
code into another program. During this writing, the object being written into the file
(the set of virus instructions) is data. The virus then executes itself. The instructions
it executes are the same as what it has just written. Here, the object is treated as an
executable set of instructions. Protection mechanisms based on this property treat all
programs as type “data” until some certifying authority changes the type to “execut-
able” (instructions). Both new systems designed to meet strong security policies and
enhancements of existing systems use these methods (see Section 14.3.1).

EXAMPLE: Boebert, Young, Kain, and Hansohn [120] propose labeling of subjects
and objects in the Logical Coprocessor Kernel or LOCK (formerly the Secure Ada
Target or SAT) [119, 388, 789, 790], a system designed to meet the highest level of
security under the U.S. Department of Defense TCSEC (see Section 18.2). Once
compiled, programs have the label “data” and cannot be executed until a sequence of
specific, auditable events changes the label to “executable.” After that, the program
cannot be modified. This scheme recognizes that viruses treat programs as data
(when they infect them by changing the file’s contents) and as instructions (when the
program executes and spreads the virus) and rigidly separates the two.

EXAMPLE: Duff [282] has suggested a variant for UNIX-based systems. Noting that
users with execute permission for a file usually also have read permission, he pro-
poses that files with execute permission be of type “executable” and that those with-
out it be of type “data.” Unlike the LOCK, “executable” files could be modified, but
doing so would change those files’ types to “data.” If the certifying authority were
the omnipotent user, the virus could spread only if run as that user. Libraries and
other system components of programs must also be certified before use to prevent
infection from nonexecutable files.

Both the LOCK scheme and Duff’s proposal trust that the administrators will
never certify a program containing malicious logic (either by accident or deliber-
ately) and that the tools used in the certification process are not themselves corrupt.

Bishop.book Page 376 Tuesday, September 28, 2004 1:46 PM

19.6 Defenses 377

19.6.2 Malicious Logic Assuming the Identity of a User

Because a user (unknowingly) executes malicious logic, that code can access and
affect objects within the user’s protection domain. So, limiting the objects accessible
to a given process run by the user is an obvious protection technique. This draws on
the mechanisms for confining information (see Chapter 16, “Confinement Problem”).

19.6.2.1 Information Flow Metrics
Cohen suggests an approach [182]. This approach is to limit the distance a virus can
spread.

Definition 19–16. Define the flow distance metric fd(x) for some information
x as follows. Initially, all information has fd(x) = 0. Whenever x is shared,
fd(x) increases by 1. Whenever x is used as input to a computation, the flow
distance of the output is the maximum of the flow distance of the input.

Information is accessible only while its flow distance is less than some partic-
ular value.

EXAMPLE: Anne, Bill, and Cathy work on the same computer. The system uses the
flow distance metric to limit the flow of information. Anne can access information
with a flow distance less than 3, and Bill and Cathy can access information with a
flow distance less than 2. Anne creates a program dovirus containing a computer
virus. Bill executes it. Because the contents of the program have a flow distance of 0,
when the virus infects Bill’s file safefile, the flow distance of the virus is 1, and so
Bill can access it. Hence, the copying succeeds. Now, if Cathy executes safefile,
when the virus tries to spread to her files, its flow distance increases to 2. Hence, the
infection is not permitted (because Cathy can only access information with a flow
distance of 0 or 1).

This example also shows the problem with the flow distance policy (which
constrains sharing based on the flow distance metric). Although Cathy cannot be
infected by viruses that Bill has acquired, she can be infected by viruses that Bill has
written. (For example, had Cathy run Anne’s dovirus program, she would have had
her files infected.) The bounding constant limits the transitivity of trust. This number
should therefore be low. If it is 1, only the people from whom Cathy copies files are
trusted. Cathy does not trust anyone that they trust.

This mechanism raises interesting implementation issues. The metric is asso-
ciated with information and not objects. Rather than tagging specific information in
files, systems implementing this policy would most likely tag objects, treating the
composition of different information as having the maximum flow distance of the
information. This will inhibit sharing.

Bishop.book Page 377 Tuesday, September 28, 2004 1:46 PM

378 Chapter 19 Malicious Logic

Ultimately, the only way to use this policy is to make the bounding constant 0.
This isolates each user into his or her own protection domain and allows no sharing.
Cohen points out that this defeats the main purpose of scientific or development
environments, in which users build on the work of others.

19.6.2.2 Reducing the Rights
The user can reduce her associated protection domain when running a suspect pro-
gram. This follows from the principle of least privilege (see Section 12.2.1). Wise-
man discusses one approach [950], and Juni and Ponto present another idea in the
context of a medical database [478].

EXAMPLE: Smith [845] combines ACLs and C-Lists to achieve this end. Suppose s1
owns a file o1 and s2 owns a program o2 and a file o3. The union of discretionary
ACLs is

BACL = { (s1, o1, r), (s1, o1, w), (s1, o2, x), (s1, o3, w),
(s2, o2, r), (s2, o2, w), (s2, o2, x), (s2, o3, r) }

Program o2 contains a Trojan horse. If s1 wants to execute o2, he must ensure that it
does not write to o1. Ideally, s1’s protection domain will be reduced to { (s1, o2, x)}.
Then if p12, the process (subject) created when s1 executes o2, tries to access o3, the
access will be denied. In fact, p12 inherits the access rights of s1. So, the default pro-
tection domain for p12 will be

PD(p12) = PD(s1) = { (p12, o1, r), (p12, o1, w), (p12, o2, x), (p12, o3, w) }

Now, because s1 can write to o3, so can p12. Moreover, s1 cannot constrain this
behavior because s1 does not own o3 and so cannot delete its access rights over o3.

Smith’s solution is to require each user si to define an authorization denial
subset R(si) to contain those ACL entries that it will not allow others to exercise over
the objects that si owns. In this example, if R(s2) = { (s1, o3, w) }, then

PD(p12) = PD(s1) ∩ ¬ (∪j R(sj)) = { (p12, o1, r), (p12, o1, w), (p12, o2, x) }

where “¬” means set complement. Now p12 cannot write to o3.

Although effective, this approach begs the question of how to determine which
entries should be in the authorization denial subsets. Karger suggests basing access
on the program being executed and some characteristic of the file being accessed.

EXAMPLE: Karger proposes a knowledge-based subsystem to determine if a pro-
gram makes reasonable file accesses [494]. The subsystem sits between the kernel
open routine and the application. The subsystem contains information about the

Bishop.book Page 378 Tuesday, September 28, 2004 1:46 PM

19.6 Defenses 379

names of the files that each program is expected to access. For example, a UNIX C
compiler reads from C source files (the names of which end in “.c” and “.h”) and writes
to temporary files (the names of which begin with “/tmp/ctm”) and assembly files
(whose names end in “.s”). It executes the assembler, which reads from assembly
files and writes to object files (with names ending in “.o”). The compiler then invokes
the linking loader, which reads from object files and library files (whose names end
in “.a”) and writes to executable files (with names ending in “.out” unless the user
supplies an alternative name). So, Karger’s subsystem has the following associations.

Program Reads Writes Executes
Compiler *.c, *.h *.s, /tmp/ctm* Assembler, loader
Assembler *.s *.o
(Linking) loader *.o, *.a *.out

(The “*” means zero or more characters.)
When the subsystem is invoked, it checks that the access is allowed. If not, it

either denies the access or asks the user whether to permit the access.

A related approach is to base access to files on some characteristic of the com-
mand or program [182], possibly including subject authorizations as well [180].

EXAMPLE: Lai and Gray [540] have implemented a modified version of Karger’s
scheme on a UNIX system. Unlike Karger, they combine knowledge about each
command with the command-line arguments of the current invocation. Their idea is
to use this information to determine the user’s intent to access files and the type of
access. They do not protect these files, but instead prevent other files not named on
the command line from being accessed (with two exceptions).

Processes are divided into two groups. File accesses by trusted processes are not
checked. Associated with each untrusted process is a valid access list (VAL) consisting
of the arguments of the process plus any temporary files created. When an untrusted
process tries to access a file, the kernel executes the following sequence of steps.

1. If the process is requesting access to a file on the VAL, the access is
allowed if the effective UID and GID of the process allow the access.

2. If the process is opening the file for reading and the file is world-readable,
the open is allowed.

3. If the process is creating a file, the creation is allowed if the effective UID
and GID of the process allow the creation. The file is entered into the VAL
of the process and is marked as a new nonargument (NNA) file. The file’s
protection modes are set so that no other user may access the file.

4. Otherwise, an entry in the system log reflects the request, and the user is
asked if the access is to be allowed. If the user agrees, the access is allowed
if the effective UID and GID of the process allow it. Otherwise, the access
is denied.

Bishop.book Page 379 Tuesday, September 28, 2004 1:46 PM

380 Chapter 19 Malicious Logic

VALs are created whenever a trusted process spawns an untrusted process, and are
inherited.

Files marked NNA have permissions such that only the creating user can
access them. They are in the VAL of the creating process, and no others, so only that
process and its descendents can access the NNA file. However, neither the creating
process nor its descendants may change the protection modes of that file. When the
file is deleted, its entry is removed from the VAL. When the process terminates, the
user is notified of any existing NNA files.

The trusted processes in a 4.3BSD UNIX environment are UNIX command
interpreters (csh and sh), the programs that spawn them on login (getty and login),
programs that access the file system recursively (ar, chgrp, chown, diff, du, dump,
find, ls, rcp, restore, and tar), programs that often access files not in their argument
lists (binmail, cpp, dbx, mail, make, script, and vi), and various network daemons
(fingerd, ftpd, ntalkd, rlogind, rshd, sendmail, talkd, telnetd, tftpd, and uucpd). Fur-
thermore, a program called trust enables root to spawn trusted processes other than
those listed above.

As an example, consider the assembler when invoked from the cc program.
The assembler is called as

as x.s /tmp/cc2345

and the assembler creates the file /tmp/as1111 during the assembly. The VAL is

x.s /tmp/cc2345 /tmp/as1111

with the first file being read-only and the next two being readable and writable (the
first because cc created it and the second because as created it). In cc’s VAL, the
temporary file /tmp/cc2345 is marked NNA; in as’s VAL, it is not (because it is a
command-line argument to as). The loader is invoked as

ld /lib/crt0.o /tmp/cc2345 -lc -o x

The loader’s VAL is

/lib/crt0.o /tmp/cc2345 /lib/libc.a x

The first three files are read-only and the last file is readable and writable.
Now, suppose a Trojan horse assembler is to copy the program to another

user’s area. When it attempts to create the target file, rule 3 forces the target to be
readable only by the originator. Hence, the attacker cannot read the newly created
file. If the attacker creates the file with privileges to allow him to read it, the victim is
asked if write access to the file should be allowed. This alerts the user to the presence
of the Trojan horse.

Bishop.book Page 380 Tuesday, September 28, 2004 1:46 PM

19.6 Defenses 381

An alternative mechanism is interception of requests to open files. The
“watchdog” or “guardian” then performs a check to determine if the access is to be
allowed. This effectively redefines the system calls involved. The issues of determin-
ing how to write watchdogs to meet the desired goals and allowing users to specify
semantics for file accesses [83, 232] may prove useful in some contexts—for exam-
ple, in protecting a limited set of files.

All such mechanisms (1) trust the users to take explicit actions to limit their pro-
tection domains sufficiently, (2) trust tables to describe the programs’ expected actions
sufficiently for the mechanisms to apply those descriptions and to handle commands
with no corresponding table entries effectively, or (3) trust specific programs and the
kernel when they would be the first programs malicious logic would attack.

19.6.2.3 Sandboxing
Sandboxes and virtual machines (see Section 16.2) implicitly restrict process rights.
A common implementation of this approach is to restrict the program by modifying
it. Usually, special instructions inserted into the object code cause traps whenever an
instruction violates the security policy. If the executable dynamically loads libraries,
special libraries with the desired restrictions replace the standard libraries.

EXAMPLE: Bishop and Dilger [110] propose a modification to UNIX system calls to
detect race conditions in file accesses. A race condition occurs when successive sys-
tem calls operate on an object identified by name, and the name can be rebounded to
a different object between the first and second system calls. The augmentation
involved would record the inode number (unique identifier) of the object identified in
the first system call. When the object named in the second system call differed from
the object named in the first system call, the mechanism would take appropriate
action.

19.6.3 Malicious Logic Crossing Protection Domain
Boundaries by Sharing

Inhibiting users in different protection domains from sharing programs or data will
inhibit malicious logic from spreading among those domains. This takes advantage
of the separation implicit in integrity policies (see Chapter 6).

EXAMPLE: When users share procedures, the LOCK system (see Section 22.7.1)
keeps only one copy of the procedure in memory. A master directory, accessible only
to a trusted hardware controller, associates with each procedure a unique owner and
with each user a list of others whom that user trusts. Before executing any procedure,
the dynamic linker checks that the user executing the procedure trusts the proce-
dure’s owner [118]. This scheme assumes that users’ trust in one another is always
well-placed.

Bishop.book Page 381 Tuesday, September 28, 2004 1:46 PM

382 Chapter 19 Malicious Logic

A more general proposal [960] suggests that programs to be protected be
placed at the lowest possible level of an implementation of a multilevel security pol-
icy. Because the mandatory access controls will prevent those processes from writing
to objects at lower levels, any process can read the programs but no process can write
to them. Such a scheme would have to be combined with an integrity model to pro-
vide protection against viruses to prevent both disclosure and file corruption.

EXAMPLE: The Data General model (see Figure 5–3, on page 67) places the execut-
ables below the user region in the hierarchy of layers. The site-specific executables
are highest, followed by the trusted data, and the Data General executables are at the
lowest level. This prevents alteration of the Data General executables and trusted
data by site executables and alteration of all executables and trusted data by user
applications.

Carrying this idea to its extreme would result in isolation of each domain.
Because sharing would not be possible, no viruses could propagate. Unfortunately,
the usefulness of such systems would be minimal.

19.6.4 Malicious Logic Altering Files

Mechanisms using manipulation detection codes (or MDCs) apply some function to a
file to obtain a set of bits called the signature block and then protect that block. If, after
recomputing the signature block, the result differs from the stored signature block, the
file has changed, possibly as a result of malicious logic altering the file. This mecha-
nism relies on selection of good cryptographic checksums (see Section 8.4).

EXAMPLE: Tripwire [509, 510] is an integrity checker that targets the UNIX envi-
ronment. This program computes a signature block for each file and stores it in a
database. The signature of each file consists of file attributes (such as size, owner,
protection mode, and inode number) and various cryptographic checksums (such as
MD-4, MD-5, HAVAL, SHS, and various CRCs). The system administrator selects
the components that make up the signature.

When Tripwire is executed, it recomputes each signature block and compares
the recomputed blocks with those in the file. If any of them differ, the change is
reported as indicating a possibly corrupted file.

An assumption is that the signed file does not contain malicious logic before it
is signed. Page [707] has suggested expansion of Boebert and Kain’s model [119] to
include the software development process (in effect, limiting execution domains for
each development tool and user) to ensure that software is not contaminated during
development.

Bishop.book Page 382 Tuesday, September 28, 2004 1:46 PM

19.6 Defenses 383

EXAMPLE: Pozzo and Grey [730, 731] have implemented Biba’s integrity model on
the distributed operating system LOCUS [724] to make the level of trust in the
above-mentioned assumption explicit. They have different classes of signed execut-
able programs. Credibility ratings (Biba’s “integrity levels”) assign a measure of
trustworthiness on a scale of 0 (unsigned) to N (signed and formally verified), based
on the origin of the software. Trusted file systems contain only signed executable
files with the same credibility level. Associated with each user (subject) is a risk level
that starts out as the highest credibility level. Users may execute programs with cred-
ibility levels no less than their risk levels.When the credibility level is lower than the
risk level, a special “run-untrusted” command must be used.

All integrity-based schemes rely on software that if infected may fail to report
tampering. Performance will be affected because encrypting the file or computing
the signature block may take a significant amount of time. The encrypting key must
also be secret because if it is not, then malicious logic can easily alter a signed file
without the change being detected.

Antivirus scanners check files for specific viruses and, if a virus is present,
either warn the user or attempt to “cure” the infection by removing the virus. Many
such agents exist for personal computers, but because each agent must look for a
particular virus or set of viruses, they are very specific tools and, because of the
undecidability results stated earlier, cannot deal with viruses not yet analyzed.

19.6.5 Malicious Logic Performing Actions
Beyond Specification

Fault-tolerant techniques keep systems functioning correctly when the software or
hardware fails to perform to specifications. Joseph and ˘Avizienis have suggested treat-
ing the infection and execution phases of a virus as errors. The first such proposal [475,
476] breaks programs into sequences of nonbranching instructions and checksums
each sequence, storing the results in encrypted form. When the program is run, the pro-
cessor recomputes checksums, and at each branch a coprocessor compares the com-
puted checksum with the encrypted checksum; if they differ, an error (which may be an
infection) has occurred. Later proposals advocate checking of each instruction [233].
These schemes raise issues of key management and protection as well as the degree to
which the software managing keys, which transmit the control flow graph to the copro-
cessor and implement the recovery mechanism, can be trusted.

A proposal based on N-version programming [44] requires implementation of
several different versions of an algorithm, running them concurrently and periodi-
cally checking their intermediate results against each other. If they disagree, the
value assumed to be correct is the intermediate value that a majority of the programs
have obtained, and the programs with different values are malfunctioning (possibly
owing to malicious logic). This requires that a majority of the programs are not
infected and that the underlying operating system is secure. Also, Knight and Leve-
son [513] question the efficacy of N-version programming. Detecting the spread of a

Bishop.book Page 383 Tuesday, September 28, 2004 1:46 PM

384 Chapter 19 Malicious Logic

virus would require voting on each file system access. To achieve this level of com-
parison, the programs would all have to implement the same algorithm, which would
defeat the purpose of using N-version programming [514].

19.6.5.1 Proof-Carrying Code
Necula has proposed a technique that combines specification and integrity checking
[680]. His method, called proof-carrying code (PCC), requires a “code consumer” (user)
to specify a safety requirement. The “code producer” (author) generates a proof that the
code meets the desired safety property and integrates that proof with the executable code.
This produces a PCC binary. The binary is delivered (through the network or other
means) to the consumer. The consumer then validates the safety proof and, if it is correct,
can execute the code knowing that it honors that policy. The key idea is that the proof
consists of elements drawn from the native code. If the native code is changed in a way
that violates the safety policy, the proof is invalidated and will be rejected.

EXAMPLE: Necula and Lee [681] tested their method on UNIX-based network
packet filters as supported by the Berkeley Packet Filter (BPF) [602, 645]. These fil-
ters were written in an interpreted language. The kernel performed the interpretations
and prevented the filter from looping and from writing to any location except the
packet’s data or a small scratch memory. The filters were rewritten in assembly lan-
guage and augmented with proofs that showed that they met the safety policy that the
kernel enforced. The proofs ranged from 300 to 900 bytes, and the validation times
ranged from 0.3 to 1.3 ms. As expected, the start-up cost was higher (because the
proofs had to be validated before the filters were run), but the runtimes were consid-
erably shorter. In their experiments, in which 1,000 packets were received per second
(on the average), the total cost of using the BPF exceeded the PCC after 1,200 pack-
ets. The method also compared favorably with implementations using a restrictive
subset of Modula-3 (after 10,500 packets) [84, 446] and software fault isolation
(after 28,000 packets).

19.6.6 Malicious Logic Altering Statistical Characteristics

Like human languages, programs have specific statistical characteristics that mali-
cious logic might alter. Detection of such changes may lead to detection of malicious
logic.

EXAMPLE: Malicious logic might be present if a program appears to have more pro-
grammers than were known to have worked on it or if one particular programmer
appears to have worked on many different and unrelated programs [960]. Program-
mers have their own individual styles of writing programs. At the source code level,
features such as language, formatting, and comment styles can distinguish coding
styles. However, adherence to organizational coding standards obscures these fea-

Bishop.book Page 384 Tuesday, September 28, 2004 1:46 PM

19.7 Summary 385

tures [535]. At the object code level, features such as choice of data structures and
algorithms may distinguish programmers [862].

Comparison of object and source may reveal that the object file contains con-
ditionals not corresponding to any in the source. In this case, the object may be
infected [349]. Similar proposals suggest examination of the appearance of programs
for identical sequences of instructions or byte patterns [464, 960]. The disadvantage
of such comparisons is that they require large numbers of comparisons and need to
take into account the reuse of common library routines or of code [505].

Another proposal suggests that a filter be designed to detect, analyze, and
classify all modifications that a program makes as ordinary or suspicious [222].
Along the same lines, Dorothy Denning suggests the use of an intrusion-detection
expert system6 to detect viruses by looking for increases in file size, increases in the
frequency of writing to executable files, or alterations in the frequency of execution
of a specific program in ways that do not match the profiles of users who are spread-
ing the infection [243].

19.6.7 The Notion of Trust

The effectiveness of any security mechanism depends on the security of the underly-
ing base on which the mechanism is implemented and the correctness of the imple-
mentation. If the trust in the base or in the implementation is misplaced, the
mechanism will not be secure. Thus, “secure,” like “trust,” is a relative notion, and
the design of any mechanism for enhancing computer security must attempt to bal-
ance the cost of the mechanism against the level of security desired and the degree of
trust in the base that the site accepts as reasonable. Research dealing with malicious
logic assumes that the interface, software, and/or hardware used to implement the
proposed scheme will perform exactly as desired, meaning that the trust is in the
underlying computing base, the implementation, and (if done) the verification.

19.7 Summary

Malicious logic is a perplexing problem. It highlights the impotence of standard
access controls, because authorized users are requesting authorized actions. The
security controls cannot determine if the user knows about such actions.

The most exciting idea is the separation of data from instructions. It unites
notions of strong typing with security. In addition to blocking much malicious logic,
it has applications for security in general (see Chapter 20, “Vulnerability Analysis,”
for examples).

6 Chapter 22, “Intrusion Detection,” discusses this system in more detail.

Bishop.book Page 385 Tuesday, September 28, 2004 1:46 PM

386 Chapter 19 Malicious Logic

Currently, file scanners are the most popular defensive mechanism. Both
integrity scanners and antivirus scanners look for changes in files. Antivirus scanners
(which also check for some nonvirus Trojan horses) use a database of virus signa-
tures. New dictionaries of these signatures are released periodically, or in the event
of a major virus attack. For example, updated virus dictionaries were released within
hours after Melissa’s discovery.

Integrity scanners check for changes in files, but without determining their
causes. If the contents of a file have changed since the last scan, the integrity checker
reports this fact, but another agency (user, program) must determine the reason for
the change.

19.8 Further Reading

Fites, Johnston, and Kratz [321], Hruska [445], and Levin [559] present overviews of
computer viruses and their effects. The National Institute of Standards and Technol-
ogy Special Publication 500-166 [922] discusses management techniques for mini-
mizing the threats of computer viruses. Spafford, Heaphy, and Ferbrache’s book
[861] is well written and gives a good exposition of the state of the art in the late
1980s. Arnold [36] and Ludwig [580] describe how to write computer viruses;
Arnold’s book includes sample code for UNIX systems. Cohen’s short course on
computer viruses [184] is an excellent technical survey. McIlroy’s essay [607] pre-
sents a wonderful overview of computer viruses.

Cohen demonstrated that the virus detection problem, like the safety problem
(see Theorem 3–2), is undecidable [183]. Adleman proved the same was true for
malicious logic in general [9].

Denning’s essay [253] presents the nomenclature for malicious logic used in
this chapter. His anthology [254], and that of Hoffman [427], collect many of the
seminal, and most interesting, papers in the study of malicious logic. Parker [713],
Whiteside [938], and others describe attacks on systems using various forms of mali-
cious logic in a more informal (and enjoyable) manner.

Appel and Felty [34] discuss a semantic model for proof-carrying code.

19.9 Exercises

1. Tripwire does not encipher the signature blocks. What precautions must
installers take to ensure the integrity of the database?

2. Consider how a system with capabilities as its access control mechanism
could deal with Trojan horses.

Bishop.book Page 386 Tuesday, September 28, 2004 1:46 PM

19.9 Exercises 387

a. In general, do capabilities offer more or less protection against
Trojan horses than do access control lists? Justify your answer in
light of the theoretical equivalence of ACLs and C-Lists.

b. Consider now the inheritance properties of new processes. If the
creator controls which capabilities the created process is given
initially, how could the creator limit the damage that a Trojan horse
could do?

c. Can capabilities protect against all Trojan horses? Either show that
they can or describe a Trojan horse process that C-Lists cannot
protect against.

3. Describe in detail how an executable infecting computer virus might
append itself to an executable. What changes must it make to the
executable, and why?

4. A computer system provides protection using the Bell-LaPadula policy.
How would a virus spread if

a. the virus were placed on the system at system low (the compartment
that all other compartments dominate)?

b. the virus were placed on the system at system high (the
compartment that dominates all other compartments)?

5. A computer system provides protection using the Biba integrity model.
How would a virus spread if

a. the virus were placed on the system at system low (the compartment
that all other compartments dominate)?

b. the virus were placed on the system at system high (the
compartment that dominates all other compartments)?

6. A computer system provides protection using the Chinese Wall model.
How would a virus spread throughout the system if it were placed within a
company dataset? Assume that it is a macro virus.

7. Discuss controls that would prevent Dennis Ritchie’s bacterium (see
Section 19.5.1) from absorbing all system resources and causing a system
crash.

8. How could Thompson’s rigged compiler be detected?
9. Place the SAT/LOCK mechanism of treating instructions and data as

separate types into the framework of the Clark-Wilson model. In
particular, what are the constrained data objects, the transaction
procedures, and the certification and enforcement rules?

10. Critique Lai and Gray’s virus prevention mechanism described in Section
19.6.2.2. In particular, how realistic is its assessment of the set of
programs to be trusted? Are there programs that they omitted or that they
should have omitted?

Bishop.book Page 387 Tuesday, September 28, 2004 1:46 PM

388 Chapter 19 Malicious Logic

11. Design a signature detection scheme to detect polymorphic viruses,
assuming that no encipherment of virus code was used.

12. Assume that the Clark-Wilson model is implemented on a computer
system. Could a computer virus that scrambled constrained data items be
introduced into the system? Why or why not? Specifically, if not, identify
the precise control that would prevent the virus from being introduced, and
explain why it would prevent the virus from being introduced; if yes,
identify the specific control or controls that would allow the virus to be
introduced and explain why they fail to keep it out.

Bishop.book Page 388 Tuesday, September 28, 2004 1:46 PM

389

Chapter 20
Vulnerability Analysis

MACBETH: I pull in resolution and begin
To doubt th’ equivocation of the fiend

That lies like truth: “Fear not, till Birnam wood
Do come to Dunsinane,” and now a wood

Comes toward Dunsinane. Arm, arm, and out!
—The Tragedy of Macbeth, V, v, 42–46.

Vulnerabilities arise from computer system design, implementation, maintenance,
and operation. This chapter presents a general technique for testing for vulnerabili-
ties in all these areas and discusses several models of vulnerabilities.

20.1 Introduction

A “computer system” is more than hardware and software; it includes the policies,
procedures, and organization under which that hardware and software is used.
Lapses in security can arise from any of these areas or from any combination of these
areas. Thus, it makes little sense to restrict the study of vulnerabilities to hardware
and software problems.

When someone breaks into a computer system, that person takes advantage of
lapses in procedures, technology, or management (or some combination of these fac-
tors), allowing unauthorized access or actions. The specific failure of the controls is
called a vulnerability or security flaw; using that failure to violate the site security
policy is called exploiting the vulnerability. One who attempts to exploit the vulnera-
bility is called an attacker.

For example, many systems have special administrative users who are autho-
rized to create new accounts. Suppose a user who is not an administrative user can
add a new entry to the database of users, thereby creating a new account. This opera-
tion is forbidden to the nonadministrative user. However, such a user has taken
advantage of an inconsistency in the way data in the database is accessed. The incon-
sistency is the vulnerability; the sequence of steps that adds the new user is the

Bishop.book Page 389 Tuesday, September 28, 2004 1:46 PM

390 Chapter 20 Vulnerability Analysis

exploitation. A secure system should have no such problems. In practice, computer
systems are so complex that exploitable vulnerabilities (such as the one described
above) exist; they arise from faulty system design, implementation, operation, or
maintenance.

Formal verification and property-based testing are techniques for detecting vul-
nerabilities. Both are based on the design and/or implementation of the computer sys-
tem, but a “computer system” includes policies, procedures, and an operating
environment, and these external factors can be difficult to express in a form amenable
to formal verification or property-based testing. Yet these factors determine whether or
not a computer system implements the site security policy to an acceptable degree.

One can generalize the notion of formal verification to a more informal
approach (see Figure 20–1). Suppose a tester believes there to be flaws in a system.
Given the hypothesis (specifically, where the tester believes the flaw to be, the nature of
the flaw, and so forth), the tester determines the state in which the vulnerability will
arise. This is the precondition. The tester puts the system into that state and analyzes
the system (possibly attempting to exploit the vulnerability). After the analysis, the
tester will have information about the resulting state of the system (the postconditions)
that can be compared with the site security policy. If the security policy and the post-
conditions are inconsistent, the hypothesis (that a vulnerability exists) is correct.

Penetration testing is a testing technique, not a proof technique. It can never
prove the absence of security flaws; it can only prove their presence. In theory, for-
mal verification can prove the absence of vulnerabilities. However, to be meaningful,
a formal verification proof must include all external factors. Hence, formal verifica-
tion proves the absence of flaws within a particular program or design and not the
absence of flaws within the computer system as a whole. Incorrect configuration,
maintenance, or operation of the program or system may introduce flaws that formal
verification will not detect.

{ Preconditions } { System characteristics, environment, and state }

Program Program or system

{ Postconditions } { System state }

Figure 20–1 A comparison between formal verification and penetration
testing. In formal verification, the “preconditions” place constraints on the
state of the system when the program (or system) is run, and the
“postconditions” state the effect of running the program. In penetration
testing, the “preconditions” describe the state of the system in which the
hypothesized security flaw can be exploited, and the “postconditions” are the
result of the testing. In both verification and testing, the postconditions must
conform to the security policy of the system.

Formal Verification Penetration Testing

Bishop.book Page 390 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 391

20.2 Penetration Studies

A penetration study is a test for evaluating the strengths of all security controls on the
computer system. The goal of the study is to violate the site security policy. A pene-
tration study (also called a tiger team attack or red team attack) is not a replacement
for careful design and implementation with structured testing. It provides a method-
ology for testing the system in toto, once it is in place. Unlike other testing and veri-
fication technologies, it examines procedural and operational controls as well as
technological controls.

20.2.1 Goals

A penetration test is an authorized attempt to violate specific constraints stated in the
form of a security or integrity policy. This formulation implies a metric for determin-
ing whether the study has succeeded. It also provides a framework in which to exam-
ine those aspects of procedural, operational, and technological security mechanisms
relevant to protecting the particular aspect of system security in question. Should
goals be nebulous, interpretation of the results will also be nebulous, and the test will
be less useful than if the goals were stated precisely. Example goals of penetration
studies are gaining of read or write access to specific objects, files, or accounts; gain-
ing of specific privileges; and disruption or denial of the availability of objects.

EXAMPLE: A vendor is implementing a subsystem designed to provide password
protection for user files. With this subsystem, the owner of a file can require others to
provide a password before gaining access to that file. The goal of a penetration study
is to test these controls. The metric is binary: were the testers able to gain access to a
(possibly designated) password protected file, either by not using a password or by
gaining unauthorized access to a password?

A second type of study does not have a specific target; instead, the goal is to find
some number of vulnerabilities or to find vulnerabilities within a set period of time.
The strength of such a test depends on the proper interpretation of results. Briefly, if
the vulnerabilities are categorized and studied, and if conclusions are drawn as to the
nature of the flaws, then the analysts can draw conclusions about the care taken in the
design and implementation. But a simple list of vulnerabilities, although helpful in
closing those specific holes, contributes far less to the security of a system.

In practice, other constraints affect the penetration study; the most notable are
constraints on resources (such as money) and constraints on time. If these constraints
arise as aspects of policy, they improve the test because they make it more realistic.

EXAMPLE: A company obtains documents from other vendors and, after 30 days,
publishes them on the World Wide Web. The vendors require that the documents be

Bishop.book Page 391 Tuesday, September 28, 2004 1:46 PM

392 Chapter 20 Vulnerability Analysis

confidential for that length of time. A penetration study of this site might set the goal
of obtaining access to a specific file; the test could be limited to 30 days in order to
duplicate the conditions under which the site will operate. An alternative goal might
be to gain access to any of these files; in this case, no time limit should be specified
because a test could involve planting of Trojan horses that would last more than 30
days.

20.2.2 Layering of Tests

A penetration test is designed to characterize the effectiveness of security mechanisms
and controls to attackers. To this end, these studies are conducted from an attacker’s
point of view, and the environment in which the tests are conducted is that in which a
putative attacker would function. Different attackers, however, have different environ-
ments; for example, insiders have access to the system, whereas outsiders need to
acquire that access. This suggests a layering model for a penetration study.

1. External attacker with no knowledge of the system. At this level, the testers
know that the target system exists and have enough information to identify it
once they reach it. They must then determine how to access the system
themselves. This layer is usually an exercise in social engineering and/or
persistence because the testers try to trick the information out of the company
or simply dial telephone numbers or search network address spaces until they
stumble onto the system. This layer is normally skipped in penetration testing
because it tells little about the security of the system itself.

2. External attacker with access to the system. At this level, the testers have
access to the system and can proceed to log in or to invoke network services
available to all hosts on the network (such as electronic mail). They must
then launch their attack. Typically, this step involves accessing an account
from which the testers can achieve their goal or using a network service that
can give them access to the system or (if possible) directly achieve their
goal. Common forms of attack at this stage are guessing passwords, looking
for unprotected accounts, and attacking network servers. Implementation
flaws in servers often provide the desired access.

3. Internal attacker with access to the system. At this level, the testers have
an account on the system and can act as authorized users of the system.
The test typically involves gaining unauthorized privileges or information
and, from that, reaching the goal. At this stage, the testers acquire (or have)
a good knowledge of the target system, its design, and its operation.
Attacks are developed on the basis of this knowledge and access.

In some cases, information about specific layers is irrelevant and that layer
can be skipped. For example, penetration tests during design and development skip
layer 1 because that layer analyzes site security. A penetration test of a system with a

Bishop.book Page 392 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 393

guest account (which anyone can access) will usually skip layer 2 because users
already have access to the system. Ultimately, the testers (and not the developers)
must decide which layers are appropriate.

20.2.3 Methodology at Each Layer

The penetration testing methodology springs from the Flaw Hypothesis Methodol-
ogy. The usefulness of a penetration study comes from the documentation and con-
clusions drawn from the study and not from the success or failure of the attempted
penetration. Many people misunderstand this, thinking that a successful penetration
means that the system is poorly protected. Such a conclusion can only be drawn once
the study is complete and when the study shows poor design, poor implementation,
or poor procedural and management controls. Also important is the degree of pene-
tration. If an attack obtains information about one user’s data, it may be deemed less
successful than one that obtains system privileges because the latter attack can com-
promise many user accounts and damage the integrity of the system.

20.2.4 Flaw Hypothesis Methodology

The Flaw Hypothesis Methodology was developed at System Development Corpora-
tion and provides a framework for penetration studies [567, 935, 936]. It consists of
four steps.

1. Information gathering. In this step, the testers become familiar with
the system’s functioning. They examine the system’s design, its
implementation, its operating procedures, and its use. The testers become
as familiar with the system as possible.

2. Flaw hypothesis. Drawing on the knowledge gained in the first step, and
on knowledge of vulnerabilities in other systems, the testers hypothesize
flaws of the system under study.

3. Flaw testing. The testers test their hypothesized flaws. If a flaw does not
exist (or cannot be exploited), the testers go back to step 2. If the flaw is
exploited, they proceed to the next step.

4. Flaw generalization. Once a flaw has been successfully exploited, the
testers attempt to generalize the vulnerability and find others similar to it.
They feed their new understanding (or new hypothesis) back into step 2
and iterate until the test is concluded.

A fifth step is often added [935, 936]:

5. Flaw elimination. The testers suggest ways to eliminate the flaw or to use
procedural controls to ameliorate it.

Bishop.book Page 393 Tuesday, September 28, 2004 1:46 PM

394 Chapter 20 Vulnerability Analysis

The following sections examine each aspect of this methodology and show
how it is used in practice.

20.2.4.1 Information Gathering and Flaw Hypothesis
In the steps of the Flaw Hypothesis Methodology, the design of the system is scruti-
nized, with particular attention to discrepancies in the components. The testers
devise a model of the system, or of its components, and then explore each aspect of
the designs for internal consistency, incorrect assumptions, and potential flaws. They
then consider the interfaces between the components and the ways in which the com-
ponents work together. At this stage, some of the testers must be very knowledgeable
about the system (or acquire expertise quickly) to ensure that the model or models of
the system represent the implementation adequately. If the testers have access to
design documents and manuals, they can often find parts of the specification that are
imprecise or incomplete. These parts will be very good places to begin, especially if
different designers worked on parts of the system that used the unclear specification.
(Occasionally, a single designer may interpret an unclear specification differently
during the design of two separate components.) If a privileged user (such as root on
UNIX systems or administrator on Windows systems) is present, the way the system
manages that user may reveal flaws.

The testers also examine the policies and procedures used to maintain the sys-
tem. Although the design may not reveal any weak points, badly run or incorrectly
installed systems will have vulnerabilities as a result of these errors. In particular,
any departure from design assumptions, requirements, or models will usually indi-
cate a vulnerability, as will sloppy administrative procedures and unnecessary use of
privileges. Sharing of accounts, for example, often enables an attacker to plant Tro-
jan horses, as does sharing of libraries, programs, and data.

Implementation problems also lead to security flaws. Models of vulnerabili-
ties offer many clues to where the flaws may lie. One strategy is for the testers to
look in the manuals describing the programs and the system, especially any manuals
describing their underlying implementation, assumptions, and security-related prop-
erties [99]. Wherever the manuals suggest a limit or restriction, the testers try to vio-
late it; wherever the manuals describe a sequence of steps to perform an action
involving privileged data or programs, the testers omit some steps. More often than
not, this strategy will reveal security flaws.

Critical to this step is the identification of the structures and mechanisms that
control the system. These structures and mechanisms are the programs (including the
operating system) that will enable an attacker to take control of (parts of) the system,
such as the security-related controllers. The environment in which these programs
have been designed and implemented, as well as the tools (compilers, debuggers, and
so on) used to build them, may introduce errors, and knowledge of that environment
helps the testers hypothesize security flaws.

Throughout all this, the testers draw on their past experience with the system,
with penetrating systems in general, and on flaws that have been found in other sys-

Bishop.book Page 394 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 395

tems. Later sections of this chapter present several models and frameworks of vul-
nerabilities and analyze them with respect to their ability to model system
vulnerabilities. The classification of flaws often leads to the discovery of new flaws,
and this analysis is part of the flaw hypothesis stage.

20.2.4.2 Flaw Testing
Once the testers have hypothesized a set of flaws, they determine the order in which
to test the flaws. The priority is a function of the goals of the test. For example, if the
testing is to uncover major design or implementation flaws, hypothetical flaws that
involve design problems or flaws in system-critical code will be given a very high
priority. If the testing is to uncover the vulnerability of the system to outsider attack,
flaws related to external access protocols and programs will be given a very high pri-
ority and flaws affecting only internal use will be given a low priority. Assigning pri-
orities is a matter of informed judgment, which emphasizes the need for testers to be
familiar with the environment and the system.

Once the priorities have been determined, the testers study the hypothetical
flaws. If a flaw can be demonstrated from the analysis, so much the better; this com-
monly occurs when a flaw arises from faulty specifications, designs, or operations. If
the flaw cannot be demonstrated in this way, the tester must understand exactly why
the flaw might arise and how to test for it in the least intrusive manner. The goal is to
demonstrate that the flaw exists and can cause system compromise, but to minimize
the impact of that demonstration.

When a system must be tested, it should be backed up and all users should be
removed from it. This precautionary measure saves grief should the testing go awry.
The tester then verifies that the system is configured as needed for the test and takes
notes (or helps an observer take notes) of the requirements for detecting the flaw. The
tester then verifies the existence of the flaw. In many cases, this can be done without
exploiting the flaw; in some cases, it cannot. The latter cases are often political, in
which the system developers or managers refuse to believe that the flaw exists until it
is demonstrated. The test should be as simple as possible but must demonstrate that
the exploitation succeeded; for example, a test might copy a protected file to a sec-
ond protected file or change the date of modification of a system file by 1 second
(unless the precise time of modification is critical). The tester’s goal is to demon-
strate what a hostile exploiter of the flaw could do, not to be that hostile exploiter.
The notes of the test must be complete enough to enable another tester to duplicate
the test or the exploitation on request; thus, precise notes are essential.

20.2.4.3 Flaw Generalization
As testers successfully penetrate the system (either through analysis or through anal-
ysis followed by testing), classes of flaws begin to emerge. The testers must confer
enough to make each other aware of the nature of the flaws, and often two different
flaws can be combined for a devastating attack. As an example, one flaw may enable

Bishop.book Page 395 Tuesday, September 28, 2004 1:46 PM

396 Chapter 20 Vulnerability Analysis

a tester to gain access to an unprivileged account on a Windows NT system, and a
second flaw may enable an ordinary user to gain administrator privileges. Separately,
the impact of these flaws depends on the site policy and security concerns. Together,
they allow anyone who can connect to the system to become supervisor.

As a second example, some privileged programs on the UNIX system read
input into a buffer on the user stack and fail to check the length. By supplying an
appropriate input, the attacker can overwrite the return address and make it invoke
code in the input stream. Similarly, many programs place a copy of command-line
arguments onto the stack. Generalizing the former flaw suggests that programs that
do the latter are equally vulnerable to compromise in a similar fashion (but the string
is supplied as a command-line argument rather than as input).

20.2.4.4 Flaw Elimination
The flaw elimination step is often omitted because correction of flaws is not part of
the penetration. However, the flaws uncovered by the test must be corrected. For
example, the TCSEC [257] requires that any flaws uncovered by penetration testing
be corrected.

Proper correction of a flaw requires an understanding of the context of the
flaw as well as of the details of both the flaw and its exploitation. This implies that
the environment in which the system functions is relevant to correction of the flaw.
For example, if a design flaw is uncovered during development as part of the testing
cycle, the developers can correct the design problem and reimplement those portions
of the system that are affected by the flaw. In this case, knowledge of how to exploit
that flaw is not critical. If, however, a design flaw is uncovered at a production site,
that site (and the vendor) may not be able to correct the flaw quickly enough to pre-
vent attackers from exploiting it. In this case, understanding how the flaw can be
exploited becomes critical because all the site can do is to try to block those paths of
exploitation or to detect any attacker who tries to exploit the flaw. This justifies the
extensive analysis during the flaw hypothesis and generalization phase. Understand-
ing the origins of the flaw, its context, and its affect on the system leads to proper
corrective measures based on the system and the environment in which it functions.

20.2.5 Example: Penetration of the Michigan Terminal System

As an exercise, a graduate computer science class at the University of Michigan
launched a penetration test against the Michigan Terminal System, a general-purpose
operating system that ran on the University of Michigan’s IBM 360 and 370 computer
systems [408]. Their goal was to acquire access to the terminal control structures. The
students had the approval and support of the computer center staff. They began by
assuming that the attackers had access to an authorized account (step 3 on page 392).

The first step was to learn the details of the system’s control flow and supervi-
sor. When an individual user ran a program, memory was split into segments. Seg-
ments 0 to 4 contained the supervisor, system programs, and system state and were

Bishop.book Page 396 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 397

protected by hardware mechanisms. Segment 5 was a system work area, recording
process-specific information such as privilege level, accounting information, and so
forth. The process should not have been able to alter any of this information. Seg-
ments numbered 6 and higher contained user process information, and the process
could alter them.

Segment 5 was protected by a virtual memory protection system. The virtual
system had two states. In “system” mode, the process could access or alter its segment
5 and could issue calls to the supervisor. In “user” mode, segment 5 was not present in
the address space of the process and so could not be modified. The process would run
in user mode whenever user-supplied code would be executed. If the user code needed
a system service, it would issue a system call; that code could in turn issue a supervi-
sor call, in which case the supervisor would perform the needed function. The system
code had to check parameters to ensure that the system (or supervisor) would access
authorized locations only. Complicating this check was the way in which parameters
were passed. A list of addresses (one per parameter) was constructed in user seg-
ments, and the address of this list was given to the system call in a register; hence,
checking of parameters required following of two levels of indirection. All such
addresses, of course, had to be in user segments numbered 6 (or higher).

The testing now entered the flaw hypothesis stage. The observation that many
security problems arise at interfaces suggested focusing on the switch from user to
system mode because system mode required supervisor privileges. The study
focused on parameter checking, and it was discovered that an element of the parame-
ter list could point to a location within the parameter list (see Figure 20–2). In other
words, one could cause the system or supervisor procedure to alter a parameter’s
address after the validity of the old address had been verified.

In order to exploit this flaw, the testers had to find a system routine that used
this calling convention, took two parameters, altered at least one, and could be made
to change the parameter to any of a specific set of values (which lay in the system
segment). Several such routines were found; the one that was exploited was the line
input routine, which returned the line number and length of the line as well as the

X

X X + 1X + 2

X + 2

Figure 20–2 An example of the parameter passing conventions. Here, X is
the address of the parameter list, and locations X, X + 1, and X + 2 contain
addresses of the actual parameters. Note that location X + 1 contains the
address X + 2, meaning that the last address in the parameter list is itself
the location of a parameter (as well as containing the address of another
parameter).

…

Bishop.book Page 397 Tuesday, September 28, 2004 1:46 PM

398 Chapter 20 Vulnerability Analysis

line itself. The testers set up the parameter list so that the address for storing the line
number was the location of the address of the line length. When called, the system
routine validated the parameter list (all addresses were indeed in user segments), and
it then read the input line. The line number was stored in the parameter list itself and
was set to be an address within the system segment. The line length corresponded to
the desired value of that location in the system segment. Thus, the testers were able
to alter data in segment 5. However, they could not alter anything in the supervisor
segments because those segments were protected by hardware.

During the flaw generalization stage, the testers realized the full implications
of this flaw. The privilege level in segment 5 controlled the ability of the process to
issue supervisor calls (as opposed to system calls). One of these calls turned off the
hardware protection for segments 0 to 4. This enabled the process to alter any data or
instructions in those segments and thus effectively control the computer completely.

During the test, the testers found numerous flaws that allowed them to acquire
sufficient privileges to meet their goal. The penetration study was a success because it
demonstrated how an attacker could obtain control of the terminal control structures.

20.2.6 Example: Compromise of a Burroughs System

The penetration study of a Burroughs B6700 system [944] is particularly interesting
because of the architecture of that system. Again as a class project, a graduate com-
puter systems class at the University of Canterbury attempted to penetrate a Bur-
roughs B6700 computer system running the 3.0 P.R.#1 release. The goal was to
obtain the status of a privileged user and thus be able to alter privileged programs.
The group explored four aspects of the system, in all cases beginning with an autho-
rized account on the system (step 3 on page 392); we will discuss the only part that
focused on file security.

The Burroughs B6700 system security is based on strict file typing. There are
four relevant entities: ordinary users, privileged users, privileged programs, and
operating system tasks. Ordinary users are tightly restricted; the other three classes
can access file data without restriction but are still constrained from compromising
integrity. Furthermore, the Burroughs system provides no assemblers; its compilers
all take high-level languages as input and produce executable code. The B6700 dis-
tinguishes between data files and executable files by the type of the file. Only com-
pilers can produce executable files. Moreover, if any user tries to write into a file or
into a file’s attributes, that file’s type is immediately set to data, even if the file was
previously an executable.

The group hypothesized that the system would not be able to detect a file that
was altered offline. To test this hypothesis, the members of the group wrote and com-
piled a program to change the type of any file. It could not be run successfully yet
because it would have to alter the file’s attributes. Because it was not a recognized
compiler, the file so altered would immediately become a data file. They then copied
the machine code version of this program to tape. The tape utility created a header
record indicating the file type. A second tape was mounted, and the contents of the

Bishop.book Page 398 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 399

first tape were copied to the second. During the transfer, the copying program altered
the file type of the machine code to be a compiler. They then copied the file from the
second tape to disk, and the file was installed as a compiler. The testers wrote a sec-
ond subroutine, compiled it using the regular compiler, altered the machine code to
give privileges to any user calling it, and used the bogus compiler to change the type
of the altered file to executable. They then wrote a program to call that routine. It
succeeded, and the user became privileged. This gave the user complete control of
the system, achieving the goal.

A procedural corrective measure was to prevent unprivileged users from load-
ing executables off tape. The testers noted the impracticality of this measure in many
environments, such as academic and development sites.

20.2.7 Example: Penetration of a Corporate Computer System

This study [947] is instructive because it began at step 1 of the list on page 392 and
looked only at gathering nontechnical information needed to breach the computer sys-
tem. It shows the importance of proper operations and organizational procedures in
securing a system. Although the specific example is an amalgamation of techniques
used in several real penetrations, the techniques are very effective and have repeatedly
succeeded. Specifics are disguised to protect the corporations so penetrated.

The goal of the study was to determine whether corporate security measures
were effective in keeping external attackers from accessing the system. The corpora-
tion had a variety of policies and procedures (both technical and nontechnical) that
were believed to protect the system.

The testers began by gathering information about the site. They searched the
Internet and obtained information on the corporation, including the names of some
employees and officials. They obtained the telephone number of a local branch of the
company and from that branch got a copy of the annual report. From the report and
the other data, the testers were able to construct much of the company’s organization,
as well a list of some of the projects on which individuals were working.

The testers determined that a corporate telephone directory would provide them
with needed information about the corporate structure. One impersonated a new
employee, and through judicious telephone calls found out that two numbers were
required to have something delivered off-site: the number of the employee requesting
the shipment and a Cost Center number. A tester promptly called the secretary of the
executive about whom the testers knew the most; by impersonating another employee,
the caller obtained the executive’s employee number. A second tester impersonated an
auditor and obtained that executive’s Cost Center number. The testers used these num-
bers to have a corporate directory sent to a “subcontractor.”

At this point, the testers decided to contact newly hired personnel and try to
obtain their passwords. They impersonated the secretary of a very senior executive of
the company, called the appropriate office, and claimed that the senior executive was
very upset that he had not been given the names of the employees hired that week.
The information was promptly provided.

Bishop.book Page 399 Tuesday, September 28, 2004 1:46 PM

400 Chapter 20 Vulnerability Analysis

The testers then began calling the newly hired people. They claimed to be
with the corporate computing center and provided a “Computer Security Awareness
Briefing” over the telephone. In the process of this briefing, the testers learned the
types of computer systems used, the employees’ numbers, their logins, and their
passwords. A call to the computing center provided modem numbers; the modems
bypassed a critical security system. At this point, the testers had compromised the
system sufficiently that the penetration study was deemed successful.

20.2.8 Example: Penetrating a UNIX System

In this example, the first goal is to gain access to the system. Our target is a system
connected to the Internet.

We begin by scanning the network ports on the target system. Figure 20–3
shows some of these ports, together with a list of protocols that servers listening on
those ports may use. Note that protocols are running on ports 79, 111, 512, 513, 514,
and 540; these ports are typically used on UNIX systems. Let us make this assumption.

Many UNIX systems use sendmail as their SMTP server. This large program
has had many security problems [190, 194, 195, 196, 197, 419, 829, 888]. By con-
necting to the port, we determine that the target is using sendmail Version 3.1. Draw-
ing on previous experience and widely known information [97], we hypothesize that
the SMTP agent will recognize the command shell and give us a root-owned shell on
the system. To do this, we need to execute the wiz command first. We are successful,
as Figure 20–4 shows. On this particular system, we have obtained root privileges.

The key to this attack is an understanding of how most UNIX systems are
configured and a knowledge of known vulnerabilities. Most UNIX systems use some
variant of sendmail as their SMTP agent, and that program prints version informa-
tion when a connection is made. The information enabled the testers to determine

ftp 21/tcp File Transfer
telnet 23/tcp Telnet
smtp 25/tcp Simple Mail Transfer
finger 79/tcp Finger
sunrpc 111/tcp SUN Remote Procedure Call
exec 512/tcp remote process execution
(rexecd)
login 513/tcp remote login (rlogind)
shell 514/tcp rlogin style exec (rshd)
printer 515/tcp spooler (lpd)
uucp 540/tcp uucpd
nfs 2049/tcp networked file system
xterm 6000/tcp x-windows server

Figure 20–3 The output of the UNIX port scan. These are the ports that provide

Bishop.book Page 400 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 401

what set of attacks would be likely to be fruitful. Given the wide variation in send-
mails (owing to differences in vendors’ patches), the flaw had to be tested for. The
test succeeded.

Now assume we are at step 3 of the list on page 392. We have an unprivileged
account on the system. We determine that this system has a dynamically loaded ker-
nel; the program used to add modules to the kernel is loadmodule. Because such a
program must be privileged (or else it could not update the kernel tables), an unpriv-
ileged user can execute a privileged process. As indicated before, this suggests that
the program does some sort of validation or authorization check. Our vulnerabilities
models (see Section 20.4) indicate that this is a source of many problems. Let us
examine this program more closely.

The program loadmodule validates the module as being a dynamically load-
able module and then invokes the dynamic loader ld.so to perform the actual load. It
also needs to determine the architecture of the system, and it uses the program arch
to obtain this information. A logical question is how it executes these programs. The
simplest way is to use a library function system. This function does not reset any part
of the environment. Hence, if the system call is used, the environment in which we
execute loadmodule is passed to the subprocesses, and these subprocesses are run as
root. In this case, we can set our environment to look for programs in our local direc-
tory first, and then in system directories (by setting the PATH variable to have “.” as
the first directory).

We accept this as a working hypothesis, and we set out to verify that this flaw
exists. We write a small program that prints its effective UID, name it ld.so, and
move it to the current working directory. We then reset our PATH variable as indi-
cated above and run loadmodule. Unfortunately, our program does not execute; noth-
ing is printed.

Why not? Once we understand this, we may be able to figure out a way to
bypass this check, and our understanding of the system will increase. We scan the exe-
cutable looking for ASCII strings, to see exactly how their dynamic loader invokes
those subprograms. We see that the invocations are “/bin/arch” and “/bin/ld.so”. So our
attempt to change the search path (PATH environment variable) was irrelevant; the
system never looked at that variable because full path names were given.

220 zzz.com sendmail 3.1/zzz.3.9, Dallas, Texas, ready at Wed,
2 Apr 97 22:07:31 CST

helo xxx
250 zzz.com Hello xxx.org, pleased to meet you
wiz
250 Enter, O mighty wizard!
shell
#

Figure 20–4 A successful accessing of a UNIX system.

Bishop.book Page 401 Tuesday, September 28, 2004 1:46 PM

402 Chapter 20 Vulnerability Analysis

Rereading the manual page for the library function system, we notice that it
invokes the command interpreter sh. Looking at sh’s manual page, we learn that the
IFS environment variable has as its value characters used to separate words in com-
mands that sh executes. Given that loadmodule invokes “/bin/arch”, if the character
“/” were in the value of the environment variable IFS, sh would treat this command
as “bin arch”. Then we could use the idea that just failed, but call the program bin
rather than ld.so.

We could verify this idea without a test, but it would require disassemby of the
loadmodule executable unless we had source code (we would look for anything that
reset the environment within loadmodule). Assuming that we do not have source
code, we change the value of IFS to include “/”, reset PATH and IFS as described
above, change the name of our small program from ld.so to bin, and run loadmodule.
The process prints that its effective UID is 0 (root). Our test has succeeded. (Chapter
26, “Program Security,” discusses corrective measures for problems of this type. The
vendor fixed the problem [192].)

Incidentally, this example leads to a simple flaw generalization. The problem
of subprocesses inheriting environment variables and their values suggests that the
privileged program did not adequately sanitize the (untrusted) environment in which
that program executes before invoking subprograms that are to be trusted. Hence,
any privileged program may have this flaw. One could even hypothesize that a stan-
dard library routine or system call is invoked. So, a general class of flaws would
involve failure to sanitize the environment, and the indicator of such a flaw might be
one or more specific function calls. At this point, the testers would look in the pro-
grammers’ manuals to see if such routines existed; if so, they would analyze pro-
grams to see which privileged programs called them. This could lead to a large
number of other vulnerabilities.

This penetration test required more study than the first and demonstrates how
failure can lead to success. When a test fails, the testers may have not understood the
system completely and so need to study why the test failed. In this example, the fail-
ure led to a reexamination of the relevant library function, which led to a review of
one of the system command interpreters. During this review, one of the testers
noticed an obscure but documented control over the way the command interpreter
interpreted commands. This led to a successful test. Patience is often said to be a vir-
tue, and this is certainly true in penetration testing.

20.2.9 Example: Penetrating a Windows NT System

As in the preceding example, we begin at step 2 of the list on page 392, and all we
know is that the system is connected to the Internet. We begin as before, by probing
network ports, and from the results (see Figure 20–5)—especially the service run-
ning on port 139—we conclude that the system is a Windows NT server.

We first probe for easy-to-guess passwords. We discover that the system
administrator has chosen the password Admin, and we obtain access to the system.
At this point, we have administrator privilege on the local system. We would like to
obtain rights to other systems in the domain.

Bishop.book Page 402 Tuesday, September 28, 2004 1:46 PM

20.2 Penetration Studies 403

We examine the local system and discover that the domain administrator has
installed a service that is running with the privileges of a domain administrator. We
then obtain a program that will dump the local security authority database, and load
it onto the system. After executing it, we obtain the service account password. Using
this password, we acquire domain administrator privileges and can now access any
system in the domain.

This penetration test uncovered a serious administrative problem. For some
reason, a sensitive account had a password that was easy to guess. This indicates a
procedural problem within the company. Perhaps the system administrators were too
busy, or forgot, to choose a good password. Two generalizations are appropriate.
First, other systems should be checked for weak passwords. Second, the company’s
security policies should be reviewed, as should its education of its system adminis-
trators and its mechanisms for publicizing the policies.

20.2.10 Debate

Considerable debate has arisen about the validity of penetration studies for testing
system security. At one end of the spectrum are some vendors who report that “after
1 year of our system being on the Internet, no one has successfully penetrated the
system,” implying (and in some cases stating) that this shows that their product is
quite secure. At the other end is the claim that penetration testing has no validity, and
only rigorous design, implementation, and validation comprise an adequate test of
security.

The resolution lies somewhere between two these extremes. Penetration test-
ing is no substitute for good, thorough specification, rigorous design, careful and cor-
rect implementation, and meticulous testing. It is, however, a very valuable
component of the final stage, “testing”; it is simply a form of a posteriori testing. Ide-
ally, it should be unnecessary; but human beings are fallible and make mistakes, and
computer systems are so complex that no single individual, or group, understands all
aspects of the hardware’s construction, the software’s design, implementation, and
the computer system’s interactions with users and environment. Hence, errors will be
introduced. Properly done, penetration tests examine the design and implementation
of security mechanisms from the point of view of an attacker. The knowledge and
understanding gleaned from such a viewpoint is invaluable.

qotd 17/tcp Quote of the Day
ftp 21/tcp File Transfer [Control]
loc-srv 135/tcp Location Service
netbios-ssn 139/tcp NETBIOS Session Service [JBP]

Figure 20–5 The output of the Windows NT port scan. These are the ports that
provide network service.

Bishop.book Page 403 Tuesday, September 28, 2004 1:46 PM

404 Chapter 20 Vulnerability Analysis

20.2.11 Conclusion

Penetration testing is a very informal, nonrigorous technique for checking the secu-
rity of a system. Two problems with the Flaw Hypothesis Methodology described in
Section 20.2.4 are its dependence on the caliber of the testers and its lack of system-
atic examination of the system. High-caliber testers will examine the design system-
atically, but all too often the testing degenerates into a more scattered analysis.

In an attempt to make the process more systematic, and less dependent on the
knowledge of the individuals conducting the test, testers often look at flaws that exist
on other systems and decide which ones could translate into the tested system’s
model. Classification schemes can help in this regard; they group similar vulnerabili-
ties together and enable the analyst to extract common features. Hence, such
schemes are important in the flaw hypothesis step and are worth exploring.

20.3 Vulnerability Classification

Vulnerability classification frameworks describe security flaws from various per-
spectives. Some frameworks describe vulnerabilities by classifying the techniques
used to exploit them. Others characterize vulnerabilities in terms of the software and
hardware components and interfaces that make up the vulnerability. Still others clas-
sify vulnerabilities by their nature, in hopes of discovering techniques for finding
previously unknown vulnerabilities.

The goal of vulnerability analysis is to develop methodologies that provide
the following abilities.

1. The ability to specify, design, and implement a computer system without
vulnerabilities.

2. The ability to analyze a computer system to detect vulnerabilities (which
feeds into the Flaw Hypothesis Methodology step of penetration testing).

3. The ability to address any vulnerabilities introduced during the operation
of the computer system (possibly leading to a redesign or reimplemen-
tation of the flawed components).

4. The ability to detect attempted exploitatons of vulnerabilities.

Ideally, one can generalize information about security flaws. From these generaliza-
tions, one then looks for underlying principles that lead toward the desired goals.
Because the abstraction’s purpose is tied to the classifiers’ understanding of the goal,
and of how best to reach that goal, both of these factors influence the classification
system developed. Hence, the vulnerability frameworks covering design often differ
from those covering the detection of exploitation of vulnerabilities. Before we
present several different frameworks, however, a discussion of two security flaws
will provide a basis for understanding several of the problems of these frameworks.

Bishop.book Page 404 Tuesday, September 28, 2004 1:46 PM

20.3 Vulnerability Classification 405

20.3.1 Two Security Flaws

This section presents two widely known security vulnerabilities in some versions of
the UNIX operating system. We will use these vulnerabilities as examples when
comparing and contrasting the various frameworks.

The program xterm is a program that emulates a terminal under the X11 win-
dow system. For reasons not relevant to this discussion, it must run as the omnipotent
user root on UNIX systems. It enables the user to log all input and output to a log
file. If the file does not exist, xterm creates it and assigns ownership to the user; if the
file already exists, xterm checks that the user can write to it before opening the file.
Because any root process can write to any file in the system, the extra check is neces-
sary to prevent a user from directing xterm to append log output to (say) the system
password file and gaining privileges by altering that file.

Suppose the user wishes to log to an existing file. The following code frag-
ment opens the file for writing.

if (access(“/usr/tom/X”, W_OK) == 0){
if ((fd = open(“/usr/tom/X”, O_WRONLY|O_APPEND))< 0){

/* handle error: cannot open file */
 }

}

The semantics of the UNIX operating system cause the name of the file to be loosely
bound to the data object it represents, and the binding is asserted each time the name
is used. If the data object corresponding to /usr/tom/X changes after the access but
before the open, the open will not open the file checked by access. So if, during that
interval, an attacker deletes the file and links a system file (such as the password file)
to the name of the deleted file, xterm appends logging output to the password file. At
this point, the user can create a root account without a password and gain root privi-
leges. Figure 20–6 shows this graphically.

The Internet worm of 1988 [292, 386, 757, 858] publicized our second flaw. It
continues to recur—for example, in implementations of various network servers [200,
201, 202]. The finger protocol [964] obtains information about the users of a remote
system. The client program, called finger, contacts a server, called fingerd, on the
remote system and sends a name of at most 512 characters. The server reads the name
and returns the relevant information, but the server does not check the length of the
name that finger sends. The storage space for the name is allocated on the stack,
directly above the return address for the I/O routine. The attacker writes a small pro-
gram (in machine code) to obtain a command interpreter and pads it to 512 bytes.
She then sets the next 24 bytes to return to the input buffer instead of to the rightful
caller (the main routine, in this case). The entire 536-byte buffer is sent to the daemon.
The first 512 bytes go into the input storage array, and the excess 24 bytes overwrite the
stack locations in which the caller’s return address and status word are stored. The
input routine returns to the code to spawn the command interpreter. The attacker now
has access to the system. Figure 20–7 shows the changes in the user stack.

Bishop.book Page 405 Tuesday, September 28, 2004 1:46 PM

406 Chapter 20 Vulnerability Analysis

20.4 Frameworks

The goals of a framework dictate the framework’s structure. For example, if the
framework is to guide the development of an attack detection tool, the focus of the
framework will be on the steps needed to exploit vulnerabilities. If the framework is
intended to aid the software development process, it will emphasize programming
and design errors that cause vulnerabilities. Each of the following classification
schemes was designed with a specific goal in mind.

Each of the following frameworks classifies a vulnerability as an n-tuple, the
elements of the n-tuple being the specific classes into which the vulnerability falls.
Some have a single set of categories; others are multidimensional (n > 1) because
they are examining multiple characteristics of the vulnerabilities.

20.4.1 The RISOS Study

The RISOS (Research Into Secure Operating Systems) study [3] was prepared to aid
computer and system managers and information processing specialists in under-
standing security issues in operating systems and to help them determine the level of
effort required to enhance their system security. The investigators classified flaws
into seven general classes.

Figure 20–6 (a) The state of the system at the time of the access system call;
the solid arrow indicates that the access refers to /usr/tom/X. Both /usr/tom/X
and /etc/passwd name distinct objects. However, before the process makes its
open system call, /usr/tom/X is deleted and a direct alias (hard link) for /etc/passwd
is created and is named /usr/tom/X. Then the open accesses the data associated
with /etc/passwd when it opens /usr/tom/X because /usr/tom/X and /etc/passwd
now refer to the same file. This is shown in (b); with the dashed arrow indicating
which data is actually read and the solid arrow indicating the name given to
open.

/

etc

passwd X

open(“/usr/tom/X”, O_WRITE)

passwd data

/

etc

passwd

usr

access(“/usr/tom/X”, W_OK)

X datapasswd data X data

(a) (b)

tom
X

usr

tom

Bishop.book Page 406 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 407

1. Incomplete parameter validation
2. Inconsistent parameter validation
3. Implicit sharing of privileged/confidential data
4. Asynchronous validation/inadequate serialization
5. Inadequate identification/authentication/authorization
6. Violable prohibition/limit
7. Exploitable logic error

The investigators discussed techniques for avoiding, or ameliorating, the flaws
in each class. They also attempted to develop methodologies and software for detect-
ing incomplete parameter validation flaws. The survey examined several operating
systems (MULTICS, BBN’s TENEX, DEC’s TOPS-10, Honeywell’s GECOS,
IBM’s OS/MVT, SDS’s SDS-940, and UNIVAC’s EXEC-8) but noted that the flaw
classes applied to other systems as well.

main local
variables

return address
of main

other return
state info

gets local
variables

parameter to
gets

input buffer

main local
variables

address of
input buffer

other return
state info

gets local
variables

program to
invoke shell

After

message

Figure 20–7 (a) The stack frame of fingerd when input is to be read. The arrow
indicates the location to which the parameter to gets refers (it is past the
address of the input buffer). (b) The same stack after the bogus input is stored.
The input string overwrites the input buffer and parameter to gets, allowing a
return to the contents of the input buffer. The arrow shows that the return
address of main was overwritten with the address of the input buffer. When
gets returns, it will pop its return address (now the address of the input buffer)
and resume execution at that address.

(a) (b)

Bishop.book Page 407 Tuesday, September 28, 2004 1:46 PM

408 Chapter 20 Vulnerability Analysis

20.4.1.1 The Flaw Classes
Incomplete parameter validation occurs when a parameter is not checked before use.
The buffer overflows discussed earlier are the classic example of this type of flaw.
Another example is a flaw in one computer’s software emulator for integer division
[188]. The caller provided two addresses as parameters, one for the quotient and one
for the remainder. The quotient address was checked to ensure that it lay within the
user’s protection domain, but the remainder address was not similarly checked. By
passing the address of the user identification number for the remainder, the program-
mer was able to acquire system privileges. Parameters need to be checked for type
(and possibly format), ranges of values, access rights, and presence (or absence).

Inconsistent parameter validation is a design flaw in which each individual
routine using data checks that the data is in the proper format for that routine, but the
routines require different formats. Basically, the inconsistency across interfaces
causes this flaw. An example occurs in a database in which each record is one line,
with colons separating the fields. If one program accepts colons and newlines as part
of data but other programs read the colons so accepted as field separators and the
newlines so accepted as record separators, the inconsistency can cause bogus records
to be entered into the database.

When an operating system fails to isolate processes and users properly, an
implicit sharing of privileged/confidential data flaw occurs. The ability to recover a
file’s password in TENEX is an example of this type of flaw [893]. TENEX allowed
the user to determine when paging occurred. Furthermore, when a file access
required a password, the password was checked character by character, and the
checking stopped at the first incorrect character. So, an attacker would position a
guess for the password so that a page boundary lay between the first and second
characters. He would then try to access the file. If paging occurred, the first character
of the password was correct; if not, it was incorrect. Continuing in this fashion, the
attacker could quickly recover the password needed to access the file. Kocher’s tim-
ing attack against RSA, in which small variations in the speed of encipherment
enable an attacker to deduce the private key (see Section 16.1), is another example of
this type of flaw [523].

Race conditions and time-of-check to time-of-use flaws such as that shown in
Figure 20–6 are members of the asynchronous validation/inadequate serialization
class of flaws.

Inadequate identification/authorization/authentication flaws arise when a sys-
tem allows a user to be erroneously identified, when one user can assume another’s
privilege, or when a user can trick the system (or another user) into executing a pro-
gram without authorization. Trojan horses are examples of this type of flaw, as are
accounts without passwords, because any user can access them freely. The UNIVAC
1100 provides an example related to file naming [3]. On that system, access to the
system file SYS$*DLOC$ meant that the process was privileged. The system
checked this by seeing if the process could access any file with the first three charac-
ters of the qualifier name SYS and the first three characters of the file name DLO. So,
any process that could access the file SYSA*DLOC$, which was an ordinary (non-
system) file, was also privileged and could access any file without the file access key.

Bishop.book Page 408 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 409

Violable prohibition/limit flaws arise when system designers fail to handle
bounds conditions properly. For example, early versions of TENEX kept the operat-
ing system in low memory and gave the user process access to all memory cells with
addresses above a fixed value (marking the last memory location of the operating
system). The limit of memory addressing was the address of the highest memory
location; but when a user addressed a location beyond the end of memory, it was
reduced modulo the memory size and so accessed a word in the operating system’s
area. Because the address was a large number, however, it was treated as being in
user space—and hence could be altered [893].

Exploitable logic error flaws encompass problems not falling into any of the
other classes; examples include incorrect error handling, unexpected side effects of
instructions, and incorrect allocation of resources. One such flaw that occurred in
early versions of TENEX requires an understanding of how the TENEX monitor
implemented a return to the user’s program. Basically, the monitor would execute a
skip return to the address following the one stored in the user’s program counter; the
system would simply add 1 to the user’s return word and return. On the PDP-10, the
index field was a bit in the return word. If the return word was set to –1, the addition
would overflow into the index field and change its semantics to refer to the contents
of register 1, so the return would be to the location stored in that register. The
attacker would load a bootstrap program into other registers, manipulate the contents
of register 1 through a series of system calls so that it contained the address of the
first bootstrap instruction, and then cause the monitor to execute a skip return. The
bootstrap program would execute, loading the attacker’s program and executing it
with system privileges [546].

20.4.1.2 Legacy
The RISOS project created a seminal study of vulnerabilities. It provided valuable
insights into the nature of flaws, among them that security is a function of site
requirements and threats, that there are a small number of fundamental flaws that
recur in different contexts, and that operating system security is not a critical factor
in the design of operating systems. It spurred research efforts into detection and/or
repair of vulnerabilities in existing systems; the Protection Analysis study was the
most influential of these efforts.

20.4.2 Protection Analysis Model

The Protection Analysis (PA) study [95] attempted to break the operating system
protection problem into smaller, more manageable pieces. The investigators hoped
that this would reduce the expertise required of individuals working on operating
systems. The study aimed at development of techniques that would have an impact
within 10 years. It developed a general strategy, called pattern-directed protection
evaluation, and applied it to several operating systems. In one case, the investigators
found previously unknown security vulnerabilities. From this approach grew a

Bishop.book Page 409 Tuesday, September 28, 2004 1:46 PM

410 Chapter 20 Vulnerability Analysis

classification scheme for vulnerabilities. Neumann’s presentation [688] of this study
organizes the ten classes of flaws in order to show the connections among the major
classes and subclasses of flaws (the italicized names in parentheses are the names
used in the original study).

1. Improper protection domain initialization and enforcement

a. Improper choice of initial protection domain (domain)
b. Improper isolation of implementation detail (exposed

representations)
c. Improper change (consistency of data over time)
d. Improper naming (naming)
e. Improper deallocation or deletion (residuals)

2. Improper validation (validation of operands, queue management
dependencies)

3. Improper synchronization

a. Improper indivisibility (interrupted atomic operations)
b. Improper sequencing (serialization)

4. Improper choice of operand or operation (critical operator selection errors)

20.4.2.1 The Flaw Classes
The investigators identified ten classes of errors and noted that a simple hierarchy
could be built; however, the subclasses overlapped. Neumann’s reorganization elimi-
nated the overlap and is conceptually simpler than the original.

The first class is improper protection domain initialization and enforcement; it
includes security flaws arising from initialization of the system or programs and
enforcement of the security requirements. For example, when a system boots, the
protection modes of the file containing the identifiers of all users logged in can be
altered by any user. Under most security policies, the initial assignment of protec-
tions is incorrect, and hence a vulnerability exists. The subclass in which this partic-
ular flaw lies is improper choice of initial protection domain, which includes any
flaw related to an initial incorrect assignment of privileges or of security and integ-
rity classes, especially when that flaw allows untrusted users to manipulate security-
critical data.

Improper protection flaws often arise when an abstraction is mapped into an
implementation. The covert timing channel in the IBM KVM/370 system (see the
example that begins on page 294) is an example of an improper isolation of imple-
mentation detail. This subclass also includes flaws that allow users to bypass the
operating system and write directly to absolute I/O locations or to alter data struc-
tures in ways that are inconsistent with their functions (for example, altering the
rights of a process by writing directly to memory).

Bishop.book Page 410 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 411

Another example of an improper protection flaw can arise when a privileged
program needs to open a file after checking that some particular condition holds. The
goal of the adversary is to have the privileged program open another file for which
the condition does not hold. The attack is an attempt to switch the binding of the
name between the check and the open. Figure 20–6 shows an example for the UNIX
system [109]. This is an instance of the subclass called improper change. Another
instance of this subclass is when some object, such as a parameter, a file, or the bind-
ing of a process to a network port, changes unexpectedly.

If two different objects have the same name, a user may access or execute the
wrong object. The classic example is the venerable Trojan horse (see Section 19.2):
an attacker crafts a program that will copy data to a hidden location for later viewing
and then invoke an editor, and gives it the same name as the widely used system edi-
tor. Now, a user invoking the editor may get the correct program or may get the
bogus editor. Other examples of improper naming arise in networking. The best
example occurs when two hosts have the same IP address. Messages intended for one
of the hosts may be routed to the other, without any indication to the sender.

Failing to clear memory before it is reallocated, or to clear the disk blocks
used in a file before they are assigned to a new file, causes improper deallocation or
deletion errors. One example occurs when a program dumps core in a publicly read-
able file and the core dump contains sensitive information such as passwords.

The second major class of flaws is improper validation. These flaws arise
from inadequate checking, such as fingerd’s lack of bounds checking (with the
results shown in Figure 20–7). A second example occurs in some versions of Secure
NIS. By default, that protocol maps the root user into an untrusted user nobody
on the theory that the server should not trust any claim to root privileges from remote
systems unless the credentials asserting those privileges are cryptographic. If the
Secure NIS server is misconfigured so that root has no private key, however,
the remote client can claim to be root and supply credentials of the nobody user. The
flawed system will determine that it cannot validate root’s credentials and will
promptly check for nobody’s private key (because root is remapped when needed).
Because the credentials will be validated, the remote client will be given root
privileges [193].

Improper synchronization arises when processes fail to coordinate their activ-
ities. These flaws can occur when operations that should be uninterruptable are inter-
rupted (the oxymoron “interrupting atomic operations” is often used to describe this
phenomenon), or the flaws can arise when two processes are not synchronized prop-
erly. The flaw in the UNIX mkdir command in Version 7 is an example of the first
case [893]. That command created directories by executing a privileged operation to
create the directory and then giving it to the requester by changing the ownership of
the directory. This should be done as a single operation, but in Version 7 UNIX sys-
tems two distinct system calls were needed.

mknod(“xxx”, directory)
chown(“xxx”, user, group)

Bishop.book Page 411 Tuesday, September 28, 2004 1:46 PM

412 Chapter 20 Vulnerability Analysis

If an attacker changed the binding of the name “xxx” to refer to the password file
between these calls, the attacker would own that file and so could create and delete
accounts with impunity. Thus, such a flaw is an example of improper indivisibility.
The second subtype, improper sequencing, arises in at least one one-time password
scheme. If the target system can run multiple copies of the server and two users
attempt to access the same account, both may be granted access even though the
password should be valid for at most one use. Essentially, accesses to the file need to
be paired as a read followed by a write; but if multiple copies of the server run, noth-
ing enforces this ordering of access types. This system suffers from improper
sequencing.

The last category, improper choice of operand or operation, includes calling
of inappropriate or erroneous functions. Examples include cryptographic key genera-
tion software calling pseudorandom number generation functions that produce pre-
dictable sequences of numbers or sequences of numbers with insufficient
randomness. The Kerberos authentication system [277], as well as numerous other
security-related programs, have suffered from this problem.

20.4.2.2 Legacy
The Protection Analysis project was the first project to explore automatic detection
of security flaws in programs and systems. Its methods were not widely used, in part
because of the inability to automate part of the procedure, in part because of its com-
plexity, and in part because the procedure for reducing flaws to system-independent
patterns was not complete. However, the efficacy of the idea was demonstrated, and
the classification scheme of flaws greatly influenced the study of vulnerabilities. The
PA project was a milestone in computer security research and was the last published
vulnerability study for some time, because efforts were turned toward development
of methods that were free of these errors.

20.4.3 The NRL Taxonomy

In 1992, Landwehr, Bull, McDermott, and Choi [546] developed a taxonomy to help
designers and operators of systems enforce security. They tried to answer three questions:
how did the flaw enter the system, when did it enter the system, and where in the system
is it manifest? They built three different classification systems, one to answer each of the
three questions, and classified more than 50 vulnerabilities in these schemes.

20.4.3.1 The Flaw Classes
The first classification scheme classified vulnerabilities by genesis. The class of
inadvertent flaws was broken down using the RISOS categories (except that the
incomplete and inconsistent validation classes were merged), and the class of inten-
tional flaws was broken into malicious and nonmalicious flaws. Figure 20–8 summa-

Bishop.book Page 412 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 413

rizes these classes. The investigators felt that because most security flaws were
inadvertent, better design and coding reviews could eliminate many of them; but if
the flaws were intentional, measures such as hiring more trustworthy designers and
programmers and doing more security-related testing would be more appropriate.

The second scheme classified vulnerabilities by time of introduction; Figure
20–9 summarizes the subclasses. The investigators wanted to know if security errors
were more likely to be introduced at any particular point in the software life cycle in
order to determine if focusing efforts on security at any specific point would be help-
ful. They defined the development phase to be all activities up to the release of the
initial version of the software, the maintenance phase to be all activities leading to
changes in the software performed under configuration control, and the operation
phase to be all activities involving patching of the software and not under configura-
tion control (for example, installing a vendor patch).

The third scheme classified by location of the flaw; Figure 20–10 summarizes
the classes. The intent is to capture where the flaw manifests itself and to determine

Intentional

Malicious

Trojan horse
Nonreplicating

Replicating
Trapdoor

Logic/time bomb

Nonmalicious

Covert channel

Other

Storage

Timing

Figure 20–8 NRL taxonomy: flaws by genesis. This diagram shows only the
Intentional portion of the taxonomy; the Unintentional portion is similar to the
RISOS taxonomy except that the first two RISOS classes are merged.

Time of
introduction

Development

Maintenance

Operation

Requirement/specification/design

Source code

Object code

Figure 20–9 NRL taxonomy: flaws by time of introduction.

Bishop.book Page 413 Tuesday, September 28, 2004 1:46 PM

414 Chapter 20 Vulnerability Analysis

if any one location is more likely to be flawed than any other. If so, focusing
resources on that location would improve security.

20.4.3.2 Legacy
The investigators noted that their sample size (50 flaws) was too small to draw any
statistically sound conclusions. However, by plotting the classes against one another
on scatter plots, they concluded that with a large enough sample size, an analyst
could study the relationships between location and genesis, genesis and time of intro-
duction, and location and time of introduction. The knowledge gained from such a
study would help developers concentrate on the most likely places, times, and causes
of security flaws.

Landwehr’s taxonomy differs from the others in that it focuses on social pro-
cesses as well as technical details of flaws. In order to classify a security flaw correctly
on the time of introduction and genesis axes, either the precise history of the particular
flaw must be known or the classifier must make assumptions. This ambiguity is unset-
tling, because this information is not always available. However, when available, this
information is quite useful, and the study was the first to approach the problem of
reducing vulnerabilities by studying the environments in which they were introduced.

20.4.4 Aslam’s Model

Aslam [40] developed a classification scheme for security flaws that categorized
faults and grouped similar faults together. It differed from both the PA and RISOS
studies in that it drew on software fault studies to develop its categories, and it
focused specifically on implementation flaws in the UNIX system. Moreover, the
categories and classes in both PA and RISOS had considerable overlap; Aslam pre-
sented a decision procedure for classifying faults unambiguously. This made it useful
for organizing vulnerability data in a database, one of the goals of his study.

Location

Software

Hardware

Operating system

Support

Application

Privileged utilities
Unprivileged utilities

System initialization
Memory management
Process management/scheduling
Device management
File management
Identification/authentication
Other/unknown

Figure 20–10 NRL taxonomy: flaws by location.

Bishop.book Page 414 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 415

20.4.4.1 The Flaw Classes
Aslam distinguished between coding faults, which were introduced during software
development, and emergent faults, which resulted from incorrect initialization, use, or
application. For example, a program that fails to check the length of an input string before
storing it in an array has a coding fault, but allowing a message transfer agent to forward
mail to an arbitrary file on the system is an emergent fault. The mail agent is performing
exactly according to specification, but the results produce a dangerous security hole.

The class of coding faults is subdivided into synchronization errors and condi-
tion validation errors. Synchronization errors arise when a timing window between
two operations allows a fault to be exploited or when operations are improperly seri-
alized. For example, the xterm flaw discussed previously is a classic synchronization
error. Condition validation errors arise when bounds are not checked, access rights
are ignored, input is not validated, or authentication and identification fails. The fin-
ger flaw is an example of this.

Emergent faults are either configuration errors or environment faults. The
former arise from installing a program in the wrong place, with the wrong initializa-
tion or configuration information, or with the wrong permissions. For example, if the
tftp daemon is installed so that any file in the system can be accessed, the installer
has caused a configuration error. Environment faults are those faults introduced by
the environment as opposed to those from the code or from the configuration. On
older UNIX systems, for example, any shell whose name began with “-” was interac-
tive; so an attacker could link a setuid shell script to the name “-gotcha” and execute
it, thereby getting a setuid to root shell [96].

Aslam’s decision procedure [39] consisted of a set of questions for each class
of flaws, the questions being ordered so that each flaw had exactly one classification.

20.4.4.2 Legacy
The contribution of Aslam’s taxonomy was to tie security flaws to software faults
and to introduce a precise classification scheme. In this scheme, each vulnerability
belonged to exactly one class of security flaws. Furthermore, the decision procedure
was well-defined and unambiguous, leading to a simple mechanism for representing
similar flaws in a database.

20.4.5 Comparison and Analysis

Consider the flaws described in Section 20.3.1. Both depend on the interaction of
two processes: the trusted process (xterm or fingerd) and a second process (the
attacker). For the xterm flaw, the attacker deletes the existing log file and inserts a
link to the password file; for the fingerd flaw, the attacker writes a name the length of
which exceeds the buffer size. Furthermore, the processes use operating system services
to communicate. So, three processes are involved: the flawed process, the attacker
process, and the operating system service routines. The view of the flaw when

Bishop.book Page 415 Tuesday, September 28, 2004 1:46 PM

416 Chapter 20 Vulnerability Analysis

considered from the perspective of any of these processes may differ from the view
when considered from the perspective of the other two. For example, from the point
of view of the flawed process, the flaw may be an incomplete validation of a parame-
ter because the process does not adequately check the parameter it passes to the oper-
ating system by means of a system call. From the point of view of the operating system,
however, the flaw may be a violable prohibition/limit, because the parameter may refer
to an address outside the space of the process. Which classification is appropriate?

Levels of abstraction muddy this issue even more. At the lowest level, the flaw
may be, say, an inconsistent parameter validation because successive system calls do
not check that the argument refers to the same object. At a higher level, this may be
characterized as a race condition or an asynchronous validation/inadequate serializa-
tion problem. At an even higher level, it may be seen as an exploitable logic error
because a resource (object) can be deleted while in use.

The levels of abstraction are defined differently for every system, and this
contributes to the ambiguity. In the following discussion, the “higher” the level, the
more abstract it is, without implying precisely where in the abstraction hierarchy
either level occurs. Only the relationship, not the distance, of the levels is important
in this context.

We now expand on these questions using our two sample flaws.

20.4.5.1 The xterm Log File Flaw
We begin with the PA taxonomy. From the point of view of the xterm process, the
flaw is clearly an improper change flaw because the problem is that between the time
of check (access) and the time of use (open), the referent of the name changes. How-
ever, with respect to the attacker process, the flaw is an improper deallocation or
deletion flaw because something (in this case, the binding between the name and the
referent) is being deleted improperly. And from the operating system’s point of view,
the flaw is an improper indivisibility flaw because the opening of the file should
atomically check that the access is allowed.

Reconsider the problem at a higher level of abstraction from the point of view
of the operating system. At this level, a directory object is seen simply as an object;
deletion and creation of files in the directory are semantically equivalent to writing in
the directory, and obtaining file status and opening a file require that the directory be
read. In this case, the flaw may be seen as a violation of the Bernstein conditions [79]
(requiring no reading during writing, and a single writer), which means that the flaw
is one of improper sequencing.

At the abstraction level corresponding to design, the attacking process should
not be able to write into the directory in the first place, leading to a characterization
of the flaw as one of improper choice of initial protection domain. This is not a valid
characterization at the implementation level because both the attacking process and
the xterm are being executed by the same user and the semantics of the implementa-
tion of the UNIX operating system require that both processes be able to access the
same objects in the same way.

Bishop.book Page 416 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 417

At the implementation level, with respect to the xterm process and the RISOS
taxonomy, the xterm flaw is clearly an asynchronous validation/inadequate serializa-
tion flaw because the file access is checked and then opened nonatomically. From the
point of view of the attacker, the ability to delete the file makes the flaw an exploit-
able logic error as well as a violable prohibition/limit flaw because the attacker is
manipulating a binding in the system’s domain. And from the operating system’s
point of view, the flaw is an inconsistent parameter validation flaw because the
access check and open use the same parameters, but the objects they refer to are dif-
ferent, and this is not checked.

Interestingly, moving up in the hierarchy of abstractions, the flaw may once
again be characterized as a violation of the Bernstein conditions, or the nonatomicity
of an operation that should be atomic; in either case, it is an asynchronous validation/
inadequate serialization flaw. So the process view prevails.

At the design level, a write being allowed where it should not be is an inade-
quate identification/authentication/authorization flaw because the resource (the con-
taining directory) is not adequately protected. Again, owing to the nature of the
protection model of the UNIX operating system, this would not be a valid character-
ization at the implementation level.

Hence, this single flaw has several different characterizations. At the imple-
mentation level, depending on the classifier’s point of view, the xterm flaw can be
classified in three different ways. Trying to abstract the underlying principles under
one taxonomy places the flaw in a fourth class, and under the other taxonomy, one
view (the xterm process view) prevails. Moving up to the design level, a completely
different classification is needed. Clearly, the ambiguity in the PA and RISOS classi-
fications makes it difficult to classify flaws with precision.

The classification under the NRL taxonomy depends on whether this flaw
was intentional or not; the history is unclear. If it was intentional, at the lowest
level, it is an inadvertent flaw of serialization/aliasing; if it was unintentional
(because on earlier systems xterm need not be privileged), it is a nonmalicious:
other flaw. In either case, at higher levels of abstraction, the classification would
parallel that of the RISOS scheme. Given the history, the time of introduction is
clearly during development, and the location is in the class support: privileged util-
ities. So, this taxonomy classifies this particular flaw unambiguously on two axes.
However, the third classification is ambiguous even when points of view and levels
of abstraction are ignored.

The selection criteria for fault classification in Aslam’s taxonomy places the
flaw in the object installed with incorrect permissions class from the point of view of
the attacking program (because the attacking program can delete the file), in the
access rights validation error class from the point of view of the xterm program
(because xterm does not properly validate the file at the time of access), and in the
improper or inadequate serialization error class from the point of view of the operat-
ing system (because the deletion and creation should not be interspersed between the
access and open). As an aside, in the absence of the explicit decision procedure, the flaw
could also have been placed in a fourth class, race conditions. So, although this tax-
onomy classifies flaws into specific classes, the class into which a flaw is placed is a

Bishop.book Page 417 Tuesday, September 28, 2004 1:46 PM

418 Chapter 20 Vulnerability Analysis

function of the decision procedure as well as the nature of the flaw itself. The fact
that this ambiguity of classification is not a unique characteristic of one flaw is
apparent when we study the second flaw—the fingerd flaw.

20.4.5.2 The fingerd Buffer Overflow Flaw
With respect to the fingerd process and the PA taxonomy, the buffer overflow flaw is
clearly an improper validation flaw because the problem is failure to check parame-
ters, leading to addressing of memory not in its memory space by referencing
through an out-of-bounds pointer value. However, with respect to the attacker pro-
cess (the finger program), the flaw is one of improper choice of operand or operation
because an operand (the data written onto the connection) is improper (specifically,
too long, and arguably not what fingerd is to be given). And from the operating sys-
tem’s point of view, the flaw is an improper isolation of implementation detail flaw
because the user is allowed to write directly into what should be in the space of the
process (the return address) and to execute what should be treated as data only.

Moving still higher in the layers of abstraction, the storage space of the return
address is a variable or an object. From the operating system’s point of view, this
makes the flaw an improper change flaw because a parameter—specifically, the
return address—changes unexpectedly. From the fingerd point of view, however, the
more abstract issue is the execution of data (the input); this is improper validation—
specifically, failure to validate the type of the instructions being executed. So, again,
the flaw is an improper validation flaw.

At the highest level, the system is changing a security-related value in mem-
ory and is executing data that should not be executable. Hence, this is again an
improper choice of initial protection domain flaw. But this is not a valid characteriza-
tion at the implementation level because the architectural design of the system
requires the return address to be stored on the stack, just as the input buffer is allo-
cated on the stack, and, because the hardware supporting most versions of the UNIX
operating system cannot protect specific words in memory (instead, protection is
provided for all words on a page or segment), the system requires that the process be
able to write to, and read from, its stack.

With respect to the fingerd process using the RISOS taxonomy, the buffer
overflow flaw is clearly an incomplete parameter validation flaw because the prob-
lem is failure to check parameters, allowing the buffer to overflow. However, with
respect to the fingerd process, the flaw is a violable prohibition/limit flaw because the
limit on input data to be sent can be ignored (violated). And from the operating sys-
tem’s point of view, the flaw is an inadequate identification/authentication/authori-
zation flaw because the user is allowed to write directly to what should be in the
space of the process (the return address) and to execute what should be treated as
data only.

Moving still higher, the storage space of the return address is a variable or an
object. From the operating system’s point of view, this makes the flaw one of asyn-
chronous validation/inadequate serialization because a parameter—specifically, the
return address—changes unexpectedly. From the fingerd point of view, however, the

Bishop.book Page 418 Tuesday, September 28, 2004 1:46 PM

20.4 Frameworks 419

more abstract issue is the execution of data (the input); this is improper validation—
specifically, failure to validate the type of the instructions being executed. So the flaw
is an inadequate identification/authentication/authorization flaw.

At the highest level, this is again an inadequate identification/authentication/
authorization flaw because the system is changing a security-related value in mem-
ory and is executing data that should not be executable. Again, owing to the nature of
the protection model of the UNIX operating system, this would not be a valid charac-
terization at the implementation level.

The NRL taxonomy suffers from similar problems in its classification by gen-
esis, which—for inadvertent flaws, as this is—uses the RISOS taxonomy. In this
case, the time of introduction is clearly during development, and the location is in the
support: privileged utilities class. So, this taxonomy classifies this particular flaw
unambiguously on two axes. Note that knowledge of the history of the program is
needed to perform the classification. A rogue programmer could easily have inserted
this vulnerability into a patch distributed to system administrators, in which case the
genesis classification would be as a malicious flaw, falling in the trapdoor category,
and the time of introduction would be in the operating class.

Finally, under Aslam’s taxonomy, the flaw is a boundary condition error from
the point of view of the attacking program (because the limit on input data can be
ignored) and from the point of view of the xterm program (because the process writes
beyond a valid address boundary) and an environment fault from the point of view of
the operating system (because the error occurs when the program is executed on a
particular machine—specifically, a stack-based machine). As an aside, in the absence
of the explicit decision procedure, the flaw could also have been placed in the class
of access rights validation errors because the code executed in the input buffer
should be data only and because the return address is outside the protection domain
of the process and yet is altered by it. So, again, this taxonomy satisfies the decision
procedure criterion, but not the uniqueness criterion.

The RISOS classifications are somewhat more consistent among the levels of
abstraction because the improper authorization classification runs through the layers
of abstraction. However, point of view plays a role here because that classification
applies to the operating system’s point of view at two levels and to the process view
between them. This, again, limits the usefulness of the classification scheme.
Because Landwehr’s work is based on RISOS, it has similar problems.

20.4.5.3 Summary
Flaw classification is not consistent among different levels of abstraction. Ideally, a
flaw should be classified the same at all levels (possibly with more refinement at
lower levels). This problem is ameliorated somewhat by the overlap of the flaw clas-
sifications because as one refines the flaws, the flaws may shift classes. However, the
classes themselves should be distinct; they are not, leading to this problem.

The point of view is also a problem. The point of view should not affect the
class into which a flaw falls, but, as the examples show, it clearly does. So, can we use
this as a tool for classification—that is, identify flaws on the basis of the three classes

Bishop.book Page 419 Tuesday, September 28, 2004 1:46 PM

420 Chapter 20 Vulnerability Analysis

into which they fall? The problem is that the classes are not partitions; they overlap,
and so it is often not clear which class should be used for a component of the triple.

In short, the xterm and fingerd examples demonstrate weaknesses of the PA,
RISOS, NRL, and Aslam classifications: either the classifications of some flaws are
not well defined or they are arbitrary and vary with the levels of abstraction and
points of view from which the flaws are considered.

20.5 Summary

As the Internet has grown, so has connectivity, enabling attackers to break into an
increasing number of systems. Often very inexperienced attackers appear to have
used extremely sophisticated techniques to break into systems, but on investigation it
can be seen that they have used attack tools. Indeed, attack tools are becoming very
widespread, and most systems cannot resist a determined attack.

In the past, attention was focused on building secure systems. Because of the
large number of nonsecure systems in use today, it is unrealistic to expect that new,
secure systems will be deployed widely enough to protect the companies and indi-
viduals connected to the Internet. Instead, existing systems will be made more
secure, and as vulnerabilities are found they will be eliminated or monitored. The
vulnerability models discussed in this chapter guide us in improving the software
engineering cycle and in reducing the risk of introducing new vulnerabilities, and
penetration analyses enable us to test admittedly nonsecure systems to determine
whether or not they are sufficiently secure for the uses to which they are put.

20.6 Further Reading

Descriptions of vulnerabilities usually are anecdotal or are found through informal
sources (such as the Internet). Papers describing security incident handling, security
incident response, and security tools [171, 657, 768, 878] often describe both suc-
cessful and unsuccessful attacks. Some books and papers [13, 409, 699] describe
attack tools in detail. Others [515, 759] describe techniques for attacking systems.
Parker [713] outlines several techniques that unsuccessful criminals have used.

Several papers discuss analyses of programs and systems for vulnerabilities.
One paper [110] describes a syntactic approach to finding potential race conditions.
Others [216, 638, 923] discuss buffer overflows. The use of fault injection to find
potential vulnerabilities has also been discussed [354, 918].

Gupta and Gligor developed a formal analysis technique arising from failure
to perform adequate checks [383, 384].

The Common Vulnerabilities and Exposures list is discussed in two papers
[174, 590].

Bishop.book Page 420 Tuesday, September 28, 2004 1:46 PM

20.7 Exercises 421

20.7 Exercises

1. Classify the following vulnerabilities using the RISOS model. Assume that
the classification is for the implementation level. Justify your answer.

a. The presence of the “wiz” command in the sendmail program (see
Section 20.2.8).

b. The failure to handle the IFS shell variable by loadmodule (see
Section 20.2.8).

c. The failure to select an Administrator password that was difficult to
guess (see Section 20.2.9).

d. The failure of the Burroughs system to detect offline changes to files
(see Section 20.2.6).

2. Classify the vulnerabilities in Exercise 1 using the PA model. Assume that
the classification is for the implementation level. Justify your answer.

3. The C shell does not treat the IFS variable as a special variable. (That is,
the C shell separates arguments to commands by white spaces; this
behavior is built in and cannot be changed.) How might this affect the
loadmodule exploitation?

4. A common error on UNIX systems occurs during the configuration of
bind, a directory name server. The time-to-expire field is set at 0.5 because
the administrator believes that this field’s unit is minutes (and wishes to set
the time to 30 seconds). However, bind expects the field to be in seconds
and reads the value as 0—meaning that no data is ever expired.

a. Classify this vulnerability using the RISOS model, and justify your
answer.

b. Classify this vulnerability using the PA model, and justify your
answer.

c. Classify this vulnerability using Aslam’s model, and justify your
answer.

5. Can the UNIX Bourne shell variable HOME, which identifies the home
directory of a user to programs that read start-up files from the user’s home
directory, be used to compromise a system? If so, how?

6. An attacker breaks into a Web server running on a Windows 2000–based
system. Because of the ease with which he broke in, he concludes that
Windows 2000 is an operating system with very poor security features. Is
his conclusion reasonable? Why or why not?

7. Generalize the vulnerability described in Section 20.2.6 in order to suggest
other ways in which the system could be penetrated.

Bishop.book Page 421 Tuesday, September 28, 2004 1:46 PM

422 Chapter 20 Vulnerability Analysis

8. Generalize the example in Section 20.2.7 in order to describe other
weaknesses that the security of the computer system might have.

9. Why might an analyst care how similar two vulnerabilities are?
10. One expert noted that the PA model and the RISOS model are isomorphic.

Show that the PA vulnerability classifications correspond to the RISOS
vulnerability classes and vice versa.

11. The NRL classification scheme has three axes: genesis, time of
introduction, and location. Name two other axes that would be of interest
to an analyst. Justify your answer.

12. In the NRL classification scheme for the “time of introduction” axis, must
the development phase precede the maintenance and operation phases, and
must the maintenance phase precede the operation phase? Justify your
answer.

13. In the NRL classification scheme for the “genesis” axis, how might one
determine whether a vulnerability is “malicious” or “nonmalicious”?

14. In the NRL classification scheme for the “genesis” axis, can the classes
“Trojan horse” and “covert channel” overlap? Justify your answer. If your
answer is yes, describe a Trojan horse that is also a covert channel or vice
versa.

15. Aslam’s classification scheme classifies each vulnerability into a single
category based on a decision tree that requires “yes” or “no” answers to
questions about the vulnerability. A researcher has suggested replacing the
tree with a vector, the components of which correspond to questions about
the vulnerability. A “1” in the vector corresponds to a “yes” answer to the
question; a “0” corresponds to a “no” answer. Compare and contrast the
two approaches.

16. For the fingerd security hole to be exploited, certain conditions must hold.
Based on the discussion in Section 20.3.1, enumerate these conditions.

17. For the xterm security hole to be exploited, certain conditions must hold.
Based on the discussion in Section 20.3.1, enumerate these conditions.

18. Perform a penetration test on a system after you obtain authorization to
do so. Apply the Flaw Hypothesis Methodology to obtain a meaningful
assessment of the system’s security.

Bishop.book Page 422 Tuesday, September 28, 2004 1:46 PM

423

Chapter 21
Auditing

LADY MACBETH: Your servants ever
Have theirs, themselves and what is theirs, in compt,

To make their audit at your highness’ pleasure,
Still to return your own.

—The Tragedy of Macbeth, I, vi, 27–30.

Auditing is an a posteriori technique for determining security violations. This chap-
ter presents the notions of logging (recording of system events and actions) and
auditing (analysis of these records). Auditing plays a major role in detection of secu-
rity violations and in postmortem analysis to determine precisely what happened and
how. This makes an effective auditing subsystem a key security component of any
system.

21.1 Definitions

The development of techniques for auditing computer systems sprang from the need
to trace access to sensitive or important information stored on computer systems as
well as access to the computer systems themselves. Anderson [26] first proposed the
use of audit trails to monitor threats. The use of existing audit records suggested the
development of simple tools that would check for unauthorized access to systems
and files. The premise—that the logging mechanism was in place and active—
required that the logs be augmented with additional information, but Anderson did
not propose modification of the basic structure of the system’s logging design, the
implication being that redesign of the security monitoring mechanism was beyond
the scope of the study.

Definition 21–1. Logging is the recording of events or statistics to provide
information about system use and performance.

Bishop.book Page 423 Tuesday, September 28, 2004 1:46 PM

424 Chapter 21 Auditing

Definition 21–2. Auditing is the analysis of log records to present informa-
tion about the system in a clear and understandable manner.

With respect to computer security, logs provide a mechanism for analyzing the
system security state, either to determine if a requested action will put the system in a
nonsecure state or to determine the sequence of events leading to the system being in a
nonsecure (compromised) state. If the log records all events that cause state transitions,
as well as the previous and new values of the objects that are changed, the system state
can be reconstructed at any time. Even if only a subset of this information is recorded,
one might be able to eliminate some possible causes of a security problem; what
remains provides a valuable starting point for further analysis.

Gligor [360] suggests other uses for the auditing mechanism. It allows systems
analysts to review patterns of usage in order to evaluate the effectiveness of protection
mechanisms. These patterns can be used to establish expected patterns of resource
usage, which are critical for some intrusion detection systems. (See Chapter 25, “Intru-
sion Detection.”) Auditing mechanisms must record any use of privileges. A security
control that would restrict an ordinary user may not restrict the empowered user.
Finally, audit mechanisms deter attacks because of the record and the analysis, thereby
providing assurance that any violation of security policies will be detected.

Two distinct but related problems arise: which information to log and which
information to audit. The decision of which events and actions should be audited
requires a knowledge of the security policy of the system, what attempts to violate
that policy involve, and how such attempts can be detected. The question of how
such attempts can be detected raises the question of what should be logged: what
commands must an attacker use to (attempt to) violate the security policy, what sys-
tem calls must be made, who must issue the commands or system calls and in what
order, what objects must be altered, and so forth. Logging of all events implicitly
provides all this information; the problem is how to discern which parts of the infor-
mation are relevant, which is the problem of determining what to audit.

21.2 Anatomy of an Auditing System

An auditing system consists of three components: the logger, the analyzer, and the
notifier. These components collect data, analyze it, and report the results.

21.2.1 Logger

Logging mechanisms record information. The type and quantity of information are
dictated by system or program configuration parameters. The mechanisms may
record information in binary or human-readable form or transmit it directly to an
analysis mechanism (see Section 21.2.2). A log-viewing tool is usually provided if

Bishop.book Page 424 Tuesday, September 28, 2004 1:46 PM

21.2 Anatomy of an Auditing System 425

the logs are recorded in binary form, so a user can examine the raw data or manipu-
late it using text-processing tools.

EXAMPLE: RACF [303] is a security enhancement package for the IBM MVS oper-
ating system and VM environment. It logs failed access attempts and the use of priv-
ileges to change security levels, and it can be set to log RACF interactions. The
command LISTUSER lists information about RACF users as follows.

USER=EW125004 NAME=S.J.TURNER OWNER=SECADM CREATED=88.004
 DEFAULT-GROUP=HUMRES PASSDATE=88.004 PASS-INTERVAL=30
 ATTRIBUTES=ADSP
 REVOKE DATE=NONE RESUME-DATE=NONE
 LAST-ACCESS=88.020/14:15:10
 CLASS AUTHORIZATIONS=NONE
 NO-INSTALLATION-DATA
 NO-MODEL-NAME
 LOGON ALLOWED (DAYS) (TIME)

 ANYDAY ANYTIME
 GROUP=HUMRES AUTH=JOIN CONNECT-OWNER=SECADM

 CONNECT-DATE=88.004
 CONNECTS= 15 UACC=READ LAST-CONNECT=88.018/16:45:06
 CONNECT ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 GROUP=PERSNL AUTH=JOIN CONNECT-OWNER=SECADM CONNECT-

DATE:88.004
 CONNECTS= 25 UACC=READ LAST-CONNECT=88.020/14:15:10
 CONNECT ATTRIBUTES=NONE
 REVOKE DATE=NONE RESUME DATE=NONE
 SECURITY-LEVEL=NONE SPECIFIED
 CATEGORY AUTHORIZATION
 NONE SPECIFIED

RACF can also log its interactions with users, so that if a user attempts to modify it
in any way, a log entry will be made.

EXAMPLE: Microsoft’s Windows NT has three different sets of logs. The system
event log contains records of events that Microsoft has determined warrant record-
ing, such as system crashes, component failures, and other events. The application
event log contains records that applications have added. These records are under the
control of the applications. The security event log contains records corresponding to
security-critical events such as logging in and out, system resource overuses, and
accesses to system files. Only administrators can access the security event log.

Bishop.book Page 425 Tuesday, September 28, 2004 1:46 PM

426 Chapter 21 Auditing

The Windows NT logger defines a record as a header followed by a descrip-
tion and possibly an additional data field. The header contains an event identifier,
user identity information (a user identifier and, if appropriate, an impersonation iden-
tifier), the date and time, the source that caused the record to be generated, the spe-
cific policy setting that triggered the record, and the computer involved. All records
are kept in binary form. A tool called the event viewer translates the records into
readable form.

An example security event log record might look like the following (but
would be displayed in a graphic format).

Date: 2/12/2000 Source: Security
Time: 13:03 Category: Detailed Tracking
Type: Success EventID: 592
User: WINDSOR\Administrator
Computer: WINDSOR

Description:
A new process has been created:
New Process ID: 2216594592
Image File Name:

 \Program Files\Internet Explorer\IEXPLORE.EXE
Creator Process ID: 2217918496
User Name: Administrator
FDomain: WINDSOR
Logon ID: (0x0,0x14B4c4)

This system logs process execution and termination in the security log. This event
arose from the Administrator successfully executing the Internet Explorer. The
Administrator configured the system to log successful process initiations (hence the
value of the type field).

The designers of Windows NT allowed the system administrator to specify
what should happen if the log should get full. The Administrator can have the system
shut down when the log is full, disable logging completely, or cause the oldest entries
to be overwritten or discarded.

21.2.2 Analyzer

An analyzer takes a log as input and analyzes it. The results of the analysis may lead
to changes in the data being recorded, to detection of some event or problem, or both.

EXAMPLE: Suppose a system administrator wants to list all systems from which
users have connected using the rlogin or telnet program, excluding systems at the
site. The following swatch patterns [394, 395] match the lines generated by these
remote connections.

Bishop.book Page 426 Tuesday, September 28, 2004 1:46 PM

21.2 Anatomy of an Auditing System 427

/rlogin/&!/localhost/&!/*.site.com/
/telnet/&!/localhost/&!/*.site.com/

This line matches all log file entries containing the word “rlogin” and not containing
either “localhost” or any string ending in “.site.com”—the local host’s domain.

EXAMPLE: A database query control mechanism that uses prior queries to determine
whether to answer contains both a logger and an analyzer. The logger records que-
ries. When a user makes a new query, the analyzer examines the answers to past que-
ries. If there are too many answers in common, the analyzer determines whether the
overlap is within acceptable limits.

EXAMPLE: An intrusion detection system (see Chapter 22) detects attacks by ana-
lyzing log records for unexpected activity or for activity that is known to be an
attempt to compromise the system. The analysis mechanism of the intrusion detec-
tion system is an example of an audit analysis mechanism.

21.2.3 Notifier

The analyzer passes the results of the analysis to the notifier. The notifier informs the
analyst, and other entities, of the results of the audit. The entities may take some
action in response to these results.

EXAMPLE: The swatch program mentioned above provides a notification facility.
The configuration file to make swatch report rlogin and telnet connections is

/rlogin/&!/localhost/&!/*.site.com/mail staff
/telnet/&!/localhost/&!/*.site.com/mail staff

EXAMPLE: The notifier in the database query set size control blocks responses to
queries that reduce the union of all previous query set sizes to less than r.

EXAMPLE: Consider the login system described on page 184, in which three consec-
utive failed login attempts disable the user’s account. The logging mechanism
records each attempt. The audit mechanism checks the number of consecutive failed
login attempts. When this number reaches 3, the audit mechanism invokes the noti-
fier, which reports the problem to the system administrator and disables the account.

Bishop.book Page 427 Tuesday, September 28, 2004 1:46 PM

428 Chapter 21 Auditing

21.3 Designing an Auditing System

A single, well-unified logging process is an essential component of computer secu-
rity mechanisms [124]. The design of the logging subsystem is an integral part of the
overall system design. The auditing mechanism, which builds on the data from the
logging subsystem, analyzes information related to the security state of the system
and determines if specific actions have occurred or if certain states have been entered.

The goals of the auditing process determine what information is logged [56].
In general, the auditors desire to detect violations of policy. Let Ai be the set of possi-
ble actions on a system. The security policy provides a set of constraints pi that the
design must meet in order for the system to be secure. This implies that the functions
that could cause those constraints to fail must be audited.

Represent constraints as “action ⇒ condition.” Implication requires that the
action be true (which means that the action occurred, in this context) before any
valid conclusion about the condition can be deduced. Although this notation is
unusual, it allows us simply to list constraints against which records can be audited.
If the record’s action is a “read,” for example, and the constraint’s action is a “write,”
then the constraint clearly holds. Furthermore, the goal of the auditing is to deter-
mine if the policy has been violated (causing a breach of security), so the result (suc-
cess or failure) of the operation should match the satisfaction of the constraint. That
is, if the constraint is true, the result is irrelevant, but if the constraint is false and the
operation is successful, a security violation has occurred.

EXAMPLE: Recall that the simplest form of the Bell-LaPadula policy model linearly
orders the security levels Li. A subject S has the level L(S), and the object O has the
level L(O). Under this policy, a system state is illegal if S reads O when L(S) < L(O)
or if S writes to O when L(S) > L(O). The corresponding constraints are

1. S reads O ⇒ L(S) ≥ L(O)
2. S writes O ⇒ L(S) ≤ L(O)

Auditing for security violations merely requires auditing for writes from a subject to a
lower-level object or reads from a higher-level object and checking for violations of
these constraints. Logs must contain security levels of the subjects and objects
involved, the action (to determine which constraint applies), and the result (success or
failure). From these logs, testing for the violation of the constraints above is trivial.

Surprisingly, the names of the subject and object need not be recorded. However,
in practice, the site security policy would require the security analyst to identify both
the object of the violation and the user who attempted the violation. With this modi-
fication of the policy, the names of the subject and object would also be recorded.

To summarize in this limited case, auditing of reads and writes in a Bell-
LaPadula-based systems requires logging the subject’s security level, the object’s
security level, and the result of the action

Bishop.book Page 428 Tuesday, September 28, 2004 1:46 PM

21.3 Designing an Auditing System 429

21.3.1 Implementation Considerations

The example models above showed that analyzing the specific rules and axioms of a
model reveal specific requirements for logging enough information to detect security
violations. Interestingly enough, one need not assume that the system begins in a
secure (or valid) state because all the models assert that the rules above are necessary
but not sufficient for secure operation and auditing tests necessity. That is, if the
auditing of the logs above shows a security violation, the system is not secure; but if
it shows no violation, the system may still not be secure because if the initial state of
the system is nonsecure, the result will (most likely) be a nonsecure state. Hence, if
one desires to use auditing to detect that the system is not secure rather than detect
actions that violate security, one needs also to capture the initial state of the system.
In all cases, this means recording at start time the information that would be logged
on changes in the state.

The examples above discussed logging requirements quite generically. The
discussion of the Bell-LaPadula Model asserted specific types of data to be recorded
during a “write.” In an implementation, instantiating “write” may embody other
system-specific operations (“append,” “create directory,” and so on). Moreover, the
notion of a “write” may be quite subtle—for example, it may include alteration of
protection modes, setting the system clock, and so forth. How this affects other enti-
ties is less clear, but typically it involves the use of covert channels (see Section 16.3)
to write (send) information. These channels also must be modeled.

Naming also affects the implementation of logging criteria. Typically,
objects have multiple names by which they can be accessed. However, if the crite-
ria involve the entity, the system must log all constrained actions with that entity
regardless of the name used. For example, each UNIX file has at least two repre-
sentations: first, the usual one (accessed through the file system), and second, the
low-level one (composed of disk blocks and an inode and accessed through the raw
disk device). Logging all accesses to a particular file requires that the system log
accesses through both representations. Systems generally do not provide logging
and auditing at the disk block level (owing to performance). However, this means
that UNIX systems generally cannot log all accesses to a given file.

21.3.2 Syntactic Issues

One critical issue is how to log: what data should be placed in the log file, and how it
should be expressed, to allow an audit to draw conclusions that can be justified
through reference to the log. This enables the analyst to display the reasoning behind
the conclusions of the audit. The problem is that many systems log data ambiguously
or do not present enough context to determine to what the elements of the log entry
refer.

Bishop.book Page 429 Tuesday, September 28, 2004 1:46 PM

430 Chapter 21 Auditing

EXAMPLE: A UNIX system logs the names of files that a user retrieves using ftp.
The log contains the file name /etc/passwd. If the associated user is the anonymous
user (indicating an anonymous login), then the file actually retrieved is the password
file in the anonymous ftp subtree, not the system’s password file. This is an example
of the naming issue discussed in the preceding section.

This example demonstrates that a single log entry may not contain all the
information about a particular action. The context of the entry conveys information.
An analysis engine benefits from analyzing the context as well as the entries.

Flack and Atallah [323] suggest using a grammar-based approach to specify-
ing log content. The grammar, expressed using a notation such as BNF, forces the
designer to specify the syntax and semantic content of the log. Because the grammar
of the log is completely specified, writing tools to extract information from the log
requires development of a parser using the stated grammar. The analyzer can then
process log entries using this grammar.

EXAMPLE: Suppose the following grammar describes log entries in a typical UNIX
system’s log for failed attempts to change user privileges.

entry: date host prog [bad] user [“from” host] “to”
user “on” tty

date : daytime
host : string
prog : string “:”
bad : “FAILED”
user : string
tty : “/dev/” string

Here, “string” and “daytime” are terminals and the quoted strings are literals. An
analyst would check that this log entry format contained all the information needed
for analysis. Then all programs that created these login entries would use a format
derived from this grammar. This would provide consistency for the entries and would
allow a single tool to extract the desired information from the log file.

Flack and Atallah point out that most current log entries are not specified using
grammars. They examined BSM’s description and entries (see Section 21.5.2) and
found some ambiguities. For example, one BSM entry has two optional text fields fol-
lowed by two mandatory text fields. The documentation does not specify how to inter-
pret a sequence of three text fields in this context, so it is unclear which of the two
optional text fields is present. They developed a BSM grammar that treats the optional
fields as either both present or both absent, so three text fields generate a parse error.
Any ambiguous log entries will thereby generate the exception. The analyst can then
examine the log entry and best determine how to handle the situation.

Bishop.book Page 430 Tuesday, September 28, 2004 1:46 PM

21.3 Designing an Auditing System 431

21.3.3 Log Sanitization

A site may consider a set of information confidential. Logs may contain some of this
information. If the site wishes to make logs available, it must delete the confidential
information.

Definition 21–3. Let U be a set of users. The policy P defines a set of infor-
mation C(U) that members of U are not allowed to see. Then the log L is san-
itized with respect to P and U when all instances of information in C(U) are
deleted from L.

Confidentiality policies may impact logs in two distinct ways. First, P may
forbid the information to leave the site. For example, the log may contain file names
that give indications of proprietary projects or enable an industrial spy to determine
the IP addresses of machines containing sensitive information. In this case, the
unsanitized logs are available to the site administrators. Second, P may forbid the
information to leave the system. In this case, the goal is to prevent the system admin-
istration from spying on the users. For example, if the Crashing Computer Company
rents time on Denise’s Distributed System, the CCC may not want the administrators
of the system to determine what they are doing. Privacy considerations also affect the
policy. Laws may allow the system administration to monitor users only when they
have reason to believe that users are attacking the system or engaging in illegal activ-
ities. When they do look at the logs, the site must protect the privacy of other users so
that the investigators cannot determine what activities the unsuspected users are
engaged in.

The distinction controls the organization of the logging. Figure 21–1 shows
where the sanitizers are applied. The top figure shows a sanitizer that removes infor-
mation from an existing log file before the analysts examine it. This protects com-
pany confidentiality because the external viewers are denied information that the
company wishes to keep confidential. It does not protect users’ privacy because the
site administration has access to the unsanitized log. The bottom figure shows a con-
figuration in which users’ privacy is protected, because the data is sanitized before it
is written to the log. The system administrators cannot determine the true value of
the sanitized data because it is never written to the log file. If they must be able to
recover the data at some future point (to satisfy a court order, for example), the sani-
tizer can use cryptography to protect the data by encrypting it or by using a crypto-
graphic scheme allowing a reidentifier to reassemble the unsanitized data.

This suggests two different types of sanitization.

Definition 21–4. An anonymizing sanitizer deletes information in such a way
that it cannot be reconstructed by either the recipient or the originator of the
data in the log. A pseudonymizing sanitizer deletes information in such a way
that the originator of the log can reconstruct the deleted information.

Bishop.book Page 431 Tuesday, September 28, 2004 1:46 PM

432 Chapter 21 Auditing

These issues affect the design of the log. The sanitizer must preserve informa-
tion and relationships relevant to the analysis of the data in the log. Otherwise, the
analyzers may miss information that would enable them to detect attacks.

EXAMPLE: The Humongous Corporation wishes to conceal the IP addresses of a set
of hosts containing proprietary data. The actual IP addresses are 10.163.5.10 through
10.163.5.14. The corporation wants to make its logs available to a consultant for
analysis. The corporation must replace the IP addresses.

The log shows connections to port 25 (the electronic mail port) of the IP
addresses in question. The order of the probing is as follows.

10.163.5.10, 10.163.5.11, 10.163.5.12, 10.163.5.13, 10.163.5.14

If the corporation replaces the IP addresses at random, the log entries will reflect
e-mail being sent to a set of random hosts. If the corporation preserves the sequential
order of the IP addresses, the log entries will reflect a port scanning probe. This often
precedes an attack of some sort.

Biskup and Flegel [113] point out that one need not sanitize data that is not
collected. Therefore, if a log is to be sanitized to provide anonymity, the simplest
technique is simply not to collect the data. However, pseudonymity requires that the
data be collected. Two techniques provide the hiding ability.

Suppose the policy allows site administrative personnel to view the data but
others to see only the sanitized log. The first step is to determine a set of pseudonyms
that preserve the relationships that are relevant to the analysis. The sanitizer replaces
the data with the pseudonyms and maintains a table mapping pseudonyms to actual
values (similar to a pseudonymous remailer; see Definition 14–5). Because all site
administrators have access to this table, any of them could reconstruct the actual log.

Logging system Log UsersSanitizer

Logging system Log UsersSanitizer

Figure 21–1 The different types of sanitization. The top figure shows logs
being sanitized for external viewing. The bottom figure shows logs being
sanitized for privacy of users. In this case, the sanitizer may save information
in a separate log that enables the reconstruction of the omitted information.
Cryptographic techniques enforce separation of privilege, so multiple
administrators must agree to view the unsanitized logs.

Bishop.book Page 432 Tuesday, September 28, 2004 1:46 PM

21.3 Designing an Auditing System 433

The second technique is appropriate when the policy requires that some set of
individuals, not including the system administrators, be able to see the unsanitized
data (for example, law enforcement officers or intrusion analysts at a remote site)
[113]. The unsanitized data cannot be stored in the clear on the system because the
system security officers could then obtain the unsanitized data. One approach is to
use a random enciphering key to encipher each sensitive datum and treat the decryp-
tion key as the representation of the datum. Then a secret sharing scheme allows the
shadows of the decryption key to be split among as many people (or entities) as
desired.

21.3.4 Application and System Logging

Application logs consist of entries made by applications. These entries typically use
high-level abstractions, such as

su: bishop to root on /dev/ttyp0
smtp: delivery failed; could not connect to abcxy.net:25

These entries describe the problems (or results) encountered at the application layer.
These logs usually do not include detailed information about the system calls that are
made, the results that are returned, or the sequence of events leading up to the log entry.

System logs consist of entries of kernel events. These entries do not include
high-level information. They report system calls and events. The first part of a sys-
tem log corresponding to the su line above on a FreeBSD system is as follows.

3876 ktrace CALL execve(0xbfbff0c0,0xbfbff5cc,0xbfbff5d8)
3876 ktrace NAMI "/usr/bin/su"
3876 ktrace NAMI "/usr/libexec/ld-elf.so.1"
3876 su RET execve 0
3876 su CALL __sysctl(0xbfbff47c,0x2,0x2805c928,0xbfbff478,0,0)
3876 su RET __sysctl 0
3876 su CALL mmap(0,0x8000,0x3,0x1002,0xffffffff,0,0,0)
3876 su RET mmap 671473664/0x2805e000
3876 su CALL geteuid
3876 su RET geteuid 0
3876 su CALL getuid
3876 su RET getuid 0
3876 su CALL getegid

The system log consists of 1,879 lines detailing the system calls (the “CALL” lines),
their return values (“RET”), file name lookups (“NAMI”), file I/O (including the data
read or written), and any other actions requiring the kernel.

Bishop.book Page 433 Tuesday, September 28, 2004 1:46 PM

434 Chapter 21 Auditing

The difference in the two logs is their focus. If the audit is to focus on applica-
tion events, such as failures to provide correct passwords (the su entry) or failures to
deliver letters (the SMTP entry), an application log provides a simple way of record-
ing the events for analysis. If system events such as file accesses or memory mapping
affect the outcome of the auditing, then system logging is appropriate. In some cases,
audits using both logs can uncover the system events leading up to an application
event.

The advantage of system logs is the completeness of the information
recorded. Rather than indicating that a configuration file could not be accessed, the
system level log will identify the particular file, the type of access, and the reason for
the failure. This leads to large log files that may require special handling. If a log
overflows, the system can turn off logging, begin overwriting the least recent log
entries, or shut down the system. Many systems allow the auditor to specify the types
of information, or the specific system events, to be logged. By a judicious choice of
which events to log, the danger of logs overflowing can be minimized.

The advantage of application logs is the level of abstraction. The applications
provide the auditor with data that has undergone some interpretation before being
entered. For example, rather than identifying a particular file as inaccessible, an
application log should indicate the reason for accessing the file:

appx: cannot open config file appx.cf for reading: no such file

The correlation problem relates system and application logs. Given a system
log composed of events from one execution of an application, and the corresponding
application log, how can one determine which system log entries correspond to
entries in the application log, and vice versa? This issue identifies the need to under-
stand what an application level failure means at a system level and what application
failures are caused by system level problems. The point is that the application logs
are abstractions of system level events interpreted by the application in view of the
previous application level events. By understanding the events at both the system and
application levels, the auditor can learn about the causes of failures and determine if
they are the results of attempts to breach system security.

21.4 A Posteriori Design

The design of an effective auditing subsystem is straightforward when one is aware
of all possible policy violations and can detect them. Unfortunately, this is rarely the
case. Most security breaches arise on existing systems that were not designed with
security considerations in mind. In this case, auditing may have two different goals.
The first goal is to detect any violations of a stated policy; the second is to detect
actions that are known to be part of an attempt to breach security.

The difference is subtle but important. The first goal focuses on the policy
and, as with the a priori design of an auditing subsystem, records (attempted) actions

Bishop.book Page 434 Tuesday, September 28, 2004 1:46 PM

21.4 A Posteriori Design 435

that violate the policy. The set of such actions may not be known in advance. The
second goal focuses on specific actions that the managers of the system have deter-
mined indicate behavior that poses a threat to system security. Thus, one approaches
the first goal by examining the desired policy, whereas one approaches the second
goal by examining the actions (attacks) that pose the threat.

21.4.1 Auditing to Detect Violations of a Known Policy

Implementation of this type of auditing is similar to the auditing subsystem design
discussed in Section 21.3. The idea is to determine whether or not a state violates the
policy. Unlike mechanisms designed into the system, the auditing mechanisms must
be integrated into the existing system. Analysts must analyze the system to determine
what actions and settings are consistent with the policy. They then design mecha-
nisms for checking that the actions and settings are in fact consistent with the policy.
There are two ways to proceed: state-based auditing and transition-based auditing.

21.4.1.1 State-Based Auditing
The designer can opt for a state-based approach, in which states of the system are
analyzed to determine if a policy violation exists.

Definition 21–5. A state-based logging mechanism records information
about a system’s state. A state-based auditing mechanism determines whether
or not a state of the system is unauthorized.

Typically, a state-based auditing mechanism is built on a state-based logging
system. There is a tacit assumption that a state-based logging mechanism can take
a snapshot of the system. More generally, the state-based logging mechanism must
obtain a consistent state. Algorithms such as Chandy-Lamport [159] can supply a
consistent state for distributed resources, but obtaining a state for nondistributed
resources requires the resources to be quiescent while the state is obtained. On
most systems in which multiple resources supply components of the state, this is
infeasible.

EXAMPLE: File system auditing tools that scan file systems and compare results to a
database, looking for changes, are usually discussed under the rubric of “static anal-
ysis tools.” This implies that they analyze a single state of the system. In fact, unless
they are run on quiescent file systems, these tools take slices of different states
because the attributes are read while the system transitions as other programs access
the resource. The effect of this incremental construction of a union of slices of the
states during the tool’s run can affect the correctness of the report. If a test that the
scanner performs near the end of the tool’s run depends on some assumptions
derived from a check made near the beginning of its run, the state may change and

Bishop.book Page 435 Tuesday, September 28, 2004 1:46 PM

436 Chapter 21 Auditing

the test may appear to succeed, when in reality it reveals no (or misleading) informa-
tion. With consistent static analysis, because the state does not change during the run
of the tool, the tool may rely on the assumptions, but with inconsistent static analy-
sis, such reliance leads to a classic “time of check to time of use” flaw. The same
observation holds for any inconsistent static tool that relies on assumptions deduced
from an earlier part of its current incarnation.

21.4.1.2 Transition-Based Auditing
The designer can opt for a transition-based approach, in which actions that could vio-
late the policy are checked to determine if they do indeed cause violations.

Definition 21–6. A transition-based logging mechanism records information
about an action on a system. A transition-based auditing mechanism exam-
ines the current state of the system and the proposed transition (command) to
determine if the result will place the system in an unauthorized state.

An important observation is that transition-based logging may not be suffi-
cient to enable a transition-based auditing mechanism to determine if the system will
enter an unauthorized state. Specifically, if the system begins in a state that violates
policy, a transition-based auditing mechanism will not detect the security problem if
the transition alone was analyzed and determined not to move the system from a
secure state to a nonsecure state. For this reason, transition-based logging is used
only when specific transitions always require an examination (as in the example of
changes of privilege) or when some state analysis is also performed.

EXAMPLE: The program tcp_wrappers intercepts TCP connections to UNIX-based
systems and determines whether or not the connections are to be allowed. The con-
nections that are to be denied are identified in the file hosts.deny. The logging mech-
anism determines where the connection comes from. The auditing mechanism
compares that point of origin (the IP address, the destination port, and possibly the
user name) with the data in the hosts.deny file. If the point of origin matches the data
in the hosts.deny file, the connection is blocked. This is transition-based auditing
because the mechanism analyzes a command (the putative connection) to determine
if it will put the system in an unauthorized state (by allowing a connection in the
hosts.deny file). The current state of the system is not examined.

EXAMPLE: America Online’s instant messaging system allows a user to sign on from
at most one computer at a time. The mechanism that detects when a user tries to sign
on from two computers simultaneously is a mixture of state-based and transition-
based auditing. It examines the transition (the sign-on) and the current state (whether
or not that user signed on already). If the transition would put the system in an unau-
thorized state (the user signed on twice), the audit mechanism reports the problem.
The system responds by blocking the second sign-on.

Bishop.book Page 436 Tuesday, September 28, 2004 1:46 PM

21.4 A Posteriori Design 437

21.4.2 Auditing to Detect Known Violations of a Policy

In many cases, the security policy is not stated explicitly. However, certain behaviors
are considered to be “nonsecure.” For example, an attack that floods a network to the
point that it is not usable, or accessing of a computer by an unauthorized person,
would violate the implicit security policy. Under these conditions, analysts can deter-
mine specific sequences of commands, or properties of states, that indicate a security
violation and look for that violation.

EXAMPLE: Daniels and Spafford [229] present an analysis of the Land attack [198],
which causes a denial of service by causing the target of the attack to hang or to
respond very slowly. This attack is built on an exchange that begins a TCP connection.

When a TCP connection begins, the source sends a SYN packet to the destina-
tion. This packet contains a sequence number s. The destination receives the packet
and returns a SYN/ACK packet containing the acknowledgment number s + 1 and a
second sequence number t. The source receives this packet and replies with the
acknowledgment number t + 1. Figure 21–2 illustrates this exchange, called a three-
way handshake.

The Land attack arises from an ambiguity of the TCP specification [459].
When the source and destination differ, or the TCP port numbers of the source and
destination differ, the two sequence numbers s and t are from different processes. But
what happens if the source and destination addresses and ports are the same? The
TCP specification is ambiguous.

Consider what happens in the three-way handshake in this case. The target
host receives a SYN packet with sequence number s. It responds with a SYN/ACK
packet containing sequence number t and acknowledgment number s + 1. At this
point, the internal state of the connection in that host is that the next acknowledg-
ment number will be t + 1. Because the source and destination addresses and ports
are the same, the packet returns to the host. The host checks the packet and finds that
the acknowledgment number (s + 1) is incorrect. At this point, the TCP specification
suggests two different ways to handle the situation.

Source Destination

SYN(s)

SYN(t)ACK(s + 1)

ACK(t + 1)

Figure 21–2 The TCP three-way handshake. The SYN packet is a TCP packet
with sequence number s (or t) and the SYN flag set. Likewise, the ACK packet
is a TCP packet with acknowledgment number s + 1 (or t + 1) and the ACK flag
set. The middle message is a single TCP packet with both SYN and ACK flags
set.

Bishop.book Page 437 Tuesday, September 28, 2004 1:46 PM

438 Chapter 21 Auditing

According to one part of the specification,1 the connection should send a reset
(RST). If this is done, it terminates the connection and the attack fails.

According to a different part of the specification,2 the host should reply with an
empty packet with the current sequence number and the expected acknowledgment
number. Hence, the host sends a packet with sequence number t + 1 and acknowledg-
ment number s + 1. Naturally, it receives that packet. It checks that the acknowledg-
ment number is correct, and—again—it is not. Repeating the sequence causes the same
packet to be generated, resulting in an infinite loop. If the host has disabled interrupts
during this part, the system hangs. Otherwise, it runs very slowly, servicing interrupts
but doing little else. The denial of service attack is now successful.

Detecting this attack requires that the initial Land packet be detected. The
characteristic of this packet is that the source and destination addresses and port
numbers are the same. So, the logging requirement is to record that information. The
audit requirement is to report any packets for which the following condition holds.

source address = destination address and
source port number = destination port number

21.5 Auditing Mechanisms

Different systems approach logging in different ways. Most systems log all events by
default and allow the system administrator to disable the logging of specific events.
This leads to bloated logs.

In this section, we present examples of information that systems record and
give some details of the auditing mechanisms.

21.5.1 Secure Systems

Systems designed with security in mind have auditing mechanisms integrated with
the system design and implementation. Typically, these systems provide a language
or interface that allows system managers to configure the system to report specific
events or to monitor accesses by a particular subject or to a particular object. This is
controlled at the audit subsystem so that irrelevant actions or accesses are not
recorded.

EXAMPLE: The VAX VMM system is designed to meet the requirements of the A1
classification of the TCSEC [257]. This classification requires that impending secu-
rity violations be detected, actions be taken to protect the system, auditing based on

1 See p. 36 of the TCP specification [459].
2 See p. 69 of the TCP specification [459].

Bishop.book Page 438 Tuesday, September 28, 2004 1:46 PM

21.5 Auditing Mechanisms 439

user or object be allowed, and extensive administrative support be provided. Because
the VAX VMM was intended to be a production system, the audit mechanism could
have only minimal impact on system performance and had to be highly reliable
[807].

The system is designed as a layered kernel, and so the logging mechanisms
are not unified. Logging occurs at each place in the hierarchy where events of inter-
est occur. Each layer also audits accesses to the objects it controls. In essence, the
auditing mechanisms are distributed throughout the layers.

After each layer has audited its information, the logs and results of the audit
are passed to the audit subsystem for future use. The audit subsystem manages the
system log and has a single entry point (called AUD$audit). The parameters are event
identification, status (the result), auxiliary data (which depends on the event), and the
caller’s name. The audit subsystem records the event if the event affects a subject or
object listed in an audit table and if the severity of the event (derived from the status
code) exceeds that associated with the entity in the audit table. The audit subsystem
then adds the date and time, the subject’s name and type, and other data to the log
entry, dumps the entry into a buffer, and signals the audit logging process, which
writes the log event to the log.

Two types of events are always logged. The first results from the caller’s set-
ting a special flag and is under the programmers’ control. The second is an attempt to
violate policy and is required by the criteria used to certify systems. Protection viola-
tions and login failures are recorded when the event occurs repeatedly. Use of covert
channels is also flagged.

When the log reaches 75% of its capacity, the kernel notifies the audit process
to archive the log contents. This resets the log. This follows the philosophy that the
kernel never runs without auditing. Should archiving be impossible (as a result of full
disks, for example), the system stops.

Audit reduction is based on time (before or after a particular date and time),
security or integrity level (at or above a given level), and severity.

EXAMPLE: The Compartmented Mode Workstation [225] auditing subsystem’s
interface [721] illustrates how the auditing mechanisms interact with users, pro-
cesses, and the kernel. The auditing subsystem maintains a table of auditable events
for the system. Each entry indicates whether or not logging is turned on and what
type of logging to use. At the user level, the command chaud allows the system man-
ager to turn auditing on or off, to indicate what events and objects are to be audited,
and to find out which events and objects are being logged. If the auditor changes the
entities being audited, the log is not interrupted.

At the process level, the system call audit_on turns on logging for an event
and identifies the log file in which to place records. The call audit_off turns off log-
ging for that event. The audit_write system call takes a pointer to a log entry, vali-
dates the putative ID number, and writes it out if logging is turned on for that event.
This allows processes to write their own log entries. Finally, the calls audit_suspend
and audit_resume allow the process to turn off system logging for that process. Any
calls to audit_write are honored.

Bishop.book Page 439 Tuesday, September 28, 2004 1:46 PM

440 Chapter 21 Auditing

Some processes, such as the window manager, perform their own auditing.
The problem is that low-level auditing, at the system call level, does not map easily
into more abstract, high-level events. By disabling low-level auditing and writing its
own records, the window manager can maintain a high level of abstraction for its
logged events.

Once the process makes a system call, the interface checks that the process is
to be audited and that the audit_suspend is not in effect. The first three system call
arguments are recorded, but if any of them is a pointer, the pointer is not resolved.

At the kernel level, the audit_write routine determines what to do with the
record. If there is room in the log, it writes the record out. If not, it can halt the sys-
tem, discard the record, or disable the events that will cause logging. This last tech-
nique is unusual, but its goal is to impact system functionality as little as possible
while ensuring that auditing will record all events of interest.

The logged events are analyzed using a tool called redux. This tool converts
records into a printable format and prints events that satisfy conditions based on
users, objects, security levels, and events.

21.5.2 Nonsecure Systems

Auditing subsystems for systems not designed with security in mind are generally
for purposes of accounting. Although these subsystems can be used to check for
egregious security violations, they rarely record the level of detail or the types of
events that enable security officers to determine if security has been violated. The
level of detail needed is typically provided by an added subsystem.

EXAMPLE: The Basic Security Module (BSM) [887] is an enhancement of SunOS
system security. Each log consists of files, and each file is composed of individual
records. A record is made up of a sequence of tokens. The record size is not fixed;
there is a begin token and an end token. Each record refers to an auditable event.
These events are defined either at the system level (“kernel event”), such as a system
call, or through library function calls from an application (“application event”), such
as a failure to authenticate successfully to the login program. Finally, BSM groups
records into audit event classes. These classes are based on the event triggering the
generation of the record and can be created either before an audit log is created (in
which case the event classes that are defined tell the system which events to generate
records for) or after the log is created (in which case the classes that are defined con-
trol which records are given to the analysis tools). The latter is an example of log
reduction, and the program auditreduce allows analysts to define the classes of
events about which records are to be extracted.

BSM defines a token as an identification field followed by a series of informa-
tion fields. These tokens encapsulate user identity (process, which includes a real,
effective, and original UID and effective group ID as well as process ID), group list,
file system information (pathname and attributes), IPC usage (IPC token, IPC
attributes), networking (IP port number, IP address), and process and system call

Bishop.book Page 440 Tuesday, September 28, 2004 1:46 PM

21.6 Examples: Auditing File Systems 441

information (return value, arguments) as well as more general information (text,
data, opaque). This enables an analyst to tie tokens and records to events of interest
and to extract enough information to determine what was done, who did it, and (if
applicable) what the outcome was.

An example BSM log record might look like this:

header,35,AUE_EXIT,Wed Sep 18 11:35:28 1991, + 570000 msec,
process,bishop,root,root,daemon,1234,
return,Error 0,5
trailer,35

The information is stored in a binary format to minimize log size. A program called
praudit formats and prints records when a human-readable form is needed.

The determination of what to log and what to audit is left to the system man-
agers. This allows BSM to be used in multiple environments and under different pol-
icies. This is consistent with BSM being an add-on security module. It provides other
security mechanisms as well.

21.6 Examples: Auditing File Systems

The difference between designing a logging and auditing mechanism for an existing
file system protocol and designing a logging and auditing mechanism for a new file
system protocol illuminates the differences between a priori and a posteriori audit
design. This section compares and contrasts the design of an audit mechanism for
NFS and the design of a new file system intended to provide logging and auditing.

A bit of background first. Many sites allow computers and users to share file
systems, so that one computer (called a client host) requests access to the file system
of another computer (a server host). The server host responds by exporting a direc-
tory of its file system; the client host imports this information and arranges its own
file system so that the imported directory (called the server host’s mount point)
appears as a directory in the client host’s file system (this directory is called the client
host’s mount point).

21.6.1 Audit Analysis of the NFS Version 2 Protocol3

Consider a site connected to the Internet. It runs a local area network (LAN) with
several UNIX systems sharing file systems using the Network File System [886] pro-
tocol. What should be logged?

3 This analysis was done with Jeremy Frank and Christopher Wee.

Bishop.book Page 441 Tuesday, September 28, 2004 1:46 PM

442 Chapter 21 Auditing

We first review the NFS protocol. When a client host wishes to mount a
server’s file system, its kernel contacts the server host’s MOUNT server with the
request. The MOUNT server first checks that the client is authorized to mount the
requested file system and how the client will mount the requested system. If the cli-
ent is authorized to mount the file system, the MOUNT server returns a file handle
naming the mount point of the server’s file system. The client kernel then creates an
entry in its file system corresponding to the server’s mount point. In addition, either
the client host or the server host may restrict the type of accesses to the networked
file system. If the server host sets the restrictions, the programs on the server host
that implement NFS will enforce the restrictions. If the client host sets the restric-
tions, the client kernel will enforce the restrictions and the server programs will be
unaware that any restrictions have been set.

When a client process wishes to access a file, it attempts to open the file as
though the file were on a local file system. When the client kernel reaches the client
host’s mount point in the path, the client kernel sends the file handle of the server host’s
mount point (which it obtained during the mount) to resolve the next component
(name) of the path to the server host’s NFS server using a LOOKUP request. If the res-
olution succeeds, this server returns the requested file handle. The client kernel then
requests attributes of the component (a GETATTR request), and the NFS server sup-
plies them. If the file is a directory, the client kernel iterates (passing the directory’s file
handle and the next component of the path in a LOOKUP request and using the
obtained file handle to get the attributes in a GETATTR request) until it obtains a file
handle corresponding to the desired file object. The kernel returns control to the calling
process, which can then manipulate the file by name or descriptor; the kernel translates
these manipulations into NFS requests, which are sent to the server host’s NFS server.

Because NFS is a stateless protocol, the NFS servers do not keep track of
which files are in use. The file handle is a capability. Furthermore, many versions of
NFS require the kernel to present the requests,4 although some accept requests from
any user. In all cases, the server programs can identify the user making the request by
examining the contents of the underlying messages.

The site policy drives the logging and auditing requirements because we are
capturing events relevant to violations of that policy. In our example, the site wishes
to regulate sharing of file systems among all systems on its LAN (with individual
restrictions enforced through the NFS mechanism). All imported file systems are
supposed to be as secure as the local file systems. Therefore, the policy is as follows.

P1. NFS servers will respond only to authorized clients.
The site authorizes only local hosts to act as clients. Under this policy, the
site administrators could allow hosts not on the LAN to become clients,
and so the policy could be less restrictive than the statement above
suggests.

4 Validation is from the originating port number; the NFS implementations assume that only the
superuser (operator) can send requests from ports with numbers less than 1024.

Bishop.book Page 442 Tuesday, September 28, 2004 1:46 PM

21.6 Examples: Auditing File Systems 443

P2. The UNIX access controls regulate access to the server’s exported file
system.
Once a client has imported a server host’s file system, the client host’s
processes may access that file system as if it were local. In particular,
accessing a file requires search permission on all the ancestor directories
(both local and imported).
An important ramification is the effect of the UNIX policy on file type.
Only the local superuser can create device (block and character special)
files locally, so users should not be able to create device files on any
imported file system (or change an existing file’s attributes to make it a
device file). However, this policy does not restrict a client host from
importing a file system that has device files.

P3. No client host can access a nonexported file system.
This means that exporting a file system allows clients to access files at or
below the server host’s mount point. Exporting a file system does not mean
that a client host can access any file on the server host; the client can
access only exported files.
These policies produce several constraints.

C1. File access granted ⇒ client is authorized to import file system, user can
search all parent directories and can access file as requested, and file is
descendant of server host’s file system mount point.

C2. Device file created or file type changed to device ⇒ user has UID of 0.
C3. Possession of a file handle ⇒ file handle issued to that user.

Because the MOUNT and NFS server processes issue file handles when a
user successfully accesses a file, possession of a file handle implies that
the user could access the file. If another user acquires the file handle
without accessing either server, that user might access files without
authorization.

C4. Operation succeeds ⇒ a similar operation local to the client would
succeed.
This follows from the second policy rule. Because an ordinary user cannot
mount a file system locally, the MOUNT operation should fail if the
requesting user is not a superuser.

These constraints follow immediately from the three policy rules.
A transition from a secure to a nonsecure state can occur only when an NFS-

related command is issued. Figure 21–3 lists the NFS commands that a client may
issue. One set takes no arguments and performs no actions; these commands do not
affect the security state of the system. A second set takes file handles as arguments
(as well as other arguments) and returns data (including status information). The
third set also takes file handles as arguments and returns file handles as results.

Those operations that take file handles as arguments require that the auditor
validate the constraint. When a server issues a file handle, the file handle, the user to
whom it is issued, and the client to which it is sent must be recorded.

Bishop.book Page 443 Tuesday, September 28, 2004 1:46 PM

444 Chapter 21 Auditing

L1. When a file handle is issued, the server must record the file handle, the
user (UID and GID) to whom it is issued, and the client host making the
request.

The semantics of the UNIX file system say that access using a path name
requires that the user be able to search each directory. However, once a file has been
opened, access to the file requires the file descriptor and is not affected by the search
permissions of parent directories. From the operation arguments, file handles seem to
refer to open objects. For example, SYMLINK creates a symbolic link, which is
effectively a write to a directory object; the argument to SYMLINK is the directory’s
handle. Hence, file handles resemble descriptors more than path names, so the auditor
need not verify access permission whenever a user supplies a file handle. The only
issue is whether the server issued the file handle to the user performing the operation.

L2. When a file handle is supplied as an argument, the server must record the
file handle and the user (UID and GID).

Request Arguments Action
No arguments
NULL None No action
WRITECACHE None Unused
Returns nonfile handle
GETATTR fh Get attributes of the file
SETATTR fh, attrib Set attributes of the file
READ fh, off, ct Get ct bytes at position off from file
WRITE fh, off, ct, data Write ct bytes of data at position off to file
REMOVE dh, fn Delete named file in directory
RENAME dh1, dh2, fn1, fn2 Rename file
LINK fh, dh, fn Create link named fn for file in directory
SYMLINK dh, fn1, fn2, attrib Create slink named fn1 for fn2 in directory
READLINK fh Get file name that symbolic link refers to
RMDIR dh, fn Delete named directory in directory
READDIR dh, off, ct Read ct bytes at position off from directory
STATFS dh Get file system information
Returns file handle
ROOT none Get root file handle (obsolete)
CREATE dh, fn, attrib Create file fn in directory with attributes
MKDIR dh, fn, attrib Create directory fn in directory with attributes
LOOKUP dh, fn Get file handle of named file in directory

Figure 21–3 NFS operations. In the Arguments and Action columns, “fh” is
“file handle,” “fn” is “file name,” “dh” is “directory handle” (effectively, a file
handle), “attrib” is “file attributes,” “off” is “offset” (which need not be a byte
count; it is positioning information), “ct” is “count,” “link” is “direct alias,” and
“slink” is “indirect alias.”

Bishop.book Page 444 Tuesday, September 28, 2004 1:46 PM

21.6 Examples: Auditing File Systems 445

A file handle allows its possessor to access the file to which the handle refers.
Any operation that generates a file handle must record the user and relevant permis-
sions for the object in question. For example, on a LOOKUP, recording the search
permissions of the containing directory enables the auditor to determine if the user
should have had access to the named file. On a CREATE, recording the write permis-
sions of the containing directory indicates whether the use could legitimately write to
the containing directory.

L3. When a file handle is issued, the server must record the relevant attributes
of any containing object.

Finally, whether the operation succeeds or fails, the system must record the
operation’s status so that the auditor can verify the result.

L4. Record the results of each operation.
Because each operation performs a different function, we consider the audit

criteria of each operation separately. We illustrate the process for mount and lookup
and leave the rest as an exercise for the reader.

Constraints C1 and C4 define the audit criteria for MOUNT.
A1. Check that the MOUNT server denies all requests by unauthorized client

hosts or users to import a file system that the server host exports.
(“Unauthorized users” refers specifically to those users who could not perform the
operation locally.) This means that the MOUNT server must record L3 and L4.
Constraints C1 and C3 give the audit criteria for LOOKUP.

A2. Check that the file handle comes from a client host and a user to which it
was issued.

A3. Check that the directory has the file system mount point as an ancestor and
that the user has search permission on the directory.

The check for the client being authorized to import the file system (in C1) is implicit in
A3 because if the client host is not authorized to import the file system, the client host
will not obtain the file handle for the server host’s mount point. Performing this audit
requires logging of L2, L3 (the relevant attributes being owner, group, type, and permis-
sion), and L4. Audit criterion A3 requires recording of the name of the file being looked
up; from this and the file handle, the auditor can reconstruct the ancestors of the file.

L5. Record the name of the file argument in the LOOKUP operation.
Given the logs and the auditing checks, an analyst can easily determine if the

policy has been violated. This is a transition-based mechanism because checks are per-
formed during the actions and not during an evaluation of the current state of the system.

21.6.2 The Logging and Auditing File System (LAFS)

LAFS [932] takes a different approach. LAFS is a file system that records user level
actions taken on files. A policy language allows an auditor to automate checks for
violations of policy.

Bishop.book Page 445 Tuesday, September 28, 2004 1:46 PM

446 Chapter 21 Auditing

The LAFS file system is implemented as an extension of an existing file sys-
tem, NFS, in the prototype. A user creates a directory using the lmkdir command and
then attaches it to LAFS with the lattach command. For example, if the file policy
contains a policy for LAFS, the commands

lmkdir /usr/home/xyzzy/project policy
lattach /usr/home/xyzzy/project /lafs/xyzzy/project

attach the directory and its contents to LAFS. All references to the files through
LAFS will be logged.

LAFS consists of three main components, along with a name server and a file
manager. The configuration assistant, which interacts with the name server and pro-
tection mechanisms of the underlying file system, sets up the required protection
modes. This part is invoked when a file hierarchy is placed under LAFS (using lat-
tach) and by the LAFS name server. The audit logger logs accesses to the file. The
LAFS file manager invokes it whenever a process accesses the file. This allows
LAFS to log accesses by LAFS-unaware applications. It in turn invokes the file man-
ager of the underlying file system. At no point does the LAFS file manager perform
access checking; that is left to the underlying file system. The policy checker vali-
dates policies and checks that logs conform to the policy.

A goal of LAFS is to avoid modifying applications to enable the logging. This
allows users to use existing applications rather than having to develop new ones. The
interface is therefore a set of three “virtual” files associated with each file in the
LAFS hierarchy. The file src.c is a regular file. The file src.c%log contains a log of all
accesses to src.c. The file src.c%policy contains a description of the access control
policy for the file src.c. Accessing the virtual file src.c%audit triggers an audit in
which the accesses of src.c are compared with the policy for the file. Any accesses
not conforming to the policy are listed. The virtual files do not appear in file listings;
the LAFS interface recognizes the extensions and provides the required access.

The policy language is simple yet powerful. It consists of a sequence of lines
in the %policy files of the form

action:date&time:file:user:application:operation:status

For example, the following line says that users may not play the game wumpus from
9 A.M. to 5 P.M. The status field is omitted, because the policy checker is to report
any attempts to play wumpus whether they succeed or not.

prohibit:0900-1700:*:*:wumpus:exec

The following lines describe a policy for controlling accesses to source code files in a
project under development.

Bishop.book Page 446 Tuesday, September 28, 2004 1:46 PM

21.6 Examples: Auditing File Systems 447

allow:*:Makefile:*:make:read
allow:*:Makefile:Owner:makedepend:write
allow:*:*.o,*.out:Owner,Group:gcc,ld:write
allow:-010929:*.c,*.h:Owner:emacs,vi,ed:write
allow:010930-:RCS/:librarian:rcs,co,ci:write

The first line allows the make program to read the Makefile on behalf of any
user on the system. The second line allows the owner of the Makefile (indicated by
the distinguished user “Owner”) to change the Makefile by running the command
makedepend (which adds dependencies among source code). The owner, or anyone
in the group, of an object file can re-create the object file. Line 4 allows the owner of
the source code to modify the source files using the emacs editor, the vi editor, or the
ed editor, provided that the modification occurs before September 29, 2001. The last
line allows the user “librarian” to write into the directory RCS using the rcs, co, and
ci commands on any date from September 30, 2001, on. The purpose of this line is to
allow the librarian to commit source code changes. The preceding line requires that
all such changes be made before September 30, so (presumably) the project code is
to be frozen on September 30, 2001.

As users access files, LAFS logs the accesses in a human-readable format, and
when the user accesses the appropriate %audit file, the audit reports all violations of
the relevant policy.

21.6.3 Comparison

The NFS auditing mechanism and the LAFS have important similarities. In both
cases, a security policy controls access, and the goal of both mechanisms is to detect
and report attempted violations of the policy. Both have auditing mechanisms built
into the file system.

The differences are also crucial. LAFS is “stacked” on top of NFS, so if a file
is not bound to LAFS, no accesses to it are logged or audited. With the modifications
of NFS, an attacker could avoid being audited only by not using NFS. (This is a typ-
ical problem with security mechanisms layered on top of existing protocols or other
mechanisms.) The auditing mechanisms in NFS are at a lower layer than those in
LAFS (because of the stacking). However, LAFS allows users to specify policies for
sets of files and to perform audits. The analysis of NFS above is not as flexible.
There, a site sets the policy for NFS. Users cannot define their own policies. Thus,
the NFS auditing mechanism will examine all file accesses, whereas LAFS may not.
This affects not only auditing but also performance because if only a few files need
to be audited, much of the effort by the NFS mechanisms is unnecessary. Finally,
modifying NFS for auditing requires changes in several privileged daemons, whereas
adding LAFS requires no modifications to existing system daemons and a kernel.

Which scheme to use depends on several factors, such as the ability to modify the
NFS daemons. The NFS auditing modifications and LAFS can work together, the NFS
modifications being for the low-level system checking and LAFS for user level auditing.

Bishop.book Page 447 Tuesday, September 28, 2004 1:46 PM

448 Chapter 21 Auditing

21.7 Audit Browsing

In addition to running audit mechanisms to analyze log files, auditors sometimes
look through the log files themselves. The audit mechanisms may miss information
or irregularities in the log that a knowledgeable auditor can detect. Furthermore, the
audit mechanisms may be unsophisticated. By examining the logs directly, the audi-
tors may uncover evidence of previously unknown patterns of misuse and attack.
Finally, few systems provide a fully integrated suite of logs. Most have several differ-
ent log files, each for a different set of applications or kernel events. The logs are
usually ordered by timestamp and do not show relations other than the time of day
and the program (process) creating the entry. For example, a log typically does not
indicate two different programs making a sequence of accesses to a particular file.

The goal of an audit browsing tool is to present log information in a form that
is easy for the analyst to understand and use. Specifically, the tool must indicate
associations between log entries that are of interest to the analyst. Hoagland, Wee,
and Levitt [424] identify six basic browsing techniques.

1. Text display shows the logs in a textual format. The format may be fixed,
or it may be defined by the analyst through postprocessing. The auditor
may search for events based on name, time, or some other attribute;
however, the attribute must be recorded in the log file. This method does
not indicate relationships among events, entries, and entities.

2. Hypertext display shows the logs as a set of hypertext documents with
associated log entries linked by hypertext constructs. This allows the
auditor to follow relationships between entries and entities by following
the links. The browser can include additional information about entities as
well. The disadvantage is that the view of the log information is local
because the browser does not highlight global relationships in a manner
that is clear and easy to understand.

3. Relational database browsing requires that the logs be stored in a
relational database. The auditor then issues queries to the database, and the
database performs the correlations and associations before it replies to the
query. The advantage of this method is that the database performs the
correlations and can do so after the logs have been preprocessed. That is,
the auditor need not know in advance what associations are of interest. The
disadvantage is that the representation of the output to the query is usually
textual. Furthermore, some preprocessing is required because the elements
of the logs must be separated to provide the information for the database.
The expected queries imply how this is to be done. This may limit the
associations between entities and events that the database can exhibit.

4. Replay presents the events of interest in temporal order. It highlights
temporal relationships. For example, if three logs are replayed on a single
screen, the temporal order of the events in the log will be intermingled and

Bishop.book Page 448 Tuesday, September 28, 2004 1:46 PM

21.7 Audit Browsing 449

the order of occurrence across the logs will clearly indicate the order of the
events in a way that the analyst can see.

5. Graphing provides a visual representation of the contents of logs.
Typically, nodes represent entities such as processes and files, and edges
represent associations. The associations indicate relationships between
various entities. For example, processes may have incoming edges from
their parents and outgoing edges to their children. The process hierarchy
then becomes clear. One problem with this technique is the size of the
drawing. If the area in which the graph is drawn is too small, the
information may be unreadable. Reducing the logs to eliminate some
information ameliorates this problem. The graph may also represent high-
level entities (such as groups of processes or file systems) and their
relationships, and the auditor can expand the high-level entities in order to
examine relationships within the components of those entities.

6. Slicing obtains a minimum set of log events and objects that affect a given
object. This comes from the traditional notion of slicing [933], a program
debugging technique that extracts a minimum set of statements that affect
a given variable. Its advantage is that it focuses attention on the sequence
of events, and related objects, that affect some entity. Its disadvantage, like
that of hypertext browsing, is the locality of the technique.

Audit browsing tools emphasize associations that are of interest to the auditor.
Hence, their configurations depend on the goals of the audit.

EXAMPLE: The Visual Audit Browser tool kit [424] was designed for general-
purpose audit browsing. It consists of four tools. Each tool takes BSM logs as input.
The frame visualizer generates a graphical representation of the logs. The movie
maker generates a sequence of graphs corresponding to the logs. Each successive
audit event generates a new graph with a new node and edge(s) corresponding to the
audit event. The hypertext generator produces one page for each user in the log, one
page for each file modified in the log, a page summarizing the audit records, and an
index page. The pages are in HTML, so any Web browser can view them. The
focused audit browser combines slicing and graphing. The auditor enters the name of
a node, and the browser displays that node, the node’s incoming and outgoing edges,
and the nodes at the ends of those edges.

Suppose a file is changed. The auditor uses the focused audit browser, with
the file as the initial focus. The edges show which processes have altered the file and
how. The auditor determines which process(es) may have caused the unexpected
change, focuses on one of the suspect processes, and iterates until it is determined
how the attacker gained access to the system (through a login, through a network
daemon, and so on). At this point, the auditor needs to determine whether a masquer-
ade is occurring. From the processes seen earlier, the auditor knows the audit UID of
the attacker. She uses the hypertext generator to access the page with all audit records
involving that audit UID and examines all entries on that page for irregular activity.
She can also use the frame visualizer to graph the sequence of process creations.

Bishop.book Page 449 Tuesday, September 28, 2004 1:46 PM

450 Chapter 21 Auditing

Once the auditor has found the entry point, she can probably uncover the vulnerabil-
ity and then work forward to construct the actions that the attacker took. Finally, the
movie maker can generate a small movie showing the actions that the attacker took.
This will be a compelling visual record for law enforcement authorities and may aid
the auditor during presentations to nontechnical people.

EXAMPLE: MieLog [892] computes counts of single words and word pairs in logs. It
allows the auditor to define a threshold count. Words and word pairs with counts
higher than the threshold are colored to make them stand out. The display of MieLog
consists of four fields. The tag appearance frequency area has a colored tile indicat-
ing the frequency of appearance (red meaning rare). The time information area con-
tains a bar graph indicating the number of log entries in that period of time. Clicking
on the bar brings up the log entries for that time period. The outline of message area
shows the outline of the log messages, colored to match the frequency in the tag
appearance frequency area. The fourth field, the message in text area, displays the
log entry under study and its surrounding areas. The words and word pairs are col-
ored to reflect their frequencies.

As an example, an administrator examining a log file notices an unusual gap
in the time information area. There are no log messages recorded during the period
of time in the gap. The system administrator focuses on the log entries just before
and just after the gap, to determine why the logging turned off and then turned back
on. The color of the words in those log entries will aid the auditor in looking for
unusual log entries, words, or phrases indicating an attack.

Developing a visual interface to logs is as much an art as a science. The sci-
ence lies in determining what to display; the art lies in the graphics used to express
the desired relationships and entities. The human should be able to grasp the relevant
parts of the log quickly and to pursue lines of inquiry quickly and easily.

21.8 Summary

Logging is the collection of information; auditing is its analysis. Auditing consists of
analysis, which is the study of information gleaned from the log entries, and notifica-
tion, which is the reporting of the results of the study (and possibly the taking of
appropriate actions).

Designing an audit system requires that the goals of the audit be well formed.
Typically, the security policy defines these goals. The audit mechanism reports
attempts to violate the constraints imposed by the security policy, such as a subject's
attempt to write to a lower-level object. Several considerations affect the auditing.
For example, names in the logs must be resolvable to an object. The logs must be
well structured to allow unambiguous and consistent parsing. They may need to be

Bishop.book Page 450 Tuesday, September 28, 2004 1:46 PM

21.10 Exercises 451

sanitized before or after analysis. Application logs reflect actions of the application;
system logs reflect events within the operating system.

Auditing mechanisms should be designed into the system. These mechanisms
may also be added after the system is completed. In this case, the mechanism may
report violations of a defined security policy or may report actions that are consid-
ered to be security threats (whether a security policy is defined precisely or not).

A mechanism enabling auditors to browse the logs aids in the analysis. Such a
browser helps auditors locate problems that they have not thought of and may speed
the analysis of problems that other audit mechanisms have reported.

21.9 Further Reading

Papers about systems designed with security in mind discuss the auditing mechanism
and the rationale behind it, usually pointing to the relevant requirements. Sibert [827]
discusses auditing in the SunOS MLS system. Rao [743] discusses auditing in an
avionics system. Banning and her colleagues [56] discuss auditing of distributed sys-
tems. Shieh and Gligor [820] discuss auditing of covert channels.

Interfaces to the logging mechanism control how data can be logged and, once
logged, accessed. The POSIX group has defined an interface for UNIX-like systems
[726]. The Clio logging service [318] provides an interface that mimics append-only
files. The S4 service [883] uses journaling techniques to secure logs even if the sys-
tem has been compromised.

Various techniques based on artificial intelligence have been used to analyze
logs [420, 564, 837, 897]. Data mining techniques show great promise [407]. Jajo-
dia, Gadia, Bhargava, and Sibley [466] discuss a database model that makes past and
current log records available for analysis.

Holley and Millar [431] discuss approaches to auditing an online real-time
computer system. Markantonakis [591] discusses the application of smart card logs,
and Markantonakis and Xenitellis [592] present an implementation.

Fisch, White, and Pooch [319] discuss sanitization of network traffic logs.
Sajaniemi [770] discusses a technique for visualizing an audit of a spread-

sheet. Takada and Koike [891] present a visual interface for logs used to detect
intruders. Shneiderman [824] discusses human-computer interfaces in general.

21.10 Exercises

1. Extend the example of deriving required logging information to the full
Bell-LaPadula Model with both security levels and compartments.

Bishop.book Page 451 Tuesday, September 28, 2004 1:46 PM

452 Chapter 21 Auditing

2. In the example of deriving required logging information for the Chinese
Wall model, it is stated that the time must be logged. Why? Can something
else be logged to achieve the same purpose?

3. The Windows NT logger allows the system administrator to define events
to be entered into the security log. In the example, the system
administrator configured the logger to record process execution and
termination. What other events might the system administrator wish to
record?

4. Suppose a notifier sends e-mail to the system administrator when a
successful compromise of that system is detected. What are the drawbacks
of this approach? How would you notify the appropriate user?

5. Why is adherence to the principle of complete mediation (see Section
12.2.4) a necessity for logging of file accesses?

6. A network monitor records the following information while recording a
network connection.

a. System prompts that name neither the user nor the system
b. System control files such as the password file
c. A file containing a list of dictionary words
d. A user’s start-up file
e. A system banner
f. A source code file
g. A Web page downloaded from a remote site

Which type of information should the monitor check to see if it must
sanitize the data to conceal the names of the users and the names and
addresses of the computers involved?

7. Fisch, White, and Pooch [319] define four levels of log sanitization.

a. Simple sanitization, in which all information except the commands
issued by an intruder are deleted

b. Information-tracking sanitization, in which sensitive information is
entered into a symbol table as it is encountered, a unique identifier is
assigned, and whenever that information is encountered it is
replaced with the associated identifier

c. Format sanitization, in which compressed or encoded data is
transformed into its original form, the original form is sanitized
using information-tracking sanitization, and the resulting data is
returned to its transformed format

d. Comprehensive sanitization, in which all data is analyzed and
sanitized as in information-tracking and format sanitization

Bishop.book Page 452 Tuesday, September 28, 2004 1:46 PM

21.10 Exercises 453

Discuss the level of anonymity of each level of sanitization. Which level
could be automated, and to what degree would human oversight be
required?

8. Suppose a remote host begins the TCP three-way handshake with the local
host but never sends the final ACK. This is called a half-open connection.
The local host waits for some short time and then purges the information
from its network tables. If a remote host makes so many half-open
connections that the local host cannot accept connections from other hosts,
the remote host has launched a syn flood attack (See Section 23.4 for more
details.) Derive logging and auditing requirements to detect such an attack.

9. What are the logging and auditing requirements for the NFS operations
MKDIR and WRITE?

10. In the LAFS file system, what does the following policy line say?

prohibit:0800-1700:*:root:solitaire:exec:ok

What is the effect of specifying the status field?

Bishop.book Page 453 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 454 Tuesday, September 28, 2004 1:46 PM

455

Chapter 22
Intrusion Detection

HIPPOLYTA: How chance Moonshine is gone before
Thisbe comes back and finds her lover?

THESEUS: She will find him by starlight. Here
she comes; and her passion ends the play.

—A Midsummer Night’s Dream, V, i, 320–323.

System managers must protect computer systems from attack. The mechanisms and
techniques discussed throughout this book help protect systems, data, and resources.
However, nothing is perfect. Even the best protected systems must be monitored to
detect successful (and unsuccessful) attempts to breach security. This chapter dis-
cusses automated systems for detecting intrusions and looks at responses to attacks.

22.1 Principles

Computer systems that are not under attack exhibit several characteristics.

1. The actions of users and processes generally conform to a statistically
predictable pattern. A user who does only word processing when using the
computer is unlikely to perform a system maintenance function.

2. The actions of users and processes do not include sequences of commands
to subvert the security policy of the system. In theory, any such sequence is
excluded; in practice, only sequences known to subvert the system can be
detected.

3. The actions of processes conform to a set of specifications describing
actions that the processes are allowed to do (or not allowed to do).

Denning [243] hypothesized that systems under attack fail to meet at least one of
these characteristics.

Bishop.book Page 455 Tuesday, September 28, 2004 1:46 PM

456 Chapter 22 Intrusion Detection

EXAMPLE: If the goal is to put in a back door, the intruder may modify a system
configuration file or program. If the attacker enters the system as a nonprivileged
user, he or she must acquire system privileges to change the files. The nonprivileged
user may not be a user who normally acquires system privileges (characteristic 1).
The techniques used to acquire those privileges may involve sequences of commands
designed to violate the security policy of the system (characteristic 2). If they do not,
the alterations in the system files may introduce elements that cause processes to act
in ways that violate specifications (characteristic 3).

If the attacker modifies a user file, processes executing on behalf of that user
can now behave in abnormal ways, such as allowing network connections from sites
not able to connect earlier, or by executing commands that the user did not execute
before (characteristic 1). The commands may subvert the security policy, thereby
gaining system privileges for the user—and the attacker (characteristic 2).

EXAMPLE: Cliff Stoll noticed an anomaly in one of the systems he was administer-
ing: a 79¢ discrepancy in the output of an accounting log [878]. On investigation, he
realized that an intruder was breaking in to search for classified information. This
caused the discrepancy. As a result, authorities broke up an espionage ring [880].

22.2 Basic Intrusion Detection

The characteristics listed above guide the detection of intrusions. Once the province
of the technologically sophisticated, attacks against systems have been automated.
So a sophisticated attack need not be the work of a sophisticated attacker.

Definition 22–1. An attack tool is an automated script designed to violate a
security policy.

EXAMPLE: The attack tool rootkit [699] exists for many versions of the UNIX oper-
ating system. It is designed to sniff passwords from the network and to conceal its
presence. It assumes that the installer has acquired root privileges.

Rootkit1 comes with tools to automate the installation procedure. In addition
to the network sniffing program, it comes with modified versions of system utilities.
The modified version of netstat, which lists network connections, uses a control file
to determine which network connections to conceal. The modified version of ps,
which lists executing processes, uses another control file to determine which pro-
cesses to conceal, such as the sniffer process. The modified versions of ls and du,
which list files and disk space used, use a control file to determine which files to con-
ceal. The network configuration program ifconfig, which reports network device con-

1 Rootkit continues to evolve both in doctored programs and in sophistication. At the time of
publication, some versions used dynamically loadable kernel modules.

Bishop.book Page 456 Tuesday, September 28, 2004 1:46 PM

22.2 Basic Intrusion Detection 457

figuration, claims that the network device is not in promiscuous mode, as it must be
to sniff the network. Finally, the login program accepts a “magic password” as
authenticating any user. This enables attackers to return to obtain the sniffed pass-
words. All the replacement programs are modified so that they and the originals will
produce the same checksum, as computed by a simple checksumming program.

Rootkit contains several other programs for concealing the attacker. The pro-
gram zapper deletes the user’s entry from the utmp file. This means that the user will
not show up when logged in. Fixer installs the programs and adjusts their permis-
sions to match those of the replaced programs.

Attack tools do not change the nature of intrusion detection fundamentally.
They do eliminate many errors arising from incorrect installation and perform rou-
tine steps to clean up detritus of the attack, but they cannot eliminate all traces.

EXAMPLE: Consider an attack involving rootkit. If the configuration files controlling
netstat, ps, ls, and du are set up correctly, these programs will not report any network
connections, files, or processes associated with rootkit. The files and processes will
still be present, and other programs that perform the same functions as netstat, ps, ls,
and du will report the presence of rootkit-related files. For example, du prints the
number of blocks used by a set of files, and df reports the number of free blocks on a
file system. Their sum should be approximately the size of the file system (less some
space for disk management blocks). The number of files in directories should agree
with ls’s count. Other programs, such as a locally written directory listing program,
can check this. The load average should be consistent with the running processes.
Programs other than ps, such as local process listers, can list processes. The point is
that rootkit does not conceal the files, connections, and processes by altering kernel
or file structures.2 It alters the programs that interpret the data in those structures. So,
if rootkit fails to alter any program that retrieves the data, that program will reveal the
correct data. This inconsistency indicates an anomaly, which—by characteristic 1—
indicates an attack.

Denning [243] suggests automation of the intrusion detection process. Her
specific hypothesis is that exploiting vulnerabilities requires an abnormal use of nor-
mal commands or instructions, so security violations can be detected by looking for
abnormalities. Her model is very general and includes abnormalities such as devia-
tion from usual actions (anomaly detection), execution of actions that lead to
break-ins (misuse detection), and actions inconsistent with the specifications of priv-
ileged programs (specification-based detection).

Systems that do this are called intrusion detection systems (IDS). Their goals
are fourfold3:

2 If a kernel module is involved, any program using this interface will also return bogus
information. Programs that read directly from memory or the disk will not.
3 Intrusion detection systems may simply log traffic for later analysis. In this case, they are
logging engines rather than intrusion detection mechanisms (see Section 21.2.1).

Bishop.book Page 457 Tuesday, September 28, 2004 1:46 PM

458 Chapter 22 Intrusion Detection

1. Detect a wide variety of intrusions. Intrusions from within the site, as well
as those from outside the site, are of interest. Furthermore, both known
and previously unknown attacks should be detected. This suggests a
mechanism for learning or adapting to new types of attacks or to changes
in normal user activity.

2. Detect intrusions in a timely fashion. “Timely” here need not be in real
time. Often, it suffices to discover an intrusion within a short period of
time. Real-time intrusion detection raises issues of responsiveness. If
every command and action must be analyzed before it can be executed,
only a very simple analysis can be done before the computer (or network)
being monitored becomes unusable. On the other hand, in all but a few
rare cases, determining that an intrusion took place a year ago is probably
useless.

3. Present the analysis in a simple, easy-to-understand format. Ideally, this
should be a light that glows green for no detected intrusions and that
changes to red when an attack is detected. Unfortunately, intrusions are
rarely this clear-cut, so intrusion detection mechanisms must present more
complex data to a site security officer. The security officer determines what
action (if any) to take. Because intrusion detection mechanisms may
monitor many systems (not just one), the user interface is of critical
importance. This leads to the next requirement.

4. Be accurate. A false positive occurs when an intrusion detection system
reports an attack, but no attack is underway. False positives reduce
confidence in the correctness of the results as well as increase the amount
of work involved. However, false negatives (occurring when an intrusion
detection system fails to report an onging attack) are worse, because the
purpose of an intrusion detection system is to report attacks. The goal of
an intrusion detection system is to minimize both types of errors.

Formalizing this type of analysis provides a statistical and analytical basis for
monitoring a system for intrusions. Three types of analyses—anomaly detection,
misuse (or signature) detection, and specification detection—look for violations of
the three characteristics in Section 22.1. Before discussing these types of analyses,
let us consider a model of an intrusion detection system.

22.3 Models

Intrusion detection systems determine if actions constitute intrusions on the basis of
one or more models of intrusion. A model classifies a sequence of states or actions,
or a characterization of states or actions, as “good” (no intrusions) or “bad” (possible
intrusions). Anomaly models use a statistical characterization, and actions or states

Bishop.book Page 458 Tuesday, September 28, 2004 1:46 PM

22.3 Models 459

that are statistically unusual are classified as “bad.” Misuse models compare actions
or states with sequences known to indicate intrusions, or sequences believed to indi-
cate intrusions, and classify those sequences as “bad.” Specification-based models
classify states that violate the specifications as “bad.” The models may be adaptive
models that alter their behavior on the basis of system states and actions, or they may
be static models that are initialized from collected data and do not change as the sys-
tem runs.

In this section we examine representative models of each class. In practice,
models are often combined, and intrusion detection systems use a mixture of two or
three different types of models.

22.3.1 Anomaly Modeling

Anomaly detection uses the assumption that unexpected behavior is evidence of an
intrusion. Implicit is the belief that some set of metrics can characterize the expected
behavior of a user or a process. Each metric relates a subject and an object.

Definition 22–2. Anomaly detection analyzes a set of characteristics of the
system and compares their behavior with a set of expected values. It reports
when the computed statistics do not match the expected measurements.

Denning identifies three different statistical models.
The first model uses a threshold metric. A minimum of m and a maximum of n

events are expected to occur (for some event and some values m and n). If, over a
specific period of time, fewer than m or more than n events occur, the behavior is
deemed anomalous.

EXAMPLE: Microsoft Windows NT 4.0 allows the system to lock a user out after
some number n of failed login attempts [479]. This is an intrusion detection system
using the threshold metric with the lower limit 0 and the upper limit n. The attempted
logins are deemed anomalous after n failed attempts to log in.

Determining the threshold complicates use of this model. The threshold must
take into account differing levels of sophistication and characteristics of the users.
For example, if n were set to 3 in the example above for a system in France, and the
primary users of that system were in the United States, the difference in the
keyboards would result in a large number of false alarms. But if the system were
located in the United States, setting n to 3 would be more reasonable. One approach
is to combine this approach with the other two models to adapt the thresholds to
observed or predicted behavior.

The second model uses statistical moments. The analyzer knows the mean and
standard deviation (first two moments) and possibly other measures of correlation
(higher moments). If values fall outside the expected interval for that moment, the

Bishop.book Page 459 Tuesday, September 28, 2004 1:46 PM

460 Chapter 22 Intrusion Detection

behavior that the values represent is deemed anomalous. Because the profile, or
description of the system, may evolve over time, anomaly-based intrusion detection
systems take these changes into account by aging (or weighting) data or altering the
statistical rule base on which they make decisions.

EXAMPLE: The Intrusion Detection Expert System (IDES) [582] was developed at
SRI International based on Denning’s original model. It used anomaly detection,
among other techniques. It represents subjects, which can include a user, a login ses-
sion, applications, routers, and so on, as an ordered sequence of statistics <q0, j, ...,
qn, j>, where qi,j is the ith statistic on day j. The metrics are counts or time intervals,
as discussed in a preceding example. The profile for each subject is updated every
day on the basis of observed behavior.

IDES weights its statistics to favor recent behavior over past behavior. Let Ak,l
be the summation of counts making up the metric for the kth statistic on day l. Then
the statistic qk,l+1 = Ak,l+1 – Ak,l + 2–rtqk,l, where t is the number of log entries or the
total time elapsed since time 0, and r is a half-life determined through experience.
This is an exponential decay of previous values and is quite sensitive to changes in
behavior over a short period of time.

The statistical moments model provides more flexibility than the threshold
model. Administrators can tune it to discriminate better than the threshold model.
But with flexibility comes complexity. In particular, an explicit assumption is that the
behavior of processes, and users, can be statistically modeled. If this behavior
matches a statistical distribution (such as a Gaussian or normal distribution), deter-
mining the parameters requires experimental data that can be obtained from the sys-
tem. But if not, the analysts must use other techniques, such as clustering, to
determine the characteristics, the moments, and the values that indicate abnormal
behavior. An additional problem is the difficulty of computing these moments in real
time.

Denning’s third model is a Markov model. Examine a system at some particu-
lar point in time. Events preceding that time have put the system into a particular
state. When the next event occurs, the system transitions into a new state. Over time,
a set of probabilities of transition can be developed. When an event occurs that
causes a transition that has a low probability, the event is deemed anomalous. This
model suggests that a notion of “state,” or past history, can be used to detect anoma-
lies. The anomalies are now no longer based on statistics of the occurrence of indi-
vidual events, but on sequences of events. This approach heralded misuse detection
and was used to develop effective anomaly detection mechanisms.

Teng, Chen, and Lu used this approach in Digital Equipment Corporation’s
TIM research system [897]. Their scheme used an artificial intelligence technique
called time-based inductive learning. The system is given a type of event to be pre-
dicted. It develops a set of temporally related conditions that predict the time that the
event will occur with respect to the set.

Bishop.book Page 460 Tuesday, September 28, 2004 1:46 PM

22.3 Models 461

EXAMPLE: Consider the sequence of events abcdedeabcabc. The goal is to predict
these events. The following rules are examples that TIM might derive.

R1: ab→c (1) R2: c→d (0.5) R3: c→e (0.5)
R4: d→e (1) R5: e→a (0.5) R6: e→d (0.5)

The left side of each rule is the antecedent, and the right side is the event being pre-
dicted. The number in parentheses is the probability that the antecedent event(s) is
(are) followed by the event on the right side of the rule. Rules R1 and R4 are good
indicators of expected behavior. The other rules are not particularly good, and will
either be dropped (should the probability decrease over time) or become better
(should the probability increase over time).

Anomalies are detected when a sequence of events matches the left side of a
rule but the succeeding event differs from the expected right side. Using the rules
above, if the sequence abd occurs, an alert will be triggered because c should always
come after ab. But the sequence acf will not cause an alert, because multiple events
may follow c. This sequence could cause a new rule to be added, namely, R7: c→f
(0.33...)—and the probabilities for rules R2 and R3 would change to 0.33.

The effectiveness of Markov-based models depends on the adequacy of the data
used to establish the model. This data (called training data) is obtained experimentally,
usually from populations that are believed to be normal (not anomalous). For example,
TIM could obtain data by monitoring a corporate system to establish the relevant
events and their sequence. Hofmeyr, Forrest, and Somayaji obtained traces of system
calls from processes running in a normal environment. If this training data accurately
reflects the environment in which the intrusion detection system is to run, the model
will work well, but if the training data does not correspond to the environment, the
Markov model will produce false alarms and miss abnormal behaviors. In particular,
unless the training data covers all possible normal uses of the system in the environ-
ment, the intrusion detection mechanism will issue false reports of abnormalities.

22.3.2 Misuse Modeling

In some contexts, the term “misuse” refers to an attack by an insider or authorized
user. In the context of intrusion detection systems, it means “rule-based detection.”

Definition 22–3. Misuse detection determines whether a sequence of instruc-
tions being executed is known to violate the site security policy being exe-
cuted. If so, it reports a potential intrusion.

Modeling of misuse requires a knowledge of system vulnerabilities or poten-
tial vulnerabilities that attackers attempt to exploit. The intrusion detection system
incorporates this knowledge into a rule set. When data is passed to the intrusion

Bishop.book Page 461 Tuesday, September 28, 2004 1:46 PM

462 Chapter 22 Intrusion Detection

detection system, it applies the rule set to the data to determine if any sequences of
data match any of the rules. If so, it reports that a possible intrusion is underway.

Misuse-based intrusion detection systems often use expert systems to analyze
the data and apply the rule set. These systems cannot detect attacks that are unknown to
the developers of the rule set. Previously unknown attacks, or even variations of known
attacks, can be difficult to detect. Later intrusion detection systems used adaptive meth-
ods involving neural networks and Petri nets to improve their detection abilities.

One system, IDIOT [538], monitors audit logs looking for a sequence of
events that correspond to an attack. An alternative point of view, used by the STAT
system [456], is to ignore the actual states and focus on the commands that change
them. Researchers at the University of California at Santa Barbara have built several
systems that analyze the results of commands to breach a security policy.

One important feature for intrusion detection systems is an interface into
which new users and/or maintainers can add new rules or data. Ranum’s Network
Flight Recorder is a classic example of how this can be done well.

EXAMPLE: The intrusion detection tool Network Flight Recorder (NFR) has three
components [742]. A packet sucker reads packets off the network. The packets are
passed to a decision engine, which uses filters written in a language called N-code to
extract information. (When needed, packets will also be checked against a state table
to enable reassembly of fragmented packets.) These filters are bound to events such
as packet arrivals. The backend writes the data generated by the filters to disk; the
packet itself is discarded. A query backend allows administrators to extract both raw
and postprocessed data from the disk file. Query backends can compute a variety of
statistics over the data (such as interpacket arrival time for a particular server) and
present the data in a variety of forms, including raw data, histograms, and pie charts.
The separation of the query mechanism (output) from the input stream of packets
enables administrators to query NFR without impacting its ability to handle incom-
ing packets.

Although some filters are supplied, users can write their own filters using the
N-code language. This language is a stack-oriented language with an interpretive
engine built into NFR. It includes all usual high-level language features (loops,
conditionals, and so forth), as well as a set of data types for counters and IP
addresses. Packets are considered structures, and the fields are build into the lan-
guage. For example, to have the filter ignore all traffic that is not intended for a set of
Web servers:

list of my web servers
my_web_servers = [10.237.100.189 10.237.55.93] ;
we assume all HTTP traffic is on port 80
filter watch tcp (client, dport:80)
{

if (ip.dest != my_web_servers)
return;

Bishop.book Page 462 Tuesday, September 28, 2004 1:46 PM

22.3 Models 463

now process the packet; we just write out packet info
record system.time, ip.src, ip.dest to www._list;

}
www_list = recorder(“log”)

The greatest strength of NFR is its clean design and its adaptability to the
needs of the users. Paradoxically, this is also its greatest weakness, because one must
know what to look for.

22.3.3 Specification Modeling

Anomaly detection has been called the art of looking for unusual states. Misuse
detection, similarly, is the art of looking for states known to be bad. Specification
detection takes the opposite approach; it looks for states known not to be good, and
when the system enters such a state, it reports a possible intrusion.

Definition 22–4. Specification-based detection determines whether or not a
sequence of instructions violates a specification of how a program, or system,
should execute. If so, it reports a potential intrusion.

For security purposes, only those programs that in some way change the pro-
tection state of the system need to be specified and checked. For example, because
the policy editor in Windows NT changes security-related settings, it needs to have
an associated specification.

EXAMPLE: Ko, Ruschitzka, and Levitt [519] developed a specification-based intru-
sion detection system for the UNIX environment. They specified 15 security-related
programs. The specifications constrained object access, sequencing of operations,
synchronization, and race conditions. The researchers applied this to monitoring of
the program rdist.

The UNIX program rdist (for remote distribution) updates programs on
remote systems. It first creates a temporary file /tmp/rdistxxxxx. It then copies the
contents of the new file into the temporary file, changes the protection mask as
required, and copies the temporary file over the file to be replaced. The problem is
that rdist modifies protection modes by acting on the file name, so if an attacker can
replace the file by a symbolic link, he can force rdist to modify the protection
modes of any file in the system. For example, he can turn on the setuid bit for the
program /bin/sh, which would give him superuser privileges instantly.

A specification in the PE-grammar language describes the accepted behavior
of rdist. It defines the set of subjects (events) to which the rule should be applied
(namely, any process on the host nobhill created from the program rdist regardless of
which user executes it), the environment of execution, and constraints for execution.
The latter name the operations of interest and describes when they are valid. For

Bishop.book Page 463 Tuesday, September 28, 2004 1:46 PM

464 Chapter 22 Intrusion Detection

example, if a file is opened and the file is not world-readable, one constraint says that
rdist must have created it. Similarly, if a chmod is applied to a file, the constraint
requires that rdist have created the file.

The distributed program execution monitor (DPEM) has a set of agents for
generating traces from audit logs, and a director for collecting the traces, comparing
them with the specifications, and analyzing the results. In the experiments, specifica-
tions for all network daemons (including copies of rdist and sendmail known to have
vulnerabilities) were developed, and several attacks were launched. On the average,
detecting an attack from rdist took 0.06 second. Similarly, a race condition involving
two editing sessions of a password file took 0.05 second to detect.

Specification-based intrusion detection is in its infancy. Among its appealing
qualities are the formalization (at a relatively low level) of what should happen. This
means that intrusions using unknown attacks will be detected. Balanced against this
desirable feature is the extra effort needed to locate and analyze the programs that
may cause security problems. The subtlety of this last point is brought home when
one realizes that any program is a potential security threat when executed by a privi-
leged user.

22.3.4 Summary

Reflecting on the differences between the three basic types of intrusion detection will
clarify the nature of each type.

Some observations on misuse detection will provide a basis for what follows.
Definition 22–3 characterizes misuse detection as detection of violations of a policy.
The policy may be known (explicit) or implicit. In the former case, one uses the tech-
niques described in Section 21.4.1 to develop the rules for the misuse detection sys-
tem. In the latter case, one must describe the policy in terms of actions or states that
are known to violate the policy, which calls on the techniques described in Section
21.4.2 to develop the relevant rules. This distinction, although subtle, is crucial. In
the first case, the rules database is sufficient to detect all violations of policy because
the policy itself was used to populate the rule set. In the second case, the rule set con-
tains descriptions of states and/or actions that are known to violate the policy, but not
all such states or actions. This kind of misuse detection system will not detect all
violations of system policy.

Now consider the difference between misuse detection and anomaly detec-
tion. The former detects violations of a policy. The latter detects violations of expec-
tation, which may (or may not) violate the policy. For example, TIM uses rules that it
derives from logs to construct its Markov model. If the training data contain attacks,
the Markov model will accept those attacks as normal. Hence, it is an anomaly detec-
tion mechanism. By way of contrast, IDIOT does not construct models from data on
the fly. It contains a rule base of sequences that describe known attacks. Hence, it is a
misuse detection mechanism.

Bishop.book Page 464 Tuesday, September 28, 2004 1:46 PM

22.4 Architecture 465

The distinction between specification-based detection and misuse detection is
also worth consideration. The former detects violations of per-program specifica-
tions, and makes an implicit assumption that if all programs adhere to their specifica-
tions, the site policy cannot be violated. The latter makes no such assumption,
focusing instead on the overall site policy. Suppose an attacker could attack a system
in such a way that no program violated its specifications but the combined effect of
the execution of the programs during the attack did violate the site policy. Misuse
intrusion detection might detect the attack (depending on the completeness of the
rule set). Anomaly intrusion detection might also detect the attack (depending on the
characterization of expected behavior). However, specification-based intrusion
detection would not detect this attack. In essence, if the specification of a program is
its “security policy,” specification-based detection is a local (per-program) form of
misuse detection.

22.4 Architecture

An intrusion detection system is also an automated auditing mechanism. Like audit-
ing systems, it consists of three parts (see Section 21.2). The agent corresponds to
the logger. It acquires information from a target (such as a computer system). The
director corresponds to the analyzer. It analyzes the data from the agents as required
(usually to determine if an attack is in progress or has occurred). The director then
passes this information to the notifier, which determines whether, and how, to notify
the requisite entity. The notifier may communicate with the agents to adjust the log-
ging if appropriate. Figure 22–1 illustrates this.

22.4.1 Agent

An agent obtains information from a data source (or set of data sources). The source
may be a log file, another process, or a network. The information, once acquired,
may be sent directly to the director. Usually, however, it is preprocessed into a spe-
cific format to save the director from having to do this. Also, the agent may discard
information that it deems irrelevant.

EXAMPLE: If the agent is to transmit the time and location of a failed login attempt,
it will scan the appropriate log file, discard any records of successful logins, and send
the remainder to the director.

The director may determine that it needs more information from a particular
information source. In that case, the director can instruct the agent to collect addi-
tional data, or to process the data it collects differently. The director can use this to

Bishop.book Page 465 Tuesday, September 28, 2004 1:46 PM

466 Chapter 22 Intrusion Detection

cut down on the amount of processing it must do, but can increase the level of infor-
mation it receives when an attack is suspected.

EXAMPLE: When the director determines that an attack on some other system is
underway, it might direct all agents to report all login attempts involving the suspect
accounts, whether successful or not.

An agent can obtain information from a single host, from a set of hosts (in
which case it may also function as a director; see Section 22.4.2), or from a network.
Let us consider the types of information that are available from each, and how they
might be gathered.

22.4.1.1 Host-Based Information Gathering
Host-based agents usually use system and application logs to obtain records of
events, and analyze them to determine what to pass to the director. The events to look
for, and to analyze, are determined by the goals of the intrusion detection mecha-
nism. The logs may be security-related logs (such as BSM and the Windows NT logs
discussed in Chapter 21, “Auditing,”) or other logs such as accounting logs. Crosbie
and Spafford [223] point out that the logs may even be virtual logs if the agent is put
directly in the kernel. The agent then simply copies records that the kernel puts into
the logs. This eliminates the need to convert from one log format to an internal repre-
sentation. It also means that the agents are not portable among heterogeneous com-

Agent

Host A

Agent
Host B

Agent
Host C

In
te

rn
et

Director

Notifier

Figure 22–1 Architecture of an intrusion detection system. Hosts A, B, and C
are general-purpose computers, and the agents monitor activity on them. Host
N is designed for network monitoring, and its agent reports data gleaned from
the Net to the director.

AgentHost N

Bishop.book Page 466 Tuesday, September 28, 2004 1:46 PM

22.4 Architecture 467

puters. There is also a drawback involving the granularity of information obtained,
which we will discuss in Section 22.4.1.3.

A variant of host-based information gathering occurs when the agent gener-
ates its own information. Policy checkers do this. They analyze the state of the sys-
tem, or of some objects in the system, and treat the results as a log (to reduce and
forward). However, these agents are usually somewhat complex, and a fundamental
rule of secure design is to keep software simple, usually by restricting its function to
one task. This arrangement violates that rule. So, the policy checker usually logs its
output, and the agent simply analyzes that log just as it would analyze any other log.

22.4.1.2 Network-Based Information Gathering
Network-based agents use a variety of devices and software to monitor network traffic.
This technique provides information of a different flavor than host-based monitoring
provides. It can detect network-oriented attacks, such as a denial of service attack intro-
duced by flooding a network. It can monitor traffic for a large number of hosts. It can
also examine the contents of the traffic itself (called content monitoring).

Network-based agents may use network sniffing to read the network traffic. In
this case, a system provides the agent with access to all network traffic passing that
host. If the medium is point-to-point (such as a token ring network), the agents must
be distributed to obtain a complete view of the network messages. If the medium is a
broadcast medium (such as Ethernet), typically only one computer needs to have the
monitoring agent. Arranging the monitoring agents so as to minimize the number
required to provide complete network coverage is a difficult problem. In general, the
policy will focus on intruders entering the network rather than on insiders. In this
case, if the network has a limited number of points of access, the agents need to mon-
itor only the traffic through those points. If the computers controlling those entry
points do extensive logging on the network traffic that they receive, the network-
based information gathering is in effect reduced to host-based information gathering.

Monitoring of network traffic raises several significant issues. The critical
issue is that the analysis software must ensure that the view of the network traffic is
exactly the same as at all hosts for which the traffic is intended. Furthermore, if the
traffic is end-to-end enciphered, monitoring the contents from the network is not
possible.

22.4.1.3 Combining Sources
The goal of an agent is to provide the director with information so that the director
can report possible violations of the security policy (intrusions). An aggregate of
information is needed. However, the information can be viewed at several levels.

EXAMPLE: Consider a FreeBSD UNIX system with two sources of information. The
first is the application level log. Whenever a user changes privileges by executing the
program su, a log entry is written into that log. The second is the system call log that
the (nonstandard, instrumented) kernel generates.

Bishop.book Page 467 Tuesday, September 28, 2004 1:46 PM

468 Chapter 22 Intrusion Detection

The application level log presents a very high-level view of actions:

Feb 12 14:29:53 nob su: root to bishop on /dev/ttyp5

The system call level log generates a very different view of this action. Omitting
the blocks of data that are read and written, the log contains 401 entries for the
single command. A few such entries from the middle of the process give the flavor
of the entire log. The entries that follow correspond to obtaining the user’s effec-
tive UID, opening the password file, and obtaining the password of the user with
that effective UID.

13285 su CALL geteuid
13285 su RET geteuid 0
13285 su CALL stat(0x28114179,0xbfbfd138)
13285 su NAMI "/etc/spwd.db"
13285 su RET stat 0
13285 su CALL open(0x28114179,0,0)
13285 su NAMI "/etc/spwd.db"
13285 su RET open 3
13285 su CALL fcntl(0x3,0x2,0x1)
13285 su RET fcntl 0
13285 su CALL read(0x3,0x804e000,0x104)
13285 su GIO fd 3 read 260 bytes
13285 su RET read 260/0x104
13285 su CALL lseek(0x3,0,0x4000,0,0)
13285 su RET lseek 16384/0x4000
13285 su CALL read(0x3,0x8051000,0x1000)
13285 su GIO fd 3 read 4096 bytes
13285 su RET read 4096/0x1000
13285 su CALL close(0x3)
13285 su RET close 0

If one views the issue at the application level, the single-line log entry is sufficient,
but from a system level view, it is not, because it obscures the many system calls
actually made. Similarly, from an application level view, the system level view is
inadequate, because the sequence of system calls does not make clear what their
combined function is (specifically, to log in a user).

The difference between application and system views (which is, essentially, a
problem of layers of abstraction) affects what the agent can report to the director and
what the director can conclude from analyzing the information. The agent, or the
director, must either obtain information at the level of abstraction at which it looks
for security problems or be able to map the information into an appropriate level.

Bishop.book Page 468 Tuesday, September 28, 2004 1:46 PM

22.4 Architecture 469

22.4.2 Director

The director itself reduces the incoming log entries to eliminate unnecessary and
redundant records. It then uses an analysis engine to determine if an attack (or the
precursor to an attack) is underway. The analysis engine may use any of, or a mixture
of, several techniques to perform its analysis.

Because the functioning of the director is critical to the effectiveness of the
intrusion detection system, it is usually run on a separate system. This allows the sys-
tem to be dedicated to the director’s activity. It has the side effect of keeping the spe-
cific rules and profiles unavailable to ordinary users. Then attackers lack the
knowledge needed to evade the intrusion detection system by conforming to known
profiles or using only techniques that the rules do not include.

The director must correlate information from multiple logs.

EXAMPLE: A particular user logs in during the day to perform system maintenance
functions. Occasionally she logs in during the late evening to write reports. One day,
she apparently logs in during the late evening and begins altering the kernel (a sys-
tem maintenance procedure). Agents provide information from both the log of login
times and the log of commands executed. Neither set of data by itself will give an
indication of a security problem. However, if the director correlates the two sets of
data, the anomaly will be apparent.

Many types of directors alter the set of rules that they use to make decisions.
These adaptive directors alter the profiles, add (or delete) rules, and otherwise adapt
to changes in the systems being monitored. Typical adaptive directors use aspects of
machine learning or planning to determine how to alter their behavior.

EXAMPLE: Debar, Becker, and Siboni [237] proposed the use of a neural network to
analyze logs. Their goal was to reduce the complexity of analyzing the data from the
agent. They constructed a neural network that adapted to the users’ behavior over
time, enabling them to discard data and simplify the analysis. This also enabled them
to use several learning techniques to improve the classification of events as anoma-
lous, thereby reducing the number of false alarms.

Directors rarely use only one analysis technique, because different techniques
highlight different aspects of intrusions. The results of each are combined, analyzed
and reduced, and then used.

22.4.3 Notifier

The notifier accepts information from the director and takes the appropriate action.
In some cases, this is simply a notification to the system security officer that an
attack is believed to be underway. In other cases, the notifier may take some action to
respond to the attack.

Bishop.book Page 469 Tuesday, September 28, 2004 1:46 PM

470 Chapter 22 Intrusion Detection

Many intrusion detection systems use graphical interfaces. A well-designed
graphics display allows the intrusion detection system to convey information in an easy-
to-grasp image or set of images. It must allow users to determine what attacks are under-
way (ideally, with some notion of how likely it is that this is not a false alarm). This
requires that the GUI be designed with a lack of clutter and unnecessary information.

EXAMPLE: The Graphical Intrusion Detection System (GrIDS) [868] uses a graph-
oriented user interface to show the progress of attacks across multiple systems. The
hosts are represented as nodes, and as an attack from one system to another is identi-
fied, the nodes are connected with edges labeled to show the progress of the attack.
Figure 22–2 is an example of one of the user displays of GrIDS. It shows the
progress of a worm attack as it progresses through a network.

The notifier may send electronic mail to the appropriate person or make
entries into the appropriate log files.

EXAMPLE: SATAN was an administrative tool used to analyze UNIX-based systems
for network vulnerabilities. The tool courtney detected uses of SATAN by analyzing
network traffic. When it detected a series of probes consonant with the probes
SATAN uses, it invoked a system logging routine to enter the warning into a system
log, to notify an administrator of the probe (by electronic mail or messaging), or
both. It also may initiate recovery procedures—for example, restoring protection
modes of certain files in a system or blocking suspect network traffic.

EXAMPLE: The Intrusion Detection and Isolation Protocol (IDIP) [795] provides a
basis for coordinating intrusion detection systems residing on firewalls to block
attacks over a network. Figure 22–3 shows a site with three firewalls monitoring traf-
fic from the Internet. If intrusion detection systems on hosts A and B detect a coordi-
nated attack, they can inform host C, which can then reject packets from the
source(s) of the attack.

A E

D

C

B

Figure 22–2 An example of GrIDS output showing the spread of a worm. The
left figure shows the graph shortly after the spread has begun. The right figure
shows the graph after further spread.

Bishop.book Page 470 Tuesday, September 28, 2004 1:46 PM

22.5 Organization of Intrusion Detection Systems 471

Incident response is a type of notification. In addition to any human-intelligible
notifications, the intrusion detection system communicates with other entities to
counteract the attack. Responses include disconnecting from the network, filtering
packets from attacking hosts, increasing the level of logging, and instructing agents
to forward information from additional sources.

22.5 Organization of Intrusion Detection Systems

An intrusion detection system can be organized in several ways. This section
explores three such paradigms using research intrusion detection systems. The first
system examined network traffic only. The second explored how to combine network
and host sources. The third system distributed the director among multiple systems
to enhance security and reliability.

22.5.1 Monitoring Network Traffic for Intrusions: NSM

The Network Security Monitor (NSM) [410] develops a profile of expected usage of
a network and compares current usage with that profile. It also allows the definition
of a set of signatures to look for specific sequences of network traffic that indicate
attacks. It runs on a local area network and assumes a broadcast medium. The monitor
measures network utilization and other characteristics and can be instructed to look
at activity based on a user, a group of users, or a service. It reports anomalous behavior.

The NSM monitors the source, destination, and service of network traffic. It
assigns a unique connection ID to each connection. The source, destination, and ser-
vice are used as axes for a matrix. Each element of the matrix contains the number of
packets sent over that connection for a specified period of time, and the sum of the
data of those packets. NSM also generates expected connection data from the net-
work. The data in the array is “masked” by the expected connection data, and any
data not within the expected range is reported as an anomaly.

Site Intranet

A

B

C

Figure 22–3 Site with three firewalls, each of which has an intrusion detection
system running the IDIP protocol.

Internet

Bishop.book Page 471 Tuesday, September 28, 2004 1:46 PM

472 Chapter 22 Intrusion Detection

The developers of the NSM quickly found that too much data was being gen-
erated during the network analysis. To reduce the overhead, they constructed a hier-
archy of elements of the matrix and generated expected connection data for those
elements. If any group in the hierarchy showed anomalous data, the system security
officer could ask the NSM to break it down into the underlying elements. The groups
were constructed by folding axes of the matrix. For example, one group would be the
set of traffic between two hosts for each service. It would have the elements { (A, B,
SMTP), (A, B, FTP), … }, where A and B were host names. The next group would
collapse the service names and simply group all traffic into source-destination pairs.
At the highest level, traffic would be grouped into its source. The NSM would ana-
lyze the data at the source level. If it flagged an anomaly, the system security officer
could have the NSM examine each component of the underlying group and deter-
mine which specific source-destination pair had the anomaly. From there, it could be
broken into the specific service or services involved.

The NSM’s use of a matrix allowed a simple signature-based scheme to look
for known patterns of misuse. For example, repeated telnet connections that lasted
only as long as the normal setup time would indicate a failed login attempt. A spe-
cific rule could look in the matrix for this occurrence (although, as the designers
point out, these patterns can be hidden as one moves up the hierarchy).

The implementation of the NSM also allowed the analyst to write specific
rules against which to compare network traffic. The rules initially used were to check
for excessive logins, a single host communicating with 15 or more hosts, or any
attempt to communicate with a nonexistent host.

The NSM provided a graphical user display to enable the system security
officer to see at a glance the state of the network. Furthermore, the display manager
was independent of the NSM matrix analyzer, so the latter could devote full time to
the analysis of the data. The prototype system, deployed at the University of Califor-
nia at Davis, detected many attacks. As with all intrusion detection systems, it also
reported false positives, such as alumni logging into accounts that had laid dormant
for some time. But its capabilities revealed the need for and feasibility of monitoring
the network as well as individual hosts.

The NSM is important for two reasons. First, it served as the basis for a large
number of intrusion detection systems. Indeed, 11 years after its creation, it was still
in use at many sites (although with an augmented set of signatures). Second, it
proved that performing intrusion detection on networks was practical. As network
traffic becomes enciphered, the ability to analyze the contents of the packets dimin-
ishes, but NSM did not look at the contents of the traffic. It performed traffic analy-
sis. Hence, its methodology will continue to be effective even after widespread
deployment of network encryption.

22.5.2 Combining Host and Network Monitoring: DIDS

The Distributed Intrusion Detection System (DIDS) [846] combined the abilities of
the NSM with intrusion detection monitoring of individual hosts. It sprang from the

Bishop.book Page 472 Tuesday, September 28, 2004 1:46 PM

22.5 Organization of Intrusion Detection Systems 473

observation that neither network-based monitoring nor host-based monitoring was
sufficient. An intruder attempting to log into a system through an account without a
password would not be detected as malicious by a network monitor. Subsequent
actions, however, might make a host-based monitor report that an intruder is present.
Similarly, if an attacker tries to telnet to a system a few times, using a different login
name each time, the host-based intrusion detection mechanism would not report a
problem, but the network-based monitor could detect repeated failed login attempts.

DIDS used a centralized analysis engine (the DIDS director) and required that
agents be placed on the systems being monitored as well as in a place to monitor the
network traffic. The agents scanned logs for events of interest and reported them to
the DIDS director. The DIDS director invoked an expert system that performed the
analysis of the data. The expert system was a rule-based system that could make
inferences about individual hosts and about the entire system (hosts and networks). It
would then pass results to the user interface, which displayed them in a simple, easy-
to-grasp manner for the system security officer.

One problem is the changing of identity as an intruder moves from host to
host. An intruder might gain access to the first system as user alice, and then to the
second system as user bob. The host-based mechanisms cannot know that alice and
bob are the same user, so they cannot correlate the actions of those two user names.
But the DIDS director would note that alice connected to the remote host and that
bob logged in through that connection. The expert system would infer that they were
the same user. To enable this type of correlation, each user was identified by a net-
work identification number (NID). In the example above, because alice and bob are
the same user, both would share a common NID.

The host agents and network agent provide insight into the problems distrib-
uted intrusion detection faces. The host logs are analyzed to extract entries of inter-
est. In some cases, simple reduction is performed to determine if the records should
be forwarded; for example, the host agents monitor the system for attacks using sig-
natures. Summaries of these results go to the director. Other events are forwarded
directly. To capture this, the DIDS model has host agents report events, which are the
information contained in the log entries, and an action and domain (see Figure
22–4). Subjects (such as active processes) perform actions; domains characterize
passive entities. Note that a process can be either a subject (as when it changes the
protection mode of a file) or an object (as when it is terminated). An object is

session_start create tagged sys_info
session_end delete authentication user_info
read move audit utility
write change_rights network owned
execute change_user_id system not_owned
terminate

Figure 22–4 DIDS actions and domains. The two left columns name the types
of action; the right two, the types of domains. The domains are listed in order
of priority, from top to bottom.

Bishop.book Page 473 Tuesday, September 28, 2004 1:46 PM

474 Chapter 22 Intrusion Detection

assigned to the highest-priority domain to which it belongs. For example, a file may
be tagged as important. If the file contains authentication data and also is tagged, it
will be reported as a tagged object. A hand-built table dictates which events are sent
to the DIDS director based on the actions and domains associated with the events.
Events associated with the NID are those with session_start actions, and execute
actions with network domains. These actions are forwarded so that the DIDS director
can update its system view accordingly.

The network agent is a simplified version of the NSM. It provides the infor-
mation described above.

The expert system, a component of the DIDS director, derives high-level intrusion
information from the low-level data sent to it. The rule base comes from a hierarchical
model of intrusion detection. That model supplies six layers in the reduction procedure.

1. At this lowest layer, the log records are all visible. They come from the host
and the network agent, and from any other sources the DIDS director has.

2. Here, the events abstract relevant information from the log entries.
3. This layer defines a subject that captures all events associated with a single

user. The NID is assigned to this subject. This layer defines the boundary
between machine-dependent information and the abstraction of a user
(subject) and associated events.

4. This layer adds contextual information. Specifically, temporal data such as
wall clock time, and spacial data such as proximity to other events, are
taken into account. If the user tries to log in at a time when that user has
never tried to log in before, or if a series of failed logins follows commands
to see who is using a system, the context makes the events suspicious.

5. This layer deals with network threats, which are combinations of events in
context. A threat is abuse if the protection state of the system is changed (for
example, making a protected file world-writable). A threat is misuse if it
violates policy but does not change the state of the system (for example,
copying a world-readable homework file, which is a clear violation of policy
at most universities). A threat is a suspicious act if it does not violate policy
but is of interest (for example, a finger probe may be a prelude to an attack).

6. This layer assigns a score, from 1 to 100, representing the security state of the
network. This score is derived from the threats to the system developed in
layer 5. This is a user convenience, because it enables the system security
officer to notice problems quickly. Because the raw data (and intermediate
data) used to derive the figure is present, the specifics can be provided quickly.

Within the expert system, each rule has an associated rule value. This value is
used to calculate the score. The system security officer gives feedback to the expert
system, and if false alarms occur, the expert system lowers the value associated with
the rules leading to the false alarm.

A later system, GrIDS, extended DIDS to wide area networks. In addition to
monitoring hosts and network traffic, the GrIDS directors could obtain data from

Bishop.book Page 474 Tuesday, September 28, 2004 1:46 PM

22.5 Organization of Intrusion Detection Systems 475

network infrastructure systems (such as DNS servers). As mentioned earlier (see Fig-
ure 22–2), GrIDS deployed a hierarchy of directors, each one reducing data from its
children (agents or other directors) and passing the information to its parent. GrIDS
directors can be in different organizations. This leads to the ability to analyze inci-
dents occurring over a wide area, and to coordinate responses.

22.5.3 Autonomous Agents: AAFID

In 1995, Crosbie and Spafford examined intrusion detection systems in light of fault
tolerance [223]. They noted that an intrusion detection system that obtains informa-
tion by monitoring systems and networks is a single point of failure. If the director
fails, the IDS will not function. Their suggestion was to partition the intrusion detec-
tion system into multiple components that function independently of one another, yet
communicate to correlate information.

Definition 22–5. An autonomous agent is a process that can act indepen-
dently of the system of which it is a part.

Crosbie and Spafford suggested developing autonomous agents each of which
performed one particular monitoring function. Each agent would have its own inter-
nal model, and when the agent detected a deviation from expected behavior, a match
with a particular rule, or a violation of a specification, it would notify other agents.
The agents would jointly determine whether the set of notifications were sufficient to
constitute a reportable intrusion.

The beauty of this organization lies in the cooperation of the agents. No longer
is there a single point of failure. If one agent is compromised, the others can continue
to function. Furthermore, if an attacker compromises one agent, she has learned noth-
ing about the other agents in the system or monitoring the network. Moreover, the
director itself is distributed among the agents, so it cannot be attacked in the same way
that an intrusion detection system with a director on a single host can be. Other advan-
tages include the specialization of each agent. The agent can be crafted to monitor one
resource, making the agent small and simple (and meeting the principle of economy of
mechanism; see Section 12.2.3). The agents could also migrate through the local net-
work and process data on multiple systems. Finally, this approach appears to be scal-
able to larger networks because of the distributed nature of the director.

The drawbacks of autonomous agents lie in the overhead of the communica-
tions needed. As the functionality of each agent is reduced, more agents are needed to
monitor the system, with an attendant increase in communications overhead. Further-
more, the communications must be secured, as must the distributed computations.

EXAMPLE: The Autonomous Agents for Intrusion Detection (AAFID) system [52,
863] implements these ideas. Each host has a set of agents and a transceiver, which
controls the execution of the agents, collates the information, and forwards it to a

Bishop.book Page 475 Tuesday, September 28, 2004 1:46 PM

476 Chapter 22 Intrusion Detection

monitor (director). If the transceiver’s host does not have a monitor, the transceiver
simply transmits the information to a monitor on another host.

In theory, each agent obtains its own data. This approach causes unnecessary
duplication of work and leads to agents that are highly system-dependent. To avoid this
problem, AAFID uses filters to provide access to monitored resources in a system-
independent way. An agent subscribes to a filter by specifying which records it needs.
The filter collects the data, transforms it into a system-independent form, and sends
each agent the requested records. Multiple agents may subscribe to a single filter.

Transceivers collect data from the local agents, process it, and forward it to
other agents or to monitors as appropriate. A transceiver also tracks the agents on its
host, and can initiate them or terminate them. For example, if a system begins to
accept TCP connections, the transceiver can initiate the SMTP monitoring agent.
When TCP networking is shut down, the transceiver can then terminate that agent.

Monitors are the distributed components of the AAFID director. They accept
information from transceivers and can communicate with the transceivers and other
monitors. They perform high-level correlations for one or more hosts. Multiple mon-
itors may receive data from, and transmit commands to, a single transceiver. In such
cases, the AAFID system must ensure that the transceiver receives consistent infor-
mation and commands.

Finally, the user interface plays one of the roles of a notifier. This interface
interacts with the monitors. It may be graphical (for human interaction) or textual
(for command scripts).

The implemented AAFID prototype runs on Linux and Solaris systems. It focused
on testing the ideas and architecture outlined above. It was implemented in the Perl lan-
guage [930] for ease of programming, portability, and modification. Because the proto-
type was a proof of concept and not a production system, the loss of performance was
considered acceptable. The prototype validated the architecture and demonstrated that
autonomous agents were a practical method for intrusion detection systems.

22.6 Intrusion Response

Once an intrusion is detected, how can the system be protected? The field of intru-
sion response deals with this problem. Its goal is to handle the (attempted) attack in
such a way that damage is minimized (as determined by the security policy). Some
intrusion detection mechanisms may be augmented to thwart intrusions. Otherwise,
the security officers must respond to the attack and attempt to repair any damage.

22.6.1 Incident Prevention

Ideally, intrusion attempts will be detected and stopped before they succeed. This
typically involves closely monitoring the system (usually with an intrusion detection
mechanism) and taking action to defeat the attack.

Bishop.book Page 476 Tuesday, September 28, 2004 1:46 PM

22.6 Intrusion Response 477

In the context of response, prevention requires that the attack be identified
before it completes. The defenders then take measures to prevent the attack from
completing. This may be done manually or automatically.

EXAMPLE: Jailing of attackers is an approach that allows the attackers to think that
their attacks have succeeded, but places them in a confined area in which their behav-
ior can be controlled and, if necessary, manipulated. Cheswick [171] used this
approach to examine an attack. His system recorded a break-in attempt using the
SMTP server. After several attempts to break in had failed, Cheswick created a
highly restrictive account and monitored the intruder’s actions, including which
machines were attacked. (None of the attempts succeeded; Cheswick notified the
administrators of those systems.) The jail had a file system that closely resembled a
real UNIX file system (but without some programs that would reveal system infor-
mation, and the deception), and access times to certain critical files were also
masked. The attacker returned numerous times. Cheswick finally shut down the jail
at the request of his management.

Amoroso [21] points out that multilevel secure systems are excellent places to
implement jails, because they provide much greater degrees of confinement than do
ordinary systems. The attacker is placed into a security compartment isolated from
other compartments. The built-in security mechanisms are designed to limit the
access of the subjects in the compartment, thereby confining the attacker.

More sophisticated host-based approaches may be integrated with intrusion
detection mechanisms. Signature-based methods enable one to monitor transitions
for potential attacks. Anomaly-based methods enable one to monitor relevant system
characteristics for anomalies and to react when anomalies are detected in real time.

22.6.2 Intrusion Handling

When an intrusion occurs, the security policy of the site has been violated. Handling
the intrusion means restoring the system to comply with the site security policy and
taking any actions against the attacker that the policy specifies. Intrusion handling
consists of six phases [694].

1. Preparation for an attack. This step occurs before any attacks are detected.
It establishes procedures and mechanisms for detecting and responding to
attacks.

2. Identification of an attack. This triggers the remaining phases.
3. Containment (confinement) of the attack. This step limits the damage as

much as possible.
4. Eradication of the attack. This step stops the attack and blocks further

similar attacks.

Bishop.book Page 477 Tuesday, September 28, 2004 1:46 PM

478 Chapter 22 Intrusion Detection

5. Recovery from the attack. This step restores the system to a secure state
(with respect to the site security policy).

6. Follow-up to the attack. This step involves taking action against the
attacker, identifying problems in the handling of the incident, and
recording lessons learned (or lessons not learned that should be learned).

In the following discussions, we focus on the containment, eradication, and follow-
up phases.

22.6.2.1 Containment Phase
Containing or confining an attack means limiting the access of the attacker to system
resources. The protection domain of the attacker is reduced as much as possible.
There are two approaches: passively monitoring the attack, and constraining access
to prevent further damage to the system. In this context, “damage” refers to any
action that causes the system to deviate from a “secure” state as defined by the site
security policy.

Passive monitoring simply records the attacker’s actions for later use. The
monitors do not interfere with the attack in any way. This technique is marginally
useful. It will reveal information about the attack and, possibly, the goals of the
attacker. However, not only is the intruded system vulnerable throughout, the
attacker could attack other systems.

EXAMPLE: It may be helpful to know the type of operating system from which the
intruder is entering. A passive monitor can examine settings of the TCP and IP head-
ers of incoming connections to generate a signature. For example, some systems
change the window size field more often, and in different ways, than others. This sig-
nature can be compared with known signatures of operating systems, and the analyst
may be able to draw some conclusions about the type of the remote system from
which the packets have been generated [434].

The other approach, in which steps are taken to constrain the actions of the
attacker, is considerably more difficult. The goal is to minimize the protection
domain of the attacker while preventing the attacker from achieving her goal. But the
system defenders may not know what the goal of the attacker is, and thus may misdi-
rect the confinement so that the data or resources that the attacker seeks lie within the
minimal protection domain of the attacker.

EXAMPLE: Stoll [880] detected an attacker in a computer system at the Lawrence
Berkeley Laboratory. After a period of monitoring, Stoll concluded that the attacker
was looking for documents related to nuclear weaponry. He arranged for a trace over
network and telephone lines, but the tracing ended at the attacker’s point of entry into
the United States. The foreign authorities reported that they would need a longer
connection to trace the attacker to his point of origin in Europe. Stoll created a very

Bishop.book Page 478 Tuesday, September 28, 2004 1:46 PM

22.6 Intrusion Response 479

large file containing some of the keywords for which the attacker had been searching.
When the attacker next entered, he found the file and began to upload it. The time
required for the upload was more than ample for the trace to be completed, and the
attacker was identified and subsequently arrested.

The document that Stoll wrote is an example of a honeypot. The file was care-
fully designed to entice the attacker to upload it but in fact contained false and mean-
ingless information. This technique can be extended to systems and networks.
Honeypots, sometimes called decoy servers, are servers that offer many targets for
attackers. The targets are designed to entice attackers to take actions that indicate
their goals. Honeypots are also instrumented and closely monitored. When a system
detects an attack, it takes actions to shift the attacker onto a honeypot system. The
defenders can then analyze the attack without disrupting legitimate work or systems.
Two good examples are the Deception Tool Kit and the Honeynet Project.

EXAMPLE: Cohen’s Deception Tool Kit (DTK) [185] creates a false network inter-
face that allows the user of the tool kit to present any desired configuration to incom-
ing connections. When an attacker probes the putative network, the DTK returns a
wide range of vulnerabilities. The attacker may then choose some subset of the pre-
sented network addresses to attack. The defender can configure illusionary systems
and servers, and monitor the attacks, so while the attacker is probing nonexistent
systems the defender can analyze the attacks to determine the goals and abilities of
the attacker. Based on experiments using the DTK, Cohen concluded that this technique
of deception was an effective response to keep attackers from targeting real systems.

EXAMPLE: The Honeynet Project was created to learn about the “black hat”
(attacker) community. The organizers were interested in the motives, techniques, and
tools of the attackers. The honeypot work was split into two phases. The first was to
identify common threats against specific operating systems and configurations. The
second was to develop a honeypot network that was “easier to deploy, harder to
detect, and more efficient in collecting data.” The group has written several papers
about the attacks and the attackers [433, 435, 436, 438, 439], and about the design of
the honeynet [437].

22.6.2.2 Eradication Phase
Eradicating an attack means stopping the attack. The usual approach is to deny
access to the system completely (such as by terminating the network connection) or
to terminate the processes involved in the attack. An important aspect of eradication
is to ensure that the attack does not immediately resume. This requires that attacks be
blocked.

A common method for implementing blocking is to place wrappers around
suspected targets. The wrappers implement various forms of access control. Wrap-
pers can control access locally on systems or control network access.

Bishop.book Page 479 Tuesday, September 28, 2004 1:46 PM

480 Chapter 22 Intrusion Detection

EXAMPLE: Wrappers that control local access to resources are usually embedded in
the kernel to make them difficult to bypass. In an experiment that used wrappers to
improve the security of commercial off-the-shelf programs, Fraser, Badger, and
Feldman [337] used loadable kernel modules to place wrappers in the kernels of
UNIX systems. When the wrappers were invoked, they waited for some specified
event (such as a system call, possibly with particular privilege settings or arguments).
When the event occurred, the wrapper would take control of the process and perform
a specified action. The action could be to log the call, to deny access (by returning a
failure code to the caller), or to generate and process auxiliary data such as system
call counts. The wrappers were specified using an extension of the C programming
language. The performance impact of using the wrappers was less than 7%.

The researchers noted that the wrappers’ uses were varied, ranging from
access control and auditing to intrusion detection and response. Others [518] focused
on the latter, designing wrappers that would detect intrusions. Their mechanism
accepted notifications from multiple wrappers. In one experiment, when two wrap-
pers notified a wrapper monitoring program execution that a process appeared to be
launching an attack, the monitoring wrapper terminated the process.

EXAMPLE: Wrappers can also control access from the network. Bina, McCool, Jones,
and Winslett [93] describe an application in which a Web server accepts requests for
database records and returns the desired records if so authorized. Access to the
records is determined by the role of the requester. To determine this, the Web server
obtains information from the client (including a public key for authentication) and
passes the data to a script that assigns the appropriate role to the request. The role
and request are given to the database engine, which returns an appropriate response.
The script is a wrapper around the database. It mediates access to the database.

Firewalls (see Section 23.3.1) are systems that sit between an organization’s
internal network and some other external network (such as the Internet). The firewall
controls access from the external network to the internal network and vice versa. The
advantage of firewalls is that they can filter network traffic before it reaches the target
host. They can also redirect network connections as appropriate, or throttle traffic to
limit the amount of traffic that flows into (or out of) the internal network.

EXAMPLE: Because Java applets come from (usually) untrusted sources, many orga-
nizations want to block the applets from entering their internal networks. A simple
method of doing this is to block the applets at a firewall [595]. When an HTTP con-
nection is made through the firewall, the firewall creates a small application (called a
proxy) to reassemble the packets and determine if they contain a Java applet. The
proxy then may use one of three approaches to block the applet.

First, it can rewrite the HTML tag to something other than “<applet>”. When
the page is delivered to the browser, the browser will not recognize the applet and
will not run it. This method requires the firewall to determine that the connection is
indeed an HTTP connection and to parse the HTML in that connection. Both are
nontrivial tasks.

Bishop.book Page 480 Tuesday, September 28, 2004 1:46 PM

22.6 Intrusion Response 481

The second approach is to look for incoming files with the hexadecimal
sequence CA FE BA BE. All Java class files must contain this four-byte signature in
order to be properly recognized and interpreted. If this sequence is found, the file is
immediately discarded. The danger here is a false positive. Because ActiveX and
Javascript code are different, this approach cannot block those types of applets.

The third approach is to block based on file name, but this is far more prob-
lematic because the names do not necessarily represent the contents of the file. Many
browsers require Java class files to end in “.class”. The firewall can block these
applets. However, more recent browsers allow Java class files to be combined into
archives. The names of these archives often end in “.zip”. This is a popular format
among users of MS-DOS and Windows, so it is not realistic to block all such files.

Martin, Rajagopalan, and Rubin [595] conclude that the situation is rather
bleak for stopping Java applets at the firewall.

An organization may have several firewalls on its perimeter, or several organi-
zations may wish to coordinate their responses. The Intruder Detection and Isolation
Protocol [795] provides a protocol for coordinated responses to attacks.

The IDIP protocol runs on a set of computer systems. A boundary controller
is a system that can block connections from entering a perimeter. Typically, bound-
ary controllers are firewalls or routers. A boundary controller and another system are
neighbors if they are directly connected. If they send messages to one another, the
messages go directly to their destination without traversing any other system. If two
systems are not boundary controllers and can send messages to each other without
the messages passing through a boundary controller, they are said to be in the same
IDIP domain. This means that the boundary controllers form a perimeter for an IDIP
domain.

When a connection passes through a member of an IDIP domain, the system
monitors the connection for intrusion attempts. If one occurs, the system reports the
attempt to its neighbors. The neighbors propagate information about the attack and
proceed to trace the connection or datagrams to the appropriate boundary controllers.
The boundary controllers can then coordinate their responses, usually by blocking the
attack and notifying other boundary controllers to block the relevant communications.

EXAMPLE: Kahn and Zurko [481] discuss the use of IDIP to handle network flood-
ing attacks, in which one or more sources spew large numbers of packets to a target.
This effectively prevents legitimate traffic from being processed, either because the
target is overwhelmed with processing the flooding packets or because the legitimate
traffic cannot reach the destination (target).

Consider Figure 22–5. Suppose host f launches a flooding attack against host
A along the path f, Z, Y, X, W, a, A. The flood effectively stops all traffic along that
path. Host a detects the flood and begins blocking traffic for host A. It also notifies its
neighbor W, a boundary controller. W detects traffic targeting A, suppresses it, and
notifies its neighbor X. X detects the traffic targeting A, suppresses it, and notifies its
neighbors Y and C. W then notices the traffic for A has stopped, and it eliminates its

Bishop.book Page 481 Tuesday, September 28, 2004 1:46 PM

482 Chapter 22 Intrusion Detection

suppression. At this point, A, a, W, and b can again communicate freely, because the
traffic formerly saturating the links has been eliminated by X. C detects no traffic for
A and so does nothing. Y does detect the traffic, and suppresses it. X detects that the
traffic going through it for A has stopped, and X eliminates its suppression. Y then
communicates with Z, and Z detects and suppresses the traffic. Y also communicates
with D, which detects no relevant traffic. This process continues until all traffic from
f to A is suppressed.

The IDIP protocol is flexible, because if multiple sources attempt to flood a
host, the boundary controllers will block the traffic along each path that the sources
use. Of course, if any path has no IDIP controllers, the traffic can flow freely along
that path. Kahn and Zurko suggest that IDIP, or a similar protocol, should be widely
deployed throughout the Internet to handle flooding attacks. They argue that eco-
nomic and other incentives will encourage Internet Service Providers and other net-
work providers to cooperate in suppressing distributed flooding attacks.

22.6.2.3 Follow-Up Phase
In the follow-up phase, the systems take some action external to the system against
the attacker. The most common follow-up is to pursue some form of legal action,
either criminal or civil. The requirements of the law vary among communities, and
indeed vary within communities over time.

Counterattacking, or attacking the attacker, takes two forms. The first form
involves legal mechanisms, such as filing criminal complaints. This requires protect-
ing a “chain of evidence” so that legal authorities can establish that the attack was
real (in other words, that the attacked site did not invent evidence) and that the evi-
dence can be used in court. The precise requirements of the law change over time and
jurisdictions, so this first form of counterattacking lies outside the scope of this dis-
cussion. The second form is a technical attack, in which the goal is to damage the
attacker seriously enough to stop the current attack and discourage future attacks.
This approach has several important consequences that must be considered.

a

b

C

f

e

D

W

X Y

Z

Figure 22–5 Example of IDIP. C, D, W, X, Y, and Z are boundary controllers.
Host a runs the IDIP protocol but is not a boundary controller. The flooding
attack follows the dashed arrows from f to A.

A

Bishop.book Page 482 Tuesday, September 28, 2004 1:46 PM

22.6 Intrusion Response 483

1. The counterattack may harm an innocent party. The attacker may be
impersonating another site. In this case, the counterattack could damage a
completely innocent party, putting the counterattackers in the same
position as the original attackers. Alternately, the attackers may have
broken into the site from which the attack was launched. Attacking that
host does not solve the problem. It merely eliminates one base from which
future attacks might be launched.

2. The counterattack may have side effects. For example, if the counterattack
consists of flooding a specific target, the flood could block portions of the
network that other parties need to transit, which would damage them.

3. The counterattack is antithetical to the shared use of a network. Networks
exist to share data and resources and provide communication paths. By
attacking, regardless of the reason, the attackers make networks less
usable because they absorb resources and make threats more immediate.
Hence, sites must protect themselves by limiting the sharing and
communication on the network beyond what is needed for their safe
operation.

4. The counterattack may be legally actionable. If an attacker can be
prosecuted or sued, it seems reasonable to assume that one who responds
to the attack by counterattacking can also be prosecuted or sued, especially
if other innocent parties are damaged by the counterattack.

Under exceptional circumstances, counterattacking may be appropriate. In
general, it should be avoided, and legal avenues of prosecution (either civil or crimi-
nal) should be pursued. Improving defenses will also hinder attacks. The efforts used
to develop and launch counterattacks could be spent far more effectively in that way.

EXAMPLE: Recall the example of the two versions of the animal game (see page
364). In that case, the new version of animal targeted a specific, older version written
by the same authors, and it was unlikely that any organization depended on the exist-
ence of that game. Consider moving this example into the world of distributed sys-
tems and networks. Imagine a computer worm that enters systems through a widely
used network server. The worm spreads rapidly, and despite attempts to eradicate it,
systems continue to be reinfected. One company designs a “counterworm.” When-
ever a break-in comes from a remote site, the “counterworm” detects the break-in,
deletes the connection, and uses the same infection technique as that of the original
worm to enter the attacking host. On that host, it deletes all worm processes (except
its own). It then waits until that system is attacked, and the cycle repeats.

This response raises several questions. First, how can the “counterworm” be
set to ensure that it deletes only those processes belonging to the original worm? Sec-
ond, what if the invaded machine is gathering data for research or countermeasures?
Third, how can the originators of the “counterworm” ensure that it does no damage
to any system it is sent to? Fourth, can they be held legally liable for any problems
that a site encounters if that site is sent the “counterworm”? The answers to these

Bishop.book Page 483 Tuesday, September 28, 2004 1:46 PM

484 Chapter 22 Intrusion Detection

questions are complex, and illustrate clearly why one needs informed, full consent of
a remote site before sending an automated response.

22.7 Summary

Intrusion detection is a form of auditing that looks for break-ins and attacks. Auto-
mated methods aid in this process, although it can be done manually. There are three
basic models of intrusion detection.

Anomaly detection looks for unexpected behavior. A baseline of expected
actions or characteristics of processes, users, or groups of users is developed. When-
ever something deviates from that baseline, it is reported as a possible intrusion. In
some cases, the profiles are changed over time. In this way, the expected behavior of
users is updated as their actual behavior changes over time.

Misuse detection looks for sequences of events known to indicate attacks. A
rule set (or database) of attacks provides the requisite information. Ideally, an expert
system will use the rule set to detect previously unknown attacks (but efforts of this
type have been singularly unsuccessful). Both state-based and transition-based tech-
niques capture the sequence of events in attacks.

Specification-based detection looks for actions outside the specifications of key
programs. Each program has a set of rules specifying what actions it is allowed to take.
If the program tries to take any other action, the intrusion detection mechanism reports
a probable intrusion. This method requires that specifications for programs be written.

Intrusion detection systems are auditing engines, so models of auditing sys-
tems can describe their architecture. The director, or analysis engine, may be central-
ized or distributed, and may be hierarchical or fragmented. Each organization has
advantages and disadvantages, but for wide area networks, a distributed director pro-
vides the greatest flexibility and power. Information may be gathered from hosts,
from the network, from both, or from other directors.

When an intrusion occurs, some response is appropriate. If the intrusion
attempt is detected before the attack is successful, the system can take action to pre-
vent the attack from succeeding. Otherwise, the intrusion must be handled. Among
the steps involved are confinement of the attack to limit its effectiveness, eradication
to eliminate the attacking processes or connections, and follow-up to take action
against the attacker as well as learn from the attack.

22.8 Further Reading

Several books describe intrusion detection in detail. Bace [48] provides a wonderful
overview with much historical information. Amoroso [21] presents a technical intro-
duction. Northcutt [695] gives a practitioner’s overview. Cooper, Northcutt, Fearnow,

Bishop.book Page 484 Tuesday, September 28, 2004 1:46 PM

22.9 Exercises 485

and Frederick [208] discuss intrusion detection and analysis, again from a practitio-
ner’s viewpoint. Proctor [734] presents both managerial and technical information.

Helman and Liepins [417] discuss the statistical foundations of intrusion
detection. Immunological approaches to intrusion detection distinguish between nor-
mal and abnormal program behavior [263, 331, 332, 333, 429, 854]. Other
approaches abound [237, 549, 555, 629]. Sekar, Bowen, and Segal [810] discuss the
use of specification-based detection for automated response at the system call level.
Badger discusses the relationship among wrappers, reference monitors, and trusted
systems [49].

Haystack [840] considered behavior anomalous based on values larger than or
smaller than certain limits. Lankewicz and Benard [550] considered the use of statis-
tical models that do not assume any a priori distribution of events. Frank demon-
strated how feature selection can aid detection of potential problems [334].

Several papers have been written about testing of intrusion detection systems
[283, 342, 573, 574, 605, 736]. Axelsson [45] discusses the relationship between
false positives and false negatives. Ptacek and Newsham [735] discuss how attackers
might evade detection. Securing of mobile agents arises in many contexts [378, 911].

Techniques for response are varied. Some are technical [93, 308, 853, 961],
whereas others are procedural and legal and involve special response teams [15, 322,
347, 455, 910]. Some discuss tracing message paths [236, 276, 411, 788, 869].

Sobirey, Fischer-Hübner, and Rannenberg raise the issue of privacy in an
intrusion detection context [851]. Others have analyzed this problem and suggested
approaches [113, 581].

22.9 Exercises

1. You have been hired as the security officer for Compute Computers, Inc.
Your boss asks you to determine the number of erroneous login attempts
that should be allowed before a user’s account is locked. She is concerned
that too many employees are being locked out of their accounts
unnecessarily, but is equally concerned that attackers may be able to guess
passwords. How would you determine an appropriate value for the
threshhold?

2. Why should the administrator (or the superuser) account never be locked
regardless of how many incorrect login attempts are made? What should
be done instead to alert the staff to the attempted intrusion, and how could
the chances of such an attack succeeding be minimized?

3. One view of intrusion detection systems is that they should be of value to
an analyst trying to disprove that an intrusion has taken place. Insurance
companies and lawyers, for example, would find such evidence invaluable
in assessing liability. Consider the following scenario. A system has both

Bishop.book Page 485 Tuesday, September 28, 2004 1:46 PM

486 Chapter 22 Intrusion Detection

classified and unclassified documents in it. Someone is accused of using a
word processing program to save an unclassified copy of a classified
document. Discuss if, and how, each of the three forms of intrusion
detection mechanisms could be used to disprove this accusation.

4. GrIDS uses a hierarchy of directors to analyze data. Each director
performs some checks, then creates a higher-level abstraction of the data
to pass to the next director in the hierarchy. AAFID distributes the
directors over multiple agents. Discuss how the distributed director
architecture of AAFID could be combined with the hierarchical structure
of the directors of GrIDS. What advantages would there be in distributing
the hierarchical directors? What disadvantages would there be?

5. As encryption conceals the contents of network messages, the ability of
intrusion detection systems to read those packets decreases. Some have
speculated that all intrusion detection will become host-based once all
network packets have been encrypted. Do you agree? Justify your answer.
In particular, if you agree, explain why no information of value can be
gleaned from the network; if you disagree, describe the information of
interest.

6. Consider the “counterworm” in the example on that begins on page 483.

a. Pretend you are a technical expert called as a witness in a lawsuit
between the sender of the “counterworm” and the target. What
arguments could you make for and against the sending of the worm?

b. How might the arguments for a company providing “worms” to fix
security problems in their software differ from those for providing a
“counterworm”? How would they be the same?

Bishop.book Page 486 Tuesday, September 28, 2004 1:46 PM

487

Chapter 23
Network Security

JOHN OF GAUNT: This fortress built by Nature for herself
Against infection and the hand of war,

This happy breed of men, this little world,
This precious stone set in the silver sea,

Which serves it in the office of a wall,
Or as a moat defensive to a house,

Against the envy of less happier lands;
—The Tragedy of King Richard the Second, II, i, 43–49.

The goals of an installation, and its security policy, dictate the functionality required of
the site. The distribution of functionality throughout the site’s network is critical to
improving the security of the site. The functionality of each part of the network con-
trols the nature and configuration of each host on the network. This chapter applies
some of the principles and concepts of computer security to a particular situation.

23.1 Introduction

The Dribble Corporation builds and sells dribbles, an electronic item popularly seen
as the successor to the Pet Rock. The Drib (the popular name for the corporation) has
decided to develop a network infrastructure that would enable it to connect to the
Internet, to provide a Web and electronic mail presence that consumers, suppliers,
and other partners could access, and to protect its proprietary information. Because
of its need to add meaningless but entertaining information gleaned from various
Internet Web sites, the Drib developers must have access to the Internet, but external
users cannot be allowed to access the development sites. Finally, because dribbles
look like their main competitor, gibbles (from the Gibble Gabble Gobble Git Com-
pany), the Drib has many lawyers working to defend its patents on dribbles, and its
corporate officers are preparing to fight a hostile takeover from GGGGC. Hence, the

Bishop.book Page 487 Tuesday, September 28, 2004 1:46 PM

488 Chapter 23 Network Security

corporate officers and lawyers also need access to developer data, but the developers
are not to have access to the corporation’s private or legal information.

The goals of the Drib’s security policy are to be as follows.

1. Data related to company plans is to be kept secret. In particular, sensitive
corporate data, such as data involved in developing potential products, is to
be available only to those who need to know.

2. When a customer provides data (such as a credit card number) to the Drib
as part of a purchase, the data, and all information about the customer, are
to be available only to those who fill the order. Company analysts may
obtain statistics about a number of orders for plannning purposes.

3. Releasing sensitive data requires the consent of the company’s officials
and lawyers.

Our goal is to design a network infrastructure that will meet these requirements.
We begin by analyzing the goals of the policy so that we can make them precise.

23.2 Policy Development

The Drib requires a policy that minimizes the threat of data being leaked to unautho-
rized entities. However, it is unclear what “unauthorized” should mean. The Drib’s
internal structure suggests one answer.

The Drib has three main internal organizations. The first is the Customer Ser-
vice Group (CSG), which handles all dealings with customers. This group maintains
all customer data and serves as the interface between the other groups and the clients
of the Drib. The second group is the Development Group (DG), which develops,
modifies, and maintains products. Members of the DG rely on the CSG for descrip-
tions of customer complaints, suggestions, and ideas; at no time do they talk directly
with customers. This prevents them from accidentally revealing confidential infor-
mation or from learning confidential information such as credit card numbers. The
Corporate Group (CG) handles the Drib’s debentures, lawsuits, patents, and other
corporate-level work.

The policy describes the way information is to flow among these groups.
When one looks at the actual functions of the three groups, how they restrict

information, and how they share information, a pattern emerges. Specifications of
current products, as well as marketing and sales literature, are publicly available.
However, other information about current products, such as problems (especially
those that are the subjects of lawsuits), patent applications, and budgets, is not pub-
lic. The CG and DG groups share this information for planning, budgeting, and
development purposes, but beyond this sharing, each group keeps its own private
information. The CG keeps corporate information private so that it can be protected
by attorney privilege and so that it can comply with government stock regulations.

Bishop.book Page 488 Tuesday, September 28, 2004 1:46 PM

23.2 Policy Development 489

The DG plans and prototypes future products. The DG waits until it is convinced that
production is feasible before it proposes a new product to the CG. The CSG keeps
track of customer credit card information and specific clients’ ordering information
for its own purposes, and it does not share this information (except in the aggregate)
with either the CG or the DG. This forms the basis for the policy.

23.2.1 Data Classes

We classify information into five classes that reflect the divisions outlined above. The
classification reflects the principle of least privilege1 by separating the data in such a way
that the ability to view one class of data does not imply the ability to view another class of
data. Also, the policy and all its rules are not secret, reflecting the principle of open
design.2 Note that “open design” does not mean that this information is available to the
public. It simply means that anyone within the Drib who is affected by the policy, or who
wants to know what the policy is and why it was designed that way, can find out.

1. Public data (PD) is available to anyone. It includes product specifications,
price information, marketing literature, and any other data that will help
the Drib sell dribbles without compromising its secrets.

2. Development data for existing products (DDEP) is available only
internally. Because of pending lawsuits, it must be available to the
company lawyers and officers as well as to the developers. It is kept secret
from all others.

3. Development data for future products (DDFP) is available to the
developers only. The specifications may change, as may various aspects of
development, but the Drib never announces information about products
under development, and does not intend to change this style of operation.

4. Corporate data (CpD) includes legal information that is privileged and
information about corporate actions that is not to become known publicly
(such as actions that may affect stock values). The corporate officials and
lawyers need access to this information; no one else does.

5. Customer data (CuD) is data that customers supply, such as credit card
information. The Drib protects this data as strongly as it protects its own data.

Data may change from the DDFP class to the DDEP class as products become
implemented; from the DDEP class to the PD class when deemed advantageous to
publicize some development details; and from the CpD class to the PD class as priv-
ileged information becomes publicly known through mergers, lawsuit filings, or the
ordinary course of business. There is no provision for revealing CuD directly; this
protects the privacy of the Drib’s customers.

1 See Section 12.2.1, “Principle of Least Privilege.”
2 See Section 12.2.5 , “Principle of Open Design.”

Bishop.book Page 489 Tuesday, September 28, 2004 1:46 PM

490 Chapter 23 Network Security

23.2.2 User Classes

Four classes of people may access data. The user classes are based on the same prin-
ciples as the classes of data: separation of privilege3 and least privilege.4 Some users
may be placed in multiple classes. If so, an underlying assumption of the model is
that they will not bypass the restrictions by copying data from one class to another
without using the mechanisms provided for that purpose.

1. Outsiders (members of the public) get access to some of the Drib’s data
such as prices, product descriptions, and public corporate information. The
public can also order merchandise, download new drivers for their
dribbles, and send electronic mail to the company.

2. Developers get access to both classes of development data. They cannot
alter development data for existing products because that data describes
how to manufacture the product. It also provides a historical record for use
in developing new products. Developers can modify development data for
future products, however.

3. Corporation executives (corporation counsel, members of the board of
directors, and other executives) get access to corporate data. They can see
development data for both existing and future products but may not alter it.
They may read customer data (for legal purposes or analysis). Under specific
conditions (described below), they may make sensitive data public.

4. Employees get access to customer data only.

The following table summarizes the access that each class of users has to each
class of data. This table is an access control matrix5 and defines the access control pol-

3 See Section 12.2.6, “Principle of Separation of Privilege.”
4 See Section 12.2.1, “Principle of Least Privilege.”

Outsiders Developers Corporation executives Employees

Public data read read read read

Development
data for existing
products

read read

Development
data for future
products

read, write read

Corporate data read, write

Customer data write read read, write

5 See Chapter 2, “Access Control Matrix.”

Bishop.book Page 490 Tuesday, September 28, 2004 1:46 PM

23.2 Policy Development 491

icy. It reflects a mandatory access control policy6; the discretionary component is fixed
at “allow always.” This matrix combines elements of confidentiality7 and integrity.8

Left as an implementation detail is the security officer who puts people and data into
the appropriate classes (see Exercise 1).

Specific classes of people can move data from one class to another, as indi-
cated above. The specific transformation rules are as follows.

• The developers must propose that a proposed future product be realized.
Corporation executives must determine if the proposed action is wise,
from both legal and economic standpoints. Hence, both developers and
corporation executives must agree to reclassify data from the DDFP class
to the DDEP class.

• The employees may identify certain development data as important for
answering technical questions from outsiders, or for market literature. In
these cases, the employees notify the corporation executives, who then
decide whether or not to make the information public. Both employees and
corporation executives must agree to reclassify data from the DDEP class
to the PD class.

• Corporation executives may reveal corporate data in filings or when
revealing that the data will not harm the company. Thus, they can
reclassify data from CpD to PD. However, at least two members must
agree to do the reclassification.

The principle of separation of privilege9 dictates that moving data from one
class to another requires approval of more than one user. In the first two cases, the
users must come from separate classes because the data involved may reveal internal
information that would be of use to a competitor. (Two users in different classes may
be the same user in two different roles.10 Hence, the requirement for two different
users.) The third case involves corporate business, usually in legal matters (such as
lawsuits or stock filings). In this case, the Drib lawyers (all of whom are in the “cor-
porate executive” user class) have the expertise to determine what must be revealed,
and because the consequences may involve criminal charges, the lawyers and corpo-
rate executives must make the decisions. Because the Drib is a well-run company,
they will obtain the appropriate information and recommendations from people in
the other user classes as required. However, the requirement that the two members be
in the corporate executive class is an acknowledgment of the responsibility of the
corporate executives.

6 See Section 4.4, “Types of Access Control.”
7 See Chapter 5, “Confidentiality Policies.”
8 See Chapter 6, “Integrity Policies.”
9 See Section 12.2.6, “Principle of Separation of Privilege.”

10 See Section 13.4, “Groups and Roles.”

Bishop.book Page 491 Tuesday, September 28, 2004 1:46 PM

492 Chapter 23 Network Security

23.2.3 Availability

The Drib is a world-wide, multinational corporation and does business on all seven
continents (although its Antarctic operation is quite small). Orders come from all
over the world. Thus, the corporate officers want employees and the public to be able
to contact the Drib at any time. In practice, this means that the Drib’s systems must
be available 99% of the time, the remaining 1% being used for planned maintenance
and unexpected downtimes.

23.2.4 Consistency Check

The policy described above should meet the goals of the Drib. Otherwise, it is not an
appropriate policy. We will now review the goals of the policy and discuss consistency.

The first goal is to keep sensitive information confidential, on a “need to
know” basis. Public data is, by definition, not confidential, and is available to all.
Developers clearly need access to both current and future development data, but not
to customer data or corporate information (because they do not decide which prod-
ucts to market). They can alter development data as they investigate possibilities and
test ideas. Corporate executives need access to corporate data to plan business
actions. Some of these actions may be based on development data for existing prod-
ucts; for example, should the Drib invest in a company developing faster CPUs for
the Drib’s products? Hence, corporate executives also need access to development
data for existing products. They can alter corporate data, but not development data.
So, the first goal of the policy is met.

The second goal requires that only employees who handle purchases can
access customer data, and only they and the customers themselves can alter the cus-
tomer data. The policy above provides this restriction.

The third goal is met by the rules for changing security classes. Moving data
from the DDFP class to the DDEP class requires consent of both a developer and a
corporate executive. Moving data from the DDEP class to the PD class requires the
consent of an employee and a corporate executive. Finally, moving data from the cor-
porate class to the public class requires consent of a corporate executive. In all cases,
a corporate executive can prevent the release of company information. Furthermore,
because no other class of users can write public class data, only the corporate execu-
tives can release the information.

Thus, the policy is valid, because it meets the security requirements of the
Drib.11

We next verify the consistency of the policy, to show that it is not self-
contradictory. We construct the transitive closure of all paths along which informa-
tion can flow among the classes. From this closure, it is clear that the only way
information can flow into the public class is when a corporate executive moves it

11 See Section 17.1.2, “The Role of Requirements in Assurance.”

Bishop.book Page 492 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 493

there. Hence, the key point of trust is in the corporate executive class. Without an
executive acting, information simply cannot become public. Furthermore, by the
rules for moving data out of the DDEP and DDFP classes, some other entity beyond
the corporate executives must consent to the release of the information. This satisfies
the principle of separation of privilege as well as the corporate goals. Because there
is no contradiction among the rules in the policy, the policy is self-consistent.

We have now (informally) both validated and verified the policy. Validation
and verification are basic aspects of information assurance12 and provide a basis for
asserting that the policy is correct.

We have now defined the confidentiality, integrity, and availability aspects of
the Drib’s basic security policy. We will now expand this into a simple network
architecture.

23.3 Network Organization

The policy discussed above suggests that the network be partitioned into several
parts, with guards between parts to prevent information from leaking. Each type of
data resides in one of the parts (we combine both types of development data into one
type, DD). The resulting partition is shown in Figure 23–1. This is a fairly standard
corporate network, with one part available to the public and a second part available
only internally.

Definition 23–1. The DMZ13 is a portion of a network that separates a purely
internal network from an external network.

When information moves from the Internet to the internal network, confiden-
tiality is not at issue. However, integrity is. The guards14 between the Internet and the
DMZ, and between the DMZ and the internal network, must not accept messages
that will cause servers to work incorrectly or to crash. When information moves from
the internal network to the Internet, confidentiality and integrity are both at issue.
The firewalls must ensure that no confidential information goes to the Internet and
that the information that reaches the Internet is correct.15 The latter issue requires
simply that information not be altered in transit from the internal network to the
Internet. For simplicity, we make the assumption that the systems as deployed will
not change any information in transit (except delivery information, such as packet
headers). If such changes are made, then the system has been compromised by an

12 See Chapter 17, “Introduction to Assurance.”
13 “DMZ” stands for “demilitarized zone.”
14 For example, see the Secure Mail Guard (Section 15.4.2). The guards discussed here are
called “firewalls” (see Section 23.3.1).
15 See Chapter 15, “Information Flow.”

Bishop.book Page 493 Tuesday, September 28, 2004 1:46 PM

494 Chapter 23 Network Security

attacker. This would require the attacker to gain access to the system. This is equiva-
lent to the problem of disallowing certain types of information (namely, attack mech-
anisms) from entering the internal or DMZ subnets from the Internet—in other
words, ensuring the integrity of this information.16

The arrangement and configuration of the firewalls provide the supporting
access control mechanisms used to implement the policy.17

23.3.1 Firewalls and Proxies

The “guards” mentioned above perform access control in both directions,18 to and
from the Drib’s network.

Definition 23–2. A firewall is a host that mediates access to a network, allow-
ing and disallowing certain types of access on the basis of a configured secu-
rity policy.

16 See Chapter 20, “Vulnerability Analysis.”
17 See Chapter 15, “Information Flow.”
18 See Chapter 14, “Access Control Mechanisms.”

Outer firewall
DMZ

Web server

Mail server

DNS server

Inner firewall

Corporate data subnet Customer data subnet

Development subnetInternal Internal
mail serverDNS server

Figure 23–1 The network designed for the Dribble Corporation. The “outer
firewall” sits between the Internet and the company network. The subnet
labeled “DMZ” provides limited public access to various servers. The “inner
firewall” sits between the DMZ and the subnets that are not to be accessed by
the public. These subnets share common mail and DNS servers that, like the
other hosts, are not publicly accessible.

INTERNAL

Internet

Bishop.book Page 494 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 495

EXAMPLE: A company wishes to prevent any implementations of Back Orifice from
allowing outsiders to control their systems. Back Orifice is an attack tool that acts as
a remote system administration server, usually illicitly. It requires commands to be
sent to a particular port (the exact port number is a configuration parameter; for our
purposes, suppose it is 25345). The company can install a firewall that will not allow
any messages with destination port number 25345 to pass from the Internet into the
corporate network. This prevents messages from accessing any installed copies of
Back Orifice. (Of course, if Back Orifice were configured to use port 22222, this par-
ticular firewall would not block such messages.)

This firewall accepts or rejects messages on the basis of external information,
such as destination addresses or ports, rather than on the basis of the contents of the
message.

Definition 23–3. A filtering firewall performs access control on the basis of
attributes of the packet headers, such as destination addresses, source
addresses, and options.

Routers and other infrastructure systems are typical examples of filtering fire-
walls. They allow connections through the firewall, usually on the basis of source
and destination addresses and ports. Access control lists provide a natural mecha-
nism for representing these policies.19

This contrasts with the second type of firewall, which never allows such a
direct connection. Instead, special agents called proxies control the flow of informa-
tion through the firewall.

Definition 23–4. A proxy is an intermediate agent or server that acts on
behalf of an endpoint without allowing a direct connection between the two
endpoints.

Definition 23–5. A proxy (or applications level) firewall uses proxies to per-
form access control. A proxy firewall can base access control on the contents
of packets and messages, as well as on attributes of the packet headers.

A proxy firewall adds to a filtering firewall the ability to base access on con-
tent, either at the packet level or at a higher level of abstraction.

EXAMPLE: A company wishes to check all incoming electronic mail for computer
viruses. It implements a mail proxy at the firewall between the Internet and the com-
pany intranet. The proxy has a virus scanning program (see Section 19.6.4, on pages
382–383). When mail arrives at the firewall, the proxy mail daemon accepts the mail.
It then runs the virus scanner. If the scanner reports that there are no viruses in the

19 See Section 14.1, “Access Control Lists.”

Bishop.book Page 495 Tuesday, September 28, 2004 1:46 PM

496 Chapter 23 Network Security

mail or in any associated attachments, the proxy forwards the mail to the desired
recipient. If the virus scanner reports that the mail or an attachment contains a
virus, the mail is discarded (or some other appropriate action is taken). The fact
that the electronic mail message is reassembled at the firewall by a mail agent
acting on behalf of the mail agent at the ultimate destination makes this a proxy
firewall.

A different point of view is to see the firewall as an audit mechanism.20 It ana-
lyzes the packets that enter. Firewalls can then base actions on this analysis, leading
to traffic shaping (in which percentages of bandwidth are reserved for specific types
of traffic), intrusion response,21 and other controls.

With these definitions in mind, the reason for this structure of the network
falls into place.

23.3.2 Analysis of the Network Infrastructure

The benefits of this design flow from the security policy and the principle of least
privilege. The security policy distinguishes “public” entities from those internal to
the corporation, but recognizes that some corporate resources must be available to
the public. The network layout described above provides this functionality. The pub-
lic entities may enter the corporate perimeter (bounded by the “outer firewall”) but
are confined to the DMZ area (bounded inside by the “inner firewall”). The next few
paragraphs give an overview of the technical details of this arrangement. We then
expand on the configurations of the infrastructure systems.

The key decision is to limit the flow of information from the internal network
to the DMZ. The public cannot communicate directly with any system in the internal
network, nor can any system in the internal network communicate directly with other
systems on the Internet (beyond the “outer firewall”). The systems in the DMZ serve
as mediators, with the firewalls providing the guards. This setup is derived from the
notion of the “pump” (see page 304 in Section 16.3.2). The firewalls and the DMZ
systems make up the pump, because they control all access to and from the Internet
and filter all traffic in both directions.

The first step is to conceal the addresses of the internal network. In general,
the internal network addresses can be any IP addresses (the families of addresses
specifically allocated to private networks are 10.x.y.z, 172.a.x.y (where16 < a < 31),
and 192.168.x.y22 [749]), and the inner firewall can use a protocol such as the Net-
work Address Translation protocol [864] to map these internal host addresses to the
firewall’s Internet address. A more common method is to assign each host an address
but not allow those addresses to leave the corporate network. This is particularly

20 See Chapter 21, “Auditing.”
21 See Section 22.6, “Intrusion Response.”
22 In classless IP terminology, 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.

Bishop.book Page 496 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 497

simple, because all services are implemented as proxies in the outer firewall. How-
ever, electronic mail presents a special problem.

The DMZ mail server must know an address in order for the internal mail
server to pass mail back and forth. This need not be the actual address of the internal
mail server. It could be a distinguished address that the inner firewall will recognize
as representing the internal mail server. Similarly, the internal mail server must know
an address for the DMZ mail server. These addresses can be fixed (in which case the
DMZ DNS server is unnecessary). For flexibility, we will assume that the Drib has
decided to use a DNS server on both the internal and DMZ subnets. As a backup,
each system in the DMZ has the network addresses of both firewalls stored locally,
so if the DNS system is unavailable, the other servers can function.

The Web server lies in the DMZ for the same reasons that a mail server lies in
the DMZ. External connections to the Web server go into the DMZ and no farther. If
any information is to be transmitted from the Web server to the internal network (for
example, the customer data subnet), the transmission is made separately, and not as
part of a Web transaction.

This network organization reflects several of Saltzer and Schroeder’s design
principles [773]. The containment of internal addresses reflects the principle of least privi-
lege23 as well as the Drib’s solution to the confinement problem.24 The inner firewall
mediates every access involving the DMZ and the internal networks, meeting the
principle of complete mediation.25 Going out of the inner network to the Internet
requires that several criteria be met, to implement the principle of separation of priv-
ilege.26 The firewalls are distinct computers, as are the DMZ servers, leading to a
duplication rather than a sharing of network services. If the mail server stops work-
ing, for example, the WWW server is not affected. The principle of least common
mechanism27 suggests this design. The shared DNS server in the DMZ violates this
principle, because multiple systems are affected if it is corrupted or unavailable. The
reason for the local, fixed addresses of the two firewalls is to handle the case of
unavailability, mitigating this threat. Finally, the applications of confinement, access
control,28 and information flow control29 have been discussed earlier.

We now examine each component in more detail.

23.3.2.1 Outer Firewall Configuration
The goals of the outer firewall are to restrict public access to the Drib’s corporate net-
work and to restrict the Drib’s access to the Internet. This arises from the duality of
information flow.30 In the Bell-LaPadula Model,31 for example, one cannot read

23 See Section 12.2.1, “Principle of Least Privilege.”
24 See Definition 15-1.
25 See Section 12.2.4, “Principle of Complete Mediation.”
26 See Section 12.2.6, “Principle of Separation of Privilege.”
27 See Section 12.2.7, “Principle of Least Common Mechanism.”
28 See Chapter 14, “Access Control Mechanisms.”
29 See Chapter 15, “Information Flow.”
30 See Chapter 15, “Information Flow.”
31 See Section 5.2, “The Bell-LaPadula Model.”

Bishop.book Page 497 Tuesday, September 28, 2004 1:46 PM

498 Chapter 23 Network Security

information from a higher level (here, by restricting public access to the Drib’s net-
work), but one cannot write information to a lower level, either (here, by restricting
the Drib’s employees’ access to the Internet). Certain sanitized exchanges, however,
are allowed. To implement the required access control, the firewall uses an access
control list,32 which binds source addresses and ports and destination addresses and
ports to access rights.

The public needs to be able to access the Web server and mail server, and no
other services. The firewall therefore presents an interface that allows connections to
the WWW services (HTTP and HTTPS) and to electronic mail (SMTP). Sites on the
Internet see the addresses of the Web and mail servers as the same—that of the fire-
wall. No other services are provided to sites on the Internet.

The firewall is a proxy-based firewall. When an electronic mail connection is
initiated, the SMTP proxy on the firewall collects the mail. It then analyzes it for
computer viruses and other forms of malicious logic. If none is found, it forwards the
mail to the DMZ mail server. When a Web connection (or datagram) arrives, the fire-
wall scans the message for any suspicious components (such as extraordinarily long
lines or other evidence of attacks) and, if none is found, forwards it to the DMZ Web
server. These two DMZ servers have different addresses, neither of which is the
address of the firewall.

Attackers trying to penetrate the firewall have three methods of entry. The first
is to enter through the Web server ports. The unsecured (HTTP) port proxy checks
for invalid or illegal HTTP requests and rejects them. The second is to enter through
the SMTP port. The mail proxy will detect and reject such attempts. The third is to
attempt to bypass the low-level firewall checks by exploiting vulnerabilities in the
firewall itself.

The discussion of vulnerabilities in Chapter 20, “Vulnerability Analysis,”
implies that there is no way to ensure that the firewall software and hardware cannot
be breached. Designing the firewall mechanisms to be as simple as possible, in
accordance with the principle of economy of mechanism,33 using assurance tech-
niques minimizes, but does not eliminate, this possibility. So we apply the principle
of separation of privilege34 in the form of a technique called “defense in depth.” In
order to attack a system in the DMZ by bypassing the firewall checks, the attacker
must know something about the internal addresses of the DMZ. If, for example, the
attacker knows that the internal address of the DMZ mail server is 10.34.231.19, the
attacker may be able to use that information to piggyback packets to that host.35 But
if the attacker has no idea of the internal DMZ mail server’s address, even if the

32 See Section 14.1, “Access Control Lists.”
33 See Section 12.2.3, “Principle of Economy of Mechanism.”
34 See Section 12.2.6, “Principle of Separation of Privilege.”
35 The description here is vague out of necessity. Whether or not such a method exists, and how
to exploit it, are properties of individual hosts, software, and vendors. The curious reader is
invited to use the Flaw Hypothesis Methodology (see Section 20.2.4) to analyze his or her
organization’s firewall after obtaining written permission from the responsible officials.

Bishop.book Page 498 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 499

attacker is able to bypass the firewall checks, he or she will not know where to have
the packets sent.

23.3.2.2 Inner Firewall Configuration
The internal network is where the Drib’s most sensitive data resides. It may contain
data, such as proprietary information, that the Drib does not want outsiders to see.
For this reason, the inner firewall will block all traffic except for that specifically
authorized to enter (the principle of fail-safe defaults36). All such information will
come from the DMZ, and never directly from the Internet.

EXAMPLE: The Drib uses the Network File System (NFS) protocol to share files
among its systems. The NFS protocol (see Section 21.6.1) sends the contents of files
around a network. Were any of these packets containing sensitive information to leak to
the Internet, the Drib would be compromised. The outer firewall is configured to disal-
low NFS packets from leaking to the Internet. However, the principle of least privilege
says that, unless hosts in the DMZ require access to the internal NFS information, the
packets should not even reach the DMZ. Furthermore, the principle of separation of
privilege says that multiple mechanisms should prevent NFS packets from leaking to
the Internet. If one mechanism fails, the others will still prevent the leak. Hence, the
inner firewall should also disallow NFS packets from going to the DMZ.

Like the outer firewall, the inner firewall allows a limited set of traffic through
(using the same type of access control mechanism as does the outer firewall). It allows
SMTP connections using proxies, but all electronic mail is sent to the DMZ mail server
for disposition. It allows limited transfer of information to the DNS server in the DMZ.
It also allows system administrators to access the systems in the DMZ from a trusted
administrative server. All other traffic, including Web access, is blocked.

The administrator’s connection uses the Secure Shell (SSH) protocol and differs
from the other protocols in that a direct connection through the SSH port is allowed
(that is, no SSH proxies). This allows the address of the administrative server to leave
the internal network. However, the firewall filter ensures that the SSH connection can
go only to one of the DMZ servers. This use of cryptography provides message secrecy
and integrity as well as strong (cryptographic) authentication of the endpoints.37 Because the
requisite public keys are embedded into the system when SSH is configured, the issue
of an infrastructure for public key distribution38 is finessed.

The access allowed to system administrators violates the principle of least
privilege,39 because the connection allows the administrators full control over the
DMZ systems. Several precautions ameliorate this violation. First, if the connection

36 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
37 See Chapter 8, “ Basic Cryptography,” and Chapter 10, “Cipher Techniques.”
38 See Section 9.3, “Cryptographic Key Infrastructures.”
39 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 499 Tuesday, September 28, 2004 1:46 PM

500 Chapter 23 Network Security

to the systems in the DMZ does not originate from a special system in the internal
network (dubbed the “administrative server”), the firewall will disallow the connec-
tion. Second, the Drib trusts its system administrators, so only trusted users will be
allowed unrestricted access to the DMZ servers. Third, the administrators can use the
SSH protocol only to connect to the DMZ servers, and all administrative traffic is
protected using SSH. This means that an attacker would not only have to spoof the
internal network host addresses, but also find the correct set of cryptographic keys.
Although not perfect, these precautions reduce the risk of compromise.

23.3.3 In the DMZ

Four servers reside in the DMZ. They are the mail, WWW, DNS, and log servers. We
will discuss these servers separately.

23.3.3.1 DMZ Mail Server
The mail server in the DMZ performs address and content checking on all electronic
mail messages. The goal is to hide internal information from the outside while being
transparent to the inside. When the mail server receives a letter from the Internet, it
performs the following steps.

1. The mail proxy reassembles the message into a set of headers, a letter, and
any attachments. The attachments are assembled into their native form
(not the form used to transmit them through electronic mail). This allows
the mail server to work on the original mail, as opposed to a packetized
form of the letter. It simplifies the checking.

2. The mail proxy scans the letter and attachments, looking for any “bad”
content. “Bad” content here is defined as a computer virus or known
malicious logic. The attachments are then restored to the form used to
transmit them through electronic mail. The headers, the letter, and the
attachments are rescanned for any violation of the SMTP specification.
This is the basic content checking. Any binary data (which might indicate
a buffer overflow or other attack) is weeded out, as are excessively long
lines.40 Although address lines are limited in length to 1,000 characters,
the mail proxy will split them as needed to keep lines less than 80
characters long. The scanning also detects and eliminates known malicious
logic (computer viruses and worms, logic bombs, and so forth). The analy-
sis of content for malicious logic uses standard techniques.41

40 See Chapter 20, “Vulnerability Analysis.”
41 See Section 19.6.4, “Malicious Logic Altering Files.”

Bishop.book Page 500 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 501

3. The mail proxy scans the recipient address lines. The addresses that
directed the mail to the Drib are rewritten to direct the mail to the internal
mail server. The DMZ mail server then forwards the mail to the internal
mail server. This step forwards the mail to the Drib’s internal network, on
which it will be delivered. Identification is by host name and not user
name,42 because the mail server determines the identity of the correct host
to forward the mail to on the basis of host name, not user name.

The procedure for sending mail out of the Drib is similar. All outgoing mail
comes from the internal mail server. Steps 1 and 2 are the same (although the content
checking in step 2 may be enhanced to detect keywords such as “proprietary”). But
the sanitization for step 3 is different.

3.́ The mail proxy scans the header lines. All lines that mention internal hosts
are rewritten to identify the host as “drib.org,” the name of the outside
firewall. All header lines must be checked. In addition to the source
address lines, any “Received” lines are to be removed, and any
destinations that name the Drib must also be changed. Following this
sanitization, the letter is forwarded to the firewall for delivery. This step
forwards the mail to the Internet after hiding all details of the Drib’s
networks. This idea comes from the principle of least privilege,43 because
those who do not need to know about the internals of the Drib’s network
do not get that information.

The primary goals of the mail server are to handle mail and to perform all
needed checks and sanitization. This way, the firewalls only need to perform rudi-
mentary checks (such as checks on line length and character type) and leave the
detailed checking to the mail servers.

The DMZ mail server also runs an SSH server. This server is configured to accept
connections only from the trusted administrative host in the internal network. This allows
the system administrators to configure and maintain the DMZ mail host remotely (a great
convenience) without unnecessarily exposing that host to compromise.

23.3.3.2 DMZ WWW Server
The Web server accepts and services requests from the Internet. It does not contact any
servers or information sources within the internal network. This means that if the Web
server is compromised, the compromise cannot affect internal hosts. Although the
Web server runs CGI scripts, the scripts have been checked for potential attacks and
hardened to prevent their success.44 The server itself contains no confidential data.

42 See Section 13.6.1, “Host Identity.”
43 See Section 12.2.1, “Principle of Least Privilege.”
44 See Chapter 20, “Vulnerability Analysis,” and Chapter 26, “Program Security.”

Bishop.book Page 501 Tuesday, September 28, 2004 1:46 PM

502 Chapter 23 Network Security

The Web server also identifies itself as “www.drib.org” and uses the IP address
of the outside firewall. This hides part of the DMZ configuration in accordance with the
principle of least privilege45 (because people outside the network need not know the
address), and forces external entities to send Web traffic to the firewall.

A system in the internal network known as the “WWW-clone” is used to
update the DMZ Web server. People authorized to update the Drib’s Web page can
access this system. Periodically (or on request), an administrator will copy the con-
tents of the WWW-clone to the DMZ Web server (see Section 24.7.1). This follows
from the principle of separation of privilege,46 because any unauthorized changes in
the Web server are mitigated by the updates. Like the mail server, the WWW server
also runs an SSH server for maintenance and updating. The server provides the
cryptographic support necessary to ensure confidentiality and data and origin integrity.47

The Drib accepts orders for its merchandise through the Web. The data
entered by the consumer is saved to a file. After the user confirms an order, the Web
server invokes a simple program that checks the format and contents of the file and
creates an enciphered version of the file using the public key of a system on the inter-
nal customer subnet. This file resides in a spooling area that is not accessible to the
Web server (see Exercise 3). The program deletes the original file. This way, even if
the attacker can obtain the file, the attacker cannot determine the order information
or credit card numbers associated with customers. Indeed, because the customer
names are in the enciphered files, the attacker cannot even determine the names. For-
mally, not keeping valuable information online and in the clear follows from the
principle of least privilege,48 because the users of that machine are not authorized to
read the data, and from the principle of separation of privilege,49 because the crypto-
graphic key is needed to read the data. Using public key cryptography means that
only a public key need be on the DMZ Web server. This prevents an attacker from
deciphering the data on that system should it be compromised, which is an applica-
tion of the principle of fail-safe defaults.50

The internal trusted administrative server periodically connects to the Web
server using the SSH protocol, uploads the enciphered order files, and transmits them
to the appropriate system on the internal customer subnet. The SSH server on the
Web server is configured to reject connections from any host other than the trusted
internal administrative server, so an attacker cannot connect from outside (assuming
the attacker is able to penetrate the outer firewall). The principle of denying unknown
connections, rather than allowing them and then authenticating them, follows the
principle of fail-safe defaults.51

45 See Section 12.2.1, “Principle of Least Privilege.”
46 See Section 12.2.6, “Principle of Separation of Privilege.”
47 See Chapter 8, “Basic Cryptography,” and Chapter 10, “Cipher Techniques.”
48 See Section 12.2.1, “Principle of Least Privilege.”
49 See Section 12.2.6, “Principle of Separation of Privilege.”
50 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
51 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 502 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 503

23.3.3.3 DMZ DNS Server
The DMZ DNS host contains directory name service information about those hosts
that the DMZ servers must know. It contains entries for the following.

• DMZ mail, Web, and log hosts
• Internal trusted administrative host
• Outer firewall
• Inner firewall

Note that the DNS server does not know the addresses of the internal mail
server. The inner firewall will forward mail to that server. The DMZ mail server need
only know the addresses of the two firewalls (for mail transfers), and the trusted
administrative server. If the mail server knows the address of the DNS server, it can
obtain these three addresses. This gives the internal network the flexibility to rear-
range its host addressing. The DMZ DNS server must be updated only if the address
of the internal trusted administrative host is changed.

The limited information in the DNS server reflects the principle of least privi-
lege,52 because those entries are sufficient for the systems in the DMZ.

23.3.3.4 DMZ Log Server
The log server performs an administrative function. All DMZ machines have logging
turned on. In the event of a compromise (or an attempted compromise), these logs
will be invaluable in assessing the method of attack, the damage (or potential dam-
age), and the best response. However, attackers can delete logs, so if the logs were on
the attacked machines, they might be tampered with or erased.

The Drib has located a fourth server in the DMZ. All other servers log mes-
sages by writing them to a local file and then to the log server. The log server also
writes them to a file and then to write-once media, which is a precaution in case
some attacker is able to overwrite log files on both the target server and the log
server. It is also an application of the principle of separation of privilege.53

The log system is placed in the DMZ to confine its activity.54 It never initiates
transfer to the inner network. Only the trusted administrative host does that, and then
only if the administrators choose not to read logs by reading the media on which the
logs reside.

Like the other servers, the log server accepts connections from the internal
trusted administrative host. Administrators can view the logs directly, or they can
replace the write-once media with another instance of the media and read the
extracted media directly. The use of write-once media is an example of applying the

52 See Section 12.2.1, “Principle of Least Privilege.”
53 See Section 12.2.6, “Principle of Separation of Privilege.”
54 See Chapter 16, “Confinement Problem.”

Bishop.book Page 503 Tuesday, September 28, 2004 1:46 PM

504 Chapter 23 Network Security

principle of least privilege55 and fail-safe defaults,56 because the media cannot be
altered; they can only be destroyed, and then only if the attacker has physical access
to the system.

23.3.3.5 Summary
Each server has the minimum knowledge of the network necessary to perform its
task. This follows the principle of least privilege. Compromise of the servers on these
systems will restrict the transfer of information, but will not lead to compromise of
the systems on the internal network.

Ideally, the operating systems of the server computers should be very small
kernels that provide only the system support services necessary to run the appropri-
ate servers. In practice, the operating systems are trusted operating systems (devel-
oped using assurance techniques,57 or—more commonly—commercial operating
systems in which all unnecessary features and services have been disabled. This min-
imizes the operations that a server can perform on behalf of a remote process. Hence,
even if the server is compromised, the attacker cannot use it to compromise other
hosts such as the inner firewall.

The use of proxies on the firewalls prevents direct connections across the fire-
walls. Moreover, the data passing through the firewalls can be checked and, based on
the content, filtered or blocked. The only exception is the SSH connection from the
internal network to the DMZ. The inner firewall checks the origination of the con-
nection, to ensure that it comes from the internal administrative host, and the destina-
tion, to ensure that it goes to one of the servers.

23.3.4 In the Internal Network

The internal network may be organized in several ways. Each of the subnets may have its
own firewall and its own server, and may filter traffic just as the inner firewall does. The
subnets may share servers. If the primary goal is to guard the Drib’s internal data from
being stolen by an outside attacker, what goes on behind the inner firewall is irrelevant.

The Drib’s policy imposes the opposite requirement. The subnets must guard
against unauthorized access to information as dictated by the policy. For these pur-
poses, “read” corresponds to fetching or retrieving a file, and “write” corresponds to
putting or depositing a file. For the moment, we ignore electronic mail, updating of
Web pages on the DMZ, and the internal administrative host.

The constraints on information flow58 dictate the arrangement of the network.
The firewalls impose the confinement59 required at the interfaces.

55 See Section 12.2.1, “Principle of Least Privilege.”
56 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
57 See Chapter 17, “Introduction to Assurance.”
58 See Chapter 15, “Information Flow.”
59 See Chapter 16, “Confinement Problem.”

Bishop.book Page 504 Tuesday, September 28, 2004 1:46 PM

23.3 Network Organization 505

The data and users are distributed among the three subnets of the internal net-
work in the obvious way. The firewall on the developer network allows read access
from the corporate network but blocks write access to all other subnets. The firewall
on the corporate network does not allow read or write access from the other net-
works. The firewall for the customer subnet allows read access from the corporate
network. It also allows write access for information placed by the public onto the
DMZ Web server. However, the write access is constrained to be mediated only by
the DMZ Web server and the inner firewall, so the public does not have unrestricted
access. These firewalls may be proxy firewalls or filtering firewalls.

The internal mail server must be free to communicate with hosts behind each
of the subnet firewalls. Either the subnet may have its own mail server, or the internal
mail server can deliver mail directly to each host on the subnets. The former has the
advantage of flexibility, because the internal DNS server need only know the
addresses of the subnet firewalls and (possibly) the mail servers. Thus, other host
addresses can be changed freely within each subnet. The latter requires the internal
DNS to have the addresses of all hosts on the internal network, but is simpler to con-
figure and maintain. Either arrangement will satisfy the Drib’s policy.

In addition to the mail server, an internal Web server provides a staging area
for the Drib’s Web pages. All internal firewalls allow both read and write access to
this server. (The server itself controls the specific access that individuals have to each
Web page.) The DMZ Web server’s pages are synchronized with the Web pages on
this server by using the trusted internal administrative host. This provides a test bed
for changes in the pages, so corporate and other internal personnel can review and
approve changes before they are made visible to the public. Furthermore, if the DMZ
Web server is ever compromised, the Web pages can be restored very quickly.

Finally, the trusted internal administrative server has strict access rules: only
system administrators authorized to administer the DMZ systems have access to it.
All connections to the DMZ through the inner firewall must use this server, except
for the mail server and (possibly) the DNS server. The server itself uses SSH to
access systems in the DMZ, and the DMZ servers recognize it as the only host autho-
rized to access their SSH daemons. This prevents a user on the internal network from
sending SSH commands from a local workstation to DMZ servers.

With respect to the internal network, the DMZ servers know only about the
inner firewall’s address and the trusted administrative host’s address, by the principle
of least privilege.60 The DMZ servers never communicate directly with the internal
servers. They instead send information to the firewall, which routes the messages
appropriately. DMZ servers accept only incoming SSH connections from the trusted
administrative host. These connections use public key authentication to establish
identity,61 so an attacker cannot forge addresses.

This arrangement is layered with checks. A single action affecting a host on
the DMZ requires that several tests be passed (implementing the principle of separa-
tion of mechanism). Only a few administrators can alter or update systems on the

60 See Section 12.2.1, “Principle of Least Privilege.”
61 See Section 8.3, “Public Key Cryptography,” and Section 13.6.1, “Host Identity.”

Bishop.book Page 505 Tuesday, September 28, 2004 1:46 PM

506 Chapter 23 Network Security

DMZ. In general, the only data in the DMZ that nonadministrators can alter is the
data in the Web pages. However, the alterations occur on a copy on the internal net-
work. An administrator must invoke special functions to move the updated pages to
the Web server on the DMZ.

The only data that is written from the DMZ to the internal network comes
from customer orders, but the data so received has been checked for potential errors
(or deliberately corrupt data), is enciphered, and is transferred to an internal machine
in such a way that it cannot be executed. This applies the analysis techniques for ana-
lyzing existing systems62 and developing systems with some level of assurance.63

This again limits the ability of an attacker to use this data to attack systems on the
internal network.

23.3.5 General Comment on Assurance

All of the defenses discussed above depend on software that has been written defen-
sively. This is particularly true of software on the firewalls. Although the amount of
software running on the firewalls is minimized, and the software is written to per-
form only necessary functions and has been extensively audited and tested, the Drib
defensive mechanisms all trust that the software is correct and cannot be compro-
mised. If this trust is misplaced, the defensive mechanisms can be breached. This is
another reason why the configuration of servers and firewalls is based extensively on
the principle of separation of mechanism. If one mechanism fails, another may pre-
vent the attacker from exploiting that failure.

A similar remark applies to hardware. Suppose the network interface card
connected to the Internet never cleared its buffer. An attacker could craft a packet
that contained data of the form of a legal packet addressed to an interior system. The
containing packet would be validated as allowed to go to the interior network and
then would be passed to the interior network. The next packet would be short enough
to overwrite the contents of the buffer from the beginning up to the data in the form
of the valid packet. If the card then flushed the contents of its buffer to the inside net-
work, the legal but unvalidated packet would be sent on, too. (See Exercise 2.) The
separation of mechanism inherent in a proxy firewall hinders attacks based on fail-
ures in single network cards, but other types of malfunctions may allow other
attacks.

Assurance at all levels is important. Here, the informal policy model of the
Drib (see Section 23.2) guides the design of the network architecture as well as the
analysis of the software and hardware configurations. Infrastructure, software, and
hardware all provide the basis for claims that the network actually enforces the pol-
icy model correctly.

62 See Chapter 20, “Vulnerability Analysis.”
63 See See Chapter 17, “Introduction to Assurance.”

Bishop.book Page 506 Tuesday, September 28, 2004 1:46 PM

23.4 Availability and Network Flooding 507

23.4 Availability and Network Flooding

The availability component of the Drib’s policy requires that the systems must be
available to the public and to Drib personnel. This means that access over the Inter-
net must be unimpeded. We consider this in the context of flooding attacks, in which
attackers attempt to overwhelm system resources.

The SYN flood is the most common type of flooding attack. It occurs when
incoming connections repeatedly refuse to execute the third part of the TCP three-
way handshake (see page 437). This is a denial of service attack. If the packets come
from multiple sources but have the same destination, this is an example of a distrib-
uted denial of service attack. The source address of these SYN packets is typically
set to some unreachable host. This prevents the third part of the handshake from
being executed, and prevents the attacked systems from determining the attacker by
reading the source address from the SYN packet.

In what follows, the term “legitimate handshake” refers to a connection
attempt that is not part of a SYN flood. If the client in a legitimate handshake
receives the SYN/ACK packet from the server, it will respond with the appropriate
ACK to complete the handshake and begin the connection. The term “attack hand-
shake,” on the other hand, refers to a connection attempt that is part of a SYN
flood. The client in an attack handshake will never send an ACK packet to com-
plete the handshake. A critical observation is that the server cannot distinguish
between a legitimate handshake and an attack handshake. Both follow the same
steps. The only difference lies in whether the third part of the handshake is sent
(and received).

There are two aspects of SYN flooding. The first is the consumption of band-
width. If the flooding is more than the capacity of the physical network medium, or
of intermediate nodes, legitimate handshakes may be unable to reach the target. The
second is the use of resources—specifically, memory space—on the target. If the
flooding absorbs all the memory allocated for half-open connections, then the target
will discard the SYN packets from legitimate handshake attempts.

We focus on the second aspect, because the first involves infrastructure ele-
ments not under the control of the Drib. First, we consider defenses that do not
involve the target system. Then we examine the target system.

23.4.1 Intermediate Hosts

This approach tries to reduce the consumption of resources on the target by using
routers to divert or eliminate illegitimate traffic. The key observation here is that the
SYN flood is handled before it reaches the firewall, at the infrastructure level. The
goal is to have only legitimate handshakes reach the firewall.

Bishop.book Page 507 Tuesday, September 28, 2004 1:46 PM

508 Chapter 23 Network Security

EXAMPLE: Cisco routers can use “TCP intercept mode” to implement this approach
[414]. When the router sees a SYN packet coming from the Internet, it does not for-
ward the packet to its destination. Instead, the router responds, and tries to establish
the connection. If the SYN packet is part of a legitimate handshake and a connection
is established, the router establishes a connection with the intended destination and
“merges” the two connections. If the SYN packet is part of an attack handshake, the
router never sees a following ACK packet, and times the pending connection out
without ever contacting the putative destination. The router uses short time-outs to
ensure it does not run out of space for pending connections. The TCP intercept fea-
ture may be set either on a per-host basis or for all hosts on the Internet.

An alternative is to have a system monitor the network traffic and track the
state of the three-way handshake.

EXAMPLE: Synkill [801] is an active monitor that analyzes packets being sent to
some set of systems to be protected. It classifies IP addresses as never seen (null), not
flooding (good), flooding (bad), or unknown (new). Initially, a set of IP addresses
may be put into these classes. As synkill monitors the network, it adds addresses to
each class.

When synkill sees an SYN packet, it checks the IP address. If that address is
bad, synkill immediately sends an RST to the destination. This terminates the pend-
ing connection. If the IP address is good, synkill ignores the packet. If the IP address
has not yet been seen, it is classified as new. A subsequent ACK or RST packet from
the new address will cause the address to be added to the list of good addresses,
because its behavior is correct, but if no such packet is seen for a specified expiry
period of time, the new address is assumed to be attempting a SYN flood and is
moved into the bad set of IP addresses, and an RST is sent to the destination.

If no traffic from a good address is observed during a different time interval,
called the staleness time, the address is deleted from the list of good addresses.

Experiments showed that the effects of using synkill enabled legitimate con-
nections to be completed. Delays grew as the rate of SYN packets from different IP
addresses grew, but the developers concluded that the delays were acceptable given a
powerful enough computer running synkill.

The problem with these techniques is that they simply push the focus of the
attack back from the firewall onto infrastructure systems on the outside of the Drib’s
network. They do not solve the problem, but they may ameliorate it sufficiently to
allow some legitimate connections to reach their destinations.

23.4.2 TCP State and Memory Allocations

This approach springs from the way in which most TCP servers are implemented.
When a SYN packet is received, the server creates an entry in a data structure of

Bishop.book Page 508 Tuesday, September 28, 2004 1:46 PM

23.4 Availability and Network Flooding 509

pending connections and then sends the SYN/ACK packet. The entry remains until
either a corresponding ACK is received or a time-out occurs. In the former case, the
connection is completed; in the latter case, a new entry for the next SYN packet is
created. Under a SYN flood, the data structure is kept full of entries that never move
to the connected state. All will be timed out, and new SYNs create new entries to
continue the cycle.

The data structure contains the state of the pending connection. This informa-
tion typically includes the source IP address, a sequence number, and other (internal)
information. When the client replies with an ACK packet to complete the handshake,
the server uses this information to verify that the ACK packet corresponds to the ini-
tial SYN packet. The SYN flood succeeds because the space allocated to hold this
state information is filled before any three-way handshakes are completed. Legiti-
mate handshakes cannot obtain space in the data structure. However, if legitimate
handshakes can be assured space, to some level of probability, then legitimate hand-
shakes have a probability of successfully completing even in the face of a denial of
service attack.

Two techniques are used to make availability of space more likely. The first is
to push the tracking of state to the client. For example, if the state can be encoded in
the initial sequence number of the ACK, the server can rederive the information from
information in the client’s ACK packet. Then no state needs to be kept on the server
system. This approach is called the SYN cookie approach.

EXAMPLE: The Linux 2.4.9 kernel can be configured to use the SYN cookie
approach [655] when the table of pending connections is full. Linux uses the SYN
cookie formula developed by Bernstein and Schenk [82]:

h(s1, sA, sP, dA, dP, s1) + n + 224t + [h(s2, sA, sP, dA, dP, t, s2) mod 224]

where h is a hash function (either MD-5 or SHA-1), s1 and s2 are randomly gener-
ated secrets, sA and sP are the source address and port, dA and dP are the destination
address and port, t is a counter incremented every minute, and n is the sequence num-
ber of the received SYN packet. When the ACK is received, the SYN cookie is
checked by recomputing each part of the SYN cookie anew and subtracting that
value from the received SYN cookie [94].

The SYN cookie formula minimizes the threat of an attacker guessing a SYN
cookie value and sending an ACK to which there has been no corresponding SYN or
SYN/ACK. The t parameter causes successive values of the second hash function to
vary unpredictably, so an attacker cannot predict the next value given a set of prior
values. The 224t value causes the SYN cookies to increase more rapidly than the
standard sequence number n. This makes guessing of SYN cookie values more diffi-
cult than guessing of sequence numbers.

If the table of pending connections is full, no state is stored until the ACK
from the remote host is received. At this point, the connection is opened, so the state
is stored in a different table than the table of pending connections.

Bishop.book Page 509 Tuesday, September 28, 2004 1:46 PM

510 Chapter 23 Network Security

The second technique assumes that there is a fixed amount of space for the
state of pending connections. A SYN flood causes attack handshakes to fill this
space. After some constant amount of time (usually 75 seconds), the server deletes
the state information associated with the attack handshake. This is called the “time-
out” of the pending connection. This approach simply varies the times before the
time-outs depending on the amount of space available for new pending connections.
As the amount of available space decreases, so does the amount of time before the
system begins to time out connections. This approach is called adaptive time-out.

EXAMPLE: Freedman [338] modified the kernel of a SunOS system to provide adap-
tive time-outs of pending connections. First, he shortened the time-out period for
pending connections from 75 to 15 seconds. He then modified the formula for queu-
ing pending connections. Suppose a process allows up to b pending connections on a
given port. Let a be the number of completed connections that the process has not
begun using.64 Let p be the number of pending connections. Let c be a tunable
parameter. When

a + p > cb

the current SYN message is dropped.

Both of these techniques improve the resilience of systems in the face of
flooding attacks. The first technique changes the allocation of space for pending con-
nections by trading the space used to store the state information of pending connec-
tions for extra computations to validate the states of incoming ACKs. The second
method times out pending connections quickly to make more space available for the
incoming handshakes.

23.5 Anticipating Attacks

In spite of the measures outlined above, the Drib security officers realize that their
network and systems might be compromised through unanticipated means. They
have taken steps to prepare for, and handle, such attacks.

The extensive logging described above is one step. The DMZ log server con-
tains an intrusion detection mechanism that scans through the logs looking for evi-
dence of known attacks and of anomalous behavior. The reasons, and settings, are
bound in the Drib’s philosophy of defense.

The Drib security officers are aware of the multitude of attacks that can be
launched against networks and systems. They expect these attacks to come from the

64 Specifically, the number of connections that have completed the TCP three-way handshake
but are awaiting an accept system call from the process.

Bishop.book Page 510 Tuesday, September 28, 2004 1:46 PM

23.5 Anticipating Attacks 511

Internet against the outer firewall. If the attacks are stopped by the firewall, they are
logged and ignored. For example, should someone attempt a known buffer overflow
attack against the SMTP mail proxy, the proxy will reject the attack, log the attempt,
and continue to function. The security officers will not pursue the attacker, and are
interested in the attack only as a statistic they can use when higher management asks
them to justify their budget, or when they are training new system administrators in
security procedures and techniques.

However, should the SMTP proxy be attacked successfully, the Drib’s secu-
rity officers will be very interested. At that point, the SMTP mail proxy will cease to
function as a mail proxy. Instead, it will start nonstandard programs (such as a com-
mand interpreter or some other program that gives the attacker access to, or informa-
tion about, the system). At this point, the anomaly detection component of the
intrusion detection mechanism will detect the unusual behavior and report a potential
problem. The Drib’s security staff monitors the intrusion detection system around the
clock, so they can act quickly on such reports.

The Drib’s security officers are very interested in attempted attacks within the
DMZ. Unlike the Internet, where attack tools are commonplace, use of the DMZ is
restricted only to those who have access to the internal administrative trusted host or
who are using a small set of services. If a known attack occurs on this network,
someone who has obtained access to the network has launched it. This means that
some trusted administrator should not have been trusted (entry through the adminis-
trative trusted host), that one of the servers on the firewall has been compromised
(entry through the outer firewall), or that the software on the DMZ systems either is
corrupted (already in the DMZ) or does not restrict actions sufficiently tightly (entry
through the DMZ Web or mail server). Hence, network traffic is monitored using
both anomaly and misuse detection methods, and all attempted compromises are
reported.

The philosophy of ignoring attacks that fail seems dangerous, because when
an attacker succeeds in compromising the system, the attacker probably has tried—
and failed—numerous times before. Although this is true, the Drib’s answer is, “So
what? We do not have the personnel to handle the false alarms and the failed attacks.
Instead, we focus on what we are most concerned about: successful attacks, and
failed attacks in areas where attacks ought not to be launched. A failed attack within
the DMZ tells us that someone or something is acting in a forbidden way and that
some compromise has occurred. But a failed attack from the Internet tells us that
someone may have found a new attack script and used us as the target. We put our
efforts where we can obtain useful results.”

Finally, the Drib security officers analyzed many commercial intrusion detec-
tion systems to find one that met their needs. All reported many false positives. Some
even failed to detect attacks launched by the security officers. The Drib therefore
purchased an intrusion detection system that allowed them to add signatures of
known attacks and to tune parameters to control reporting of events. After consider-
able experimentation, they found a group of settings that seemed to work well. To
verify this, every month the Drib security officers select two 1-hour periods at ran-
dom and analyze the logs for attacks, probes, and other nefarious events. The results

Bishop.book Page 511 Tuesday, September 28, 2004 1:46 PM

512 Chapter 23 Network Security

of the analysis are compared with the reported events. If they match, the current set
of settings is accepted; if not, the settings are retuned.

23.6 Summary

This chapter demonstrated how to develop a network infrastructure from security
requirements. The security goals led directly to the development of a security policy,
which in turn suggested the form of the network. One firewall limits the types of traffic
to public servers; the other firewall blocks all external traffic from reaching the inner-
most portions of the corporate network. The servers available to the public are dedi-
cated systems that provide only one service. The firewalls are application level
firewalls, so they can check the contents of any connection. Finally, meeting the avail-
ability policy requirements led to a discussion of defenses against attackers using SYN
floods to prevent legitimate connections accessing the publicly available servers.

23.7 Further Reading

Many books and papers describe firewalls and the design of network infrastructures
that use them. Lodin and Schuba [578] describe the basic use of firewalls. Frantzen,
Kerschbaum, Schultz, and Fahmy [335] discuss the structure of a firewall in order to
shed light on possible vulnerabilities. Bellovin and Cheswick [71], and Zwicky, Coo-
per, and Chapman [967], discuss the principles of firewalls. Ranum and Avolio [741]
have created an early applications layer firewall. Chapman [161] describes an early
packet filtering firewall. Schuba and Spafford [802] have created a reference model for
firewalls. Epstein, Thomas, and Monteith suggest using wrappers to prevent attackers
from exploiting security holes in proxies on firewalls [302]. Mayer, Wool, and Ziskind
[600] have developed a tool for examining the policy enforced by a firewall.

Virtual Private Networks (VPNs) build virtual infrastructures on existing
infrastructures. They are ideal for corporations with geographically distributed
offices, or when telecommuting is used. Several books discuss their creation and
management [529, 715, 804]. Caronni, Kumar, Schuba, and Scott present a layering
approach to VPNs that hides the existing infrastructure [155].

Web commerce and security uses principles and practices that are common to
other systems in which security is desired. Several authors [348, 764, 871] have
described the issues and approaches specifically in terms of the Web and electronic
commerce.

Bishop.book Page 512 Tuesday, September 28, 2004 1:46 PM

23.8 Exercises 513

23.8 Exercises

1. Suppose a new class of users, the system security officers (SSOs), were to
be added to the access control matrix discussed in Section 23.2.2.
Augment the matrix with the change right. This right allows the user to
alter the classes of other users in that category. For example, if user Amy
had change rights over the class “developers,” she could change the class
of user Tom, who is currently in the “developers” class, to any of the other
four classes.

a. Let Alice be a member of the SSO class, and let her have change
rights over the “developers” and “employees” classes. Let Bob be a
member of the SSO class, with change rights over “outsiders” and
“employees.” Redraw the matrix for this situation and write rules
describing the allowed transformations of the matrix.

b. Describe any problems that might occur if Alice and Bob were not
careful about the changes of classes they made. Could information
leak in undesired ways? If so, give an example. If not, show why
not.

c. Should members of the SSO class be allowed to apply the change
right to members of that class? Justify your answer. In particular,
state what damage could occur if this were allowed, and if it were
not allowed.

2. Assume that an attacker has found a technique for sending packets through
the outer firewall to the DMZ without the packets being checked. (The
attacker does not know the internal addresses of hosts in the DMZ.) Using
this technique, how can the attacker arrange for a packet to be sent to the
WWW server in the DMZ without the firewall checking the packet?

3. Consider the scheme used to allow customers to submit their credit card
and order information. Section 23.3.3.2 states that the enciphered version
of the data is stored in a spooling area that the Web server cannot access.

a. Why is the file kept inaccessible to the Web server?
b. Because the file is inaccessible to the Web server, and no other

services are available to an attacker from the Internet, the
encipherment may seem unnecessary. Discuss this issue, but assume
that the attacker is on the internal network.

4. The organization of the network provides a DMZ to which the public has
controlled access. This follows the principle of least privilege, as noted in
Section 23.3.3.5. For each of Saltzer and Schroeder’s other design
principles [773] (see Chapter 12), explain how the principle is relevant to
the creation of the DMZ. Justify your answer.

Bishop.book Page 513 Tuesday, September 28, 2004 1:46 PM

514 Chapter 23 Network Security

5. A security analyst wishes to deploy intrusion detection monitors to
determine if any attackers penetrate the Drib’s network.

a. Where should the intrusion detection monitors be placed in the
network’s topology, and why?

b. If the analyst wished to monitor insider attacks (that is, attacks by
people with access to the Drib’s internal network), how would your
answer to part (a) change (if at all)? Justify your changes (or lack of
changes).

6. The Drib has hired the computer security firm of Dewey, Cheatham, and
Howe to audit their networks. The analyst from DC&H arrives and
produces a floppy disk. She states that the disk is to be loaded onto a
system on the internal network. She will then run the program. It will scan
the Drib’s networks and send the information to DC&H’s headquarters in
Upper Bottom. There, DC&H analysts will determine whether the Drib’s
security is acceptable, and will recommend changes.

a. The analyst informs the Drib that the program works by sending the
data to DC&H’s headquarters over the Internet using a proprietary
protocol. She requests that the firewalls be opened to allow
communications to remote hosts with destination port 80. The audit
department manager, who was told to hire DC&H by the Drib’s
CEO, is nervous. Should his security expert recommend that the
communication be allowed, or not? Why?

b. The analyst is asked exactly what the program does. She assures the
Drib that it does nothing harmful. Given that she is so vague, the
Drib security officers want to find out more information. Suggest
four or five questions that they should ask to obtain the information
they seek.

c. The analyst admits that her answers are based on what the DC&H
auditors have told her. When asked for the source code of the
program on the floppy, she states that it is proprietary and cannot be
released. What could the Drib’s officers do to assure themselves that
the program is not harmful?

d. Based on the actions of the analyst, and assuming that finances are
not a consideration, would you hire DC&H to analyze your network
security? Why or why not?

7. This exercise asks you to compare an SMTP server such as sendmail with
an SMTP proxy for an application level firewall. Your answers should
assume that the questions refer to the Drib’s network.

a. The SMTP server must be able to parse electronic mail addresses. It
may have to change the destination address (so the mail can be
delivered correctly) and/or the source address (so the recipient can

Bishop.book Page 514 Tuesday, September 28, 2004 1:46 PM

23.8 Exercises 515

reply). Would an SMTP proxy on the outer firewall need to rewrite
addresses of mail moving from the Internet to the DMZ? From the
DMZ’s mail server to the Internet? If not, explain why not. If so,
explain which addresses would need to be rewritten, and how.

b. The SMTP server must be able to deliver mail locally. Does the
SMTP proxy server need to deliver mail locally (that is, on the outer
firewall)? Why or why not?

c. Considering your answers to the previous two parts, how does the
complexity of the SMTP proxy compare with the complexity of the
SMTP server? From the point of view of security, is this important?
Justify your answer.

8. Suppose the Drib wished to allow employes to telecommute. In order to
protect the network, they require all remote connections (other than those
for the Web and mail servers) to use SSH.

a. Discuss the required changes in the network infrastructure. In
particular, should the outer firewall provide an SSH proxy or a
packet filter to incoming SSH connections? Why?

b. The destination of an SSH connection from the Internet might be the
address of any host on the internal network. Such addresses,
however, are not broadcast to the Internet and in fact may be
addresses that routers on the Internet should not pass (such as
10.x.x.x). Devise a method or protocol that will continue to conceal
the addresses of the hosts on the internal network but still allow SSH
connections from the Internet to arrive at the proper destinations.
What supporting infrastructure must the Drib add to its network?

c. The inner firewall will pass SSH connections, provided that one
endpoint is the trusted administration server on the internal network.
With the above-mentioned change, the destination of the incoming
SSH connection may be any host on the internal network. For this
question, assume that the addresses of the hosts on the internal
network are kept within the internal network—in other words, that
the method or protocol in part (b) is implemented. What are the
security implications of allowing SSH connections to any internal
host through the inner firewall? Should such connections be
restricted (for example, by requiring users to register the hosts from
which they will be connecting)?

d. An alternative to allowing the SSH connections through the firewall
is to provide a specific host (the “SSH host”) on the internal network
that is also connected to the Internet. Telecommuters could use SSH
to log into this system, and from it reach systems on the internal
network. (The difference between this method and allowing
connections through the firewall is that the user must log into the

Bishop.book Page 515 Tuesday, September 28, 2004 1:46 PM

516 Chapter 23 Network Security

intermediate host, and from there move to the internal system. The
firewall approach makes the intermediate system transparent.)
Identify the minimum number of services that this system should run
in order to fulfill its function. Why must these services be run? As
part of your answer, identify any other systems (such as DNS
servers, mail servers, and so on) that this SSH host would have to
trust.

e. From the point of view of Saltzer and Schroeder’s design principles
[773] (see Chapter 13), is the solution suggested in part (d) better
than, worse than, or the same as the solutions involving access
through the firewall? Justify your answer.

9. Consider the first example in Section 23.4.1.

a. Why does the router not save time by opening a connection to the
destination host before the pending connection completes its three-
way handshake?

b. The router is protecting a target from being flooded. Is the router
itself vulnerable to a flooding attack? If not, why not, and why won’t
the same property make the target immune? If the router is
vulnerable, does the attack on the router differ from the attack on the
target? How?

10. The Linux system uses the SYN cookie approach discussed in the first
example in Section 23.4.2, with one modification. The maximum segment
size (MSS) is sent as part of the initial SYN. This value must be encoded
in the sequence number so that the state can be properly reconstructed
when the ACK arrives. The MSS used is three bits. The Linux system
simply adds it to the SYN cookie shown in the example. How does the
system recover the MSS from the ACK’s sequence number?

Bishop.book Page 516 Tuesday, September 28, 2004 1:46 PM

517

Chapter 24
System Security

IMOGEN: To your protection I commend me, gods.
From fairies and the tempters of the night

Guard me, beseech ye.
—Cymbeline, II, ii, 8–10.

System configuration and administration relies on many principles of security and
assurance. This chapter begins with a policy for the DMZ Web server system and for
a development system in the internal network. It explores the configuration and
maintenance of several system components in light of the policy and in light of prin-
ciples of computer security. This illuminates how the practice of computer security is
guided by the fundamental principles discussed throughout this book.

24.1 Introduction

Among the many functions of system administration is the security of the system and
the data it contains. This chapter considers how the administration of security affects
the system.

For our purposes, we consider the security policy of the Web server within the
DMZ and a user system in the development subnet. This will contrast the manner in
which an administrator secures a system that many users use for development of
software with the methods used to secure a system that is likely to be attacked and
that is not intended for the use of nonadministrative users.

Section 23.3.3.2 discusses the Web server’s function in relation to the rest of
the Drib’s network infrastructure. Briefly, the Web server system provides access to
untrusted users through a Web server, and access to trusted users through SSH.
Untrusted users can come from any system on the Internet. Trusted users are those
users who have access to the trusted administrative host on the internal network. For
the purposes of our policy, we assume that any user in that system has been correctly
authenticated to that system and is “trusted” as we use the term.

The development system is a standard UNIX or UNIX-like system. A set of
developers are allowed to use the system.

Bishop.book Page 517 Tuesday, September 28, 2004 1:46 PM

518 Chapter 24 System Security

24.2 Policy

Policy is at the heart of every decision involving security. The DMZ Web server has a
policy very different from that of the development system. This section discusses
portions of the policies in order to provide a foundation for the remainder of this
chapter. We then compare and contrast the policy elements.

24.2.1 The Web Server System in the DMZ

Section 23.3.3.2, “DMZ WWW Server,” discusses the basic security policy of the
Web server. Some of the consequences of the policy are as follows.

1. All incoming Web connections come through the outer firewall, and all
replies are sent through the outer firewall.

2. All users log in from an internal trusted server running SSH. Web pages are
never updated locally. New Web pages are downloaded through the SSH tunnel.

3. Log messages are transmitted to the DMZ log server only.
4. The Web server may query the DMZ DNS system for IP addresses.
5. Other than those expressly mentioned here, no network services are provided.
6. The Web server runs CGI scripts. One of these scripts will write

enciphered information (transaction data) to a spooling area. The
enciphered file will be retrieved from the trusted internal administrative
host using the SSH tunnel.

7. The Web server must implement its services correctly, and must restrict
access to those services as much as possible.

8. The public key of the principal who will decipher and process the
transaction data must reside on the DMZ Web server.

From these implications, several constraints emerge. The Web server conse-
quences (WCs) of interest are as follows.

WC1. Policy consequence 1 requires that no unrequested network connections
except those from the outer firewall over the HTTP and HTTPS ports, and
those from the internal trusted administrative server over SSH, should be
accepted. Replies to DNS queries should be accepted provided that they
come from the DMZ DNS server. If other network clients are to be run,
only replies to messages originating from the DMZ Web server should be
accepted.

WC2. Policy consequence 2 states that user access to the system is to be limited
to those users on the internal trusted administrative server. Furthermore,
the number of users who need access to the Web server should be as small

Bishop.book Page 518 Tuesday, September 28, 2004 1:46 PM

24.2 Policy 519

as possible, with only those privileges needed to perform their tasks. All
actions must be attributable to an individual, as opposed to a role, user.

WC3. Policy consequences 4 and 5 suggest that the Web server should be
configured to provide minimal access to the system. This prevents an
attacker who compromises the Web server from accessing other parts of
the system. This requirement leads to one unexpected, interesting
consideration. If an attacker gains access to the system through the Web
server, she can delete all uncollected transaction files. This denial of
service attack would blemish the Drib’s reputation. Some other
mechanism should capture the transaction files and copy them to an area
that the Web server cannot reach. Then, if an attacker compromises the
Web server, that attacker cannot reach the transaction files.

WC4. Policy consequences 5, 6, and 8 imply that all software must have a very
high assurance of functioning correctly (as specified by its documentation).
In practice, this means that the software must be either developed or checked
very carefully. It also requires that extensive logging occur, to verify that the
software is functioning correctly even when under attack. In essence, we
view attacks as situations in which software functions correctly (and the
attack fails) or incorrectly (and the attack succeeds).

WC5. Policy consequence 7 states that the Web server must contain as few
programs, and as little software, configuration information, and other data,
as possible. If the system is compromised, this will minimize the effects of
the attack.

24.2.2 The Development System

The development system lies in the internal network, on the development subnet
(called the “devnet”). It must provide an environment in which developers can pro-
duce code for dribbles. Because users will be active on the system, its policy is con-
siderably different than that of the Web server system.

The devnet has both infrastructure and user systems. The infrastructure sys-
tems are the devnet firewall (which separates it from other internal subnets), a DNS
server, a logging host (which provides a central repository for logs), one or more file
servers, and one or more systems containing user information common to the work-
stations (the UINFO servers). There is also an isolated system used to build a “base
system configuration” (system files, configuration files, company-approved software,
and so on) and to burn CD-ROMs. The policy that follows does not apply to these
systems. They are under much tighter controls. The components of the security pol-
icy relevant to our discussion are as follows.

1. Only authorized users are allowed to use the devnet systems. They may
work on any devnet workstation. All actions and system accesses must be
tied to an individual user, rather than to a role account.

Bishop.book Page 519 Tuesday, September 28, 2004 1:46 PM

520 Chapter 24 System Security

2. Workstation system administrators must be able to access the workstations
at all times, unless the particular workstation has crashed. The set of
devnet workstation administrators differs from the set of devnet central
server administrators.

3. Within the devnet itself, users are trusted not to attack devnet systems.
Users not on the devnet are not trusted. They are not allowed to access
devnet resources except as permitted by the network security policy (for
internal Drib users). Furthermore, devnet users are not allowed to access
systems not on the devnet except as permitted by the network policy.

4. All network communications, except electronic mail, are to be confidential
and are to be checked to ensure that the messages are not altered in transit.

5. The base standard configuration for each devnet system cannot be changed
on that system. There is to be a local area in each system in which
developers may install programs that are nonstandard. Before doing this,
they must obtain approval from the security officers and system
administrators. Should the software prove useful, it may be integrated into
the standard configuration.

6. Backups shall enable system administrators to restore any devnet system
with the loss of at most one day’s changes in user and local files.

7. Security officers shall perform both periodic and ongoing audits of devnet
systems. Compromised systems shall be removed from the devnet until
they have been restored to an uncompromised state.

These components have several consequences, two of which affect the infra-
structure and configuration of workstations. Policy component 3 leads to the use of a
firewall at the boundary of the devnet and the other subnets to enforce the network
security policy. This allows the network security administrators to enforce changes in
the network policy without having to alter each system on the devnet. Any changes
need only be made at the firewall. Also, the systems on the devnet need not be so
tightly configured as must the firewalls. The firewalls enforce the policy that hosts
outside the devnet see; the hosts inside the devnet enforce the policy specific to the
developers and their hosts (the policy outlined above).

Policy component 3 also bars direct access between the Internet and devnet
systems. This decision was based on a risk analysis. The security officers and man-
agement of the Drib realized that the Drib would benefit from allowing telecommut-
ing and access to remote Web sites. However, the dangers of opening up an avenue of
attack from Internet hosts to internal hosts, and allowing unsuspecting Drib employ-
ees to download untrusted, and possibly malicious, code, outweighed the perceived
benefits. This portion of the policy is under review, and the Drib is considering
changes to allow telecommuting (see Exercise 8 in Chapter 23).

Some developers need access to the Internet to determine what equipment to
obtain as they plan new mechanisms and devices to enhance the value of the Drib’s
products. These developers are given separate workstations connected to a commer-
cial Internet Service Provider (ISP) outside the Drib’s perimeter. These “ISP work-

Bishop.book Page 520 Tuesday, September 28, 2004 1:46 PM

24.2 Policy 521

stations” are physically separated from the internal network, and the ISP workstation
cannot easily be connected with the devnet workstation. These procedural mecha-
nisms enforce the desired separation.

Other consequences of the policy apply to the devnet workstations. The devel-
opment system consequences (DCs) of interest are as follows.

DC1. Policy components 1 and 4 imply the need for authenticated, enciphered,
integrity-checked communications. These policy components also imply a
consistent naming scheme across systems, so that a user name refers to the
same user on all devnet systems.

DC2. Policy component 2 requires that each workstation have one or more local
privileged accounts to administer the system locally. Policy components 1
and 2 imply that multiple local administrative accounts may be used to limit
access to particular administrative functions. This division of power into
roles allows the administrators to designate special system accounts, such as
mail, as being limited in their power. Policy requirement 2 also requires that
the workstation be able to run without any network connections.

DC3. Policy component 1 also requires that there be a notion of a “login” or
“audit” user (see Section 24.4). This identity must be recorded in logs, to
tie individuals to actions. Furthermore, users should not be able to log
directly into role accounts such as root, because this would eliminate the
ability to tie an individual to an action. Instead, they must log into an
individual account and change to the role account, or add a new role, to
their individual account.

DC4. If a developer wants to install a program from the outside onto his devnet
workstation, he must first obtain approval from the security officers. Once
approved, he installs it in an area separate from the base system
configuration (see policy component 5). Adding a program to the base
system configuration requires that it be added to the isolated system first.
This requires testing and analysis of the program to ensure (to an
appropriate level of integrity) that the software is not malicious and will
not accidentally damage the system on which it runs.

DC5. Policy component 5 requires that each workstation protect the base system
configuration, as installed, from being altered. One approach is to mount
the disks containing that configuration as read-only disks. A far simpler
and more effective approach is to use read-only media. This meets policy
requirements and ensures that all devnet workstations are up to date. A
writable hard drive provides space for local files such as spool and
temporary files.

DC6. Policy component 1 requires that an employee’s files be available to her
continuously. This requires that the files be stored on systems other than
the workstations, in case a workstation goes down. As a corollary, the file
controls should enforce the same sets of permissions regardless of the
workstations from which they are accessed.

Bishop.book Page 521 Tuesday, September 28, 2004 1:46 PM

522 Chapter 24 System Security

DC7. Policy component 6 requires regular backups. As explained in Section
24.7.2, the development workstations store only transient files on writable
media. Hence, they need not be backed up. Restoration involves rebooting
and remounting of file systems from the file servers, which are regularly
backed up.

DC8. Policy component 7 requires several security precautions. The primary one
is a logging system to which all systems send log messages. Furthermore,
security officers need access to both devnet systems and the devnet
network. They conduct periodic (and irregular) sweeps of the network,
looking for unauthorized servers. They also conduct periodic (and
irregular) sweeps of each system looking for dangerous settings in user
accounts and the local areas.

Two points about this policy, and its implications, are apparent. First, the sys-
tem security policy relies on the outer and inner firewalls to prevent Internet users
from reaching the system. If one firewall fails, the other will still block such
accesses.1 Also, the firewall at the perimeter of the developer’s subnet enforces the
access restrictions among the users of the other two subnets and the systems on
the developer’s subnet.2 So the system policy assumes that those who can connect to
the system are authorized to access developer systems.

The security policy also requires procedural enforcement mechanisms.

EXAMPLE: Consider a system administrator for the development network who has
both an ISP workstation and a devnet workstation on her desk. She could download a
program to her ISP workstation, copy it onto a floppy disk, and move the floppy disk
to the devnet workstation. This clearly would violate policy, but there is no
reasonable technical means of preventing it. (See Exercise 1.)

Here, the Drib must rely on procedural mechanisms to enforce the policy. In
this case, the procedures should specify both the prohibition and the consequences
of violating it. This puts all employees on notice that the prohibition will be
enforced, and encourages them to use the allowed methods to obtain approval.

24.2.3 Comparison

The differences between the policies of the DMZ WWW system and the devnet
developer system arise from their different roles. The DMZ WWW server is not a
general-use system. It exists only to serve Web pages and accept Web orders. The
devnet developer system is a general-use computer. It must allow compilation, edit-
ing, and other functions that programmers and software engineers need to design,
implement, and test software.

1 See Section 12.2.6, “Principle of Separation of Privilege.”
2 See Section 12.2.4, “Principle of Complete Mediation.”

Bishop.book Page 522 Tuesday, September 28, 2004 1:46 PM

24.3 Networks 523

The DMZ Web server system’s security policy focuses on the single purpose of
the server: to run the Web server. Two sets of users can access the server: the system
administrators, who maintain the security and the Web pages; and the users from the
Internet, who must go through the outer firewall and can access only the Web server.
The developer system’s security policy focuses on more complex purposes. These pur-
poses include software creation, testing, and maintenance. The developer system
requires more supporting software than does the DMZ Web server system. The user
population is different and provides an environment more amenable for attackers than
does the DMZ Web server system, because the users may not be as security-conscious
as the security officers comprising the user population of the DMZ Web server system.

That the system administrators of the DMZ Web server system are trained in
security (hence, the term “security officers”) should be expected. The developer sys-
tems are more numerous and require more administrative effort to maintain. More
system administrators are required. The administrators will also have different skills
and abilities; some may be very senior and experienced, whereas others will be jun-
ior and inexperienced. Hence, the system administrators for the developer systems
may not be trained in security. So the system security officers may not be administra-
tors. This leads to situations in which system administrators and security officers dis-
agree on what actions are appropriate. The policy must have some mechanism for
resolving these disputes. The mechanism typically involves a person, or a group of
people, performing a cost-benefit analysis of each option and selecting the option
that provides the greatest benefit at the least cost. This type of analysis was briefly
discussed in Section 1.6.1.

24.2.4 Conclusion

We now examine several areas of system administration in light of these security
requirements. Our goal is to install, and manage, as secure a system as possible. Our
approach is to compare and contrast these two systems. What follows is organized
into areas, and each system is examined with respect to the mechanisms used to
enforce the policy. We then compare the two systems.

24.3 Networks

Both the DMZ Web server system and the devnet user system are connected to the
network. Although the firewalls provide some measure of protection, the principle of
separation of privilege says that access should be limited even when the firewalls
fail.3 So we consider how the administrators should set network configurations and
services to protect the systems in the case that the firewalls fail.

3 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 523 Tuesday, September 28, 2004 1:46 PM

524 Chapter 24 System Security

24.3.1 The Web Server System in the DMZ

Item WC1 limits network access to the Web server.4 External users can reach the sys-
tem only by using Web services and connecting through the outer firewall. Internal
users can reach the system by using SSH from the trusted administrative system,
through the inner firewall. A security mechanism must block any other types of con-
nections, or any connections from sources other than the outer firewall or the trusted
administrative server.5 Moreover, item WC4 requires that all attempts to connect be
monitored6 to validate that the security mechanism functions according to this policy
(or to detect failures).7

Consider the Web server first. Although requests can come from any IP address
on the Internet, all such requests go to the outer firewall’s Web proxy. That firewall for-
wards well-formed requests to the DMZ Web server. Hence, the Web server’s access
control mechanism can discard any requests from sites other than the outer firewall.
Whether to accept requests from the inner firewall depends on several policy factors.
The current policy for the Drib is not to allow the Web server to accept these requests.8

However, the policymakers have realized that some situations may require internal
users to access the Web server directly (these situations typically will involve debug-
ging or checking for errors). Should this be necessary, the security officers will recon-
figure the inner firewall to run a Web proxy identical to the one on the outer firewall.
Thus, the DMZ Web server is configured to accept requests from the inner firewall as
well as the outer firewall. The server will not accept requests from other DMZ systems,
because they are not to be used for accessing the Web server.

EXAMPLE: The Apache Web server can control access to specific parts of the Web
pages based on IP address. The configuration file controls which addresses are
allowed access and which ones are denied access. By default, all accesses are
allowed.

In the Apache configuration file, the system administrator sets

order allow,deny

to evaluate all the “allow” lines before the “deny” lines. If a host is not listed in either
line, the Web server disallows access. Then the lines

allow from outer_firewall
allow from inner_firewall
deny from all

4 See Section 12.2.1, “Principle of Least Privilege.”
5 See Section 15.4, “Example Information Flow Controls.”
6 See Chapter 21, “Auditing.”
7 See Chapter 22, “Intrusion Detection.”
8 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 524 Tuesday, September 28, 2004 1:46 PM

24.3 Networks 525

allow access from the inner and outer firewalls but from nowhere else [127]. (Here,
inner_ firewall and outer_ firewall are the addresses of those hosts.)

Item WC1 requires the DMZ Web server to allow administrative access from
the trusted administrative Web server. This allows system administrators to update
Web pages, reconfigure and modify software, and perform other administrative tasks.
The Web server runs an SSH server. This server provides enciphered, authenticated
access to the Web server system using cryptographic mechanisms to provide those
security services. Of interest here is that the server requires both the host and the user
to be authenticated.9 This allows the system administrators to restrict access to users
connecting from the trusted administrative server only.

EXAMPLE: The SSH server controls remote access using a configuration file. The
configuration file allows the sysadmin to list a set of hosts from which it may accept
connections. Any connection from any other host is refused. The lines

allow trusted_admin_server
deny all

restrict access to users from the trusted administrative server. Similar keywords allow
control over users.

Section 24.4.1 discusses users, and authentication of both hosts and users, on
the Web server system.

To maximize availability, the Web server system wraps each server with a
small script. If the server terminates, the script starts a new instance of the server.

EXAMPLE: The Web server and the SSH server are started at boot time. Both are
wrapped so that, should either fail, a new copy will be run. For example, the Web
server webd is run from the following shell script.

#! /bin/sh
echo $$ > /mnt/users/servers/webdwrapper.pid
while true
do

/usr/local/bin/webd
sleep 30

done

Now, if the Web server terminates, the script will automatically start a new Web
server process after a wait of 30 seconds.

9 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 525 Tuesday, September 28, 2004 1:46 PM

526 Chapter 24 System Security

By virtue of item WC3, the Web server system should run a minimum of net-
work servers. Because access is to be given only to Web requests and administrative
logins, no network servers other than the Web server and the SSH server are needed.10

The Web server runs several network clients, however. Because the Web
server system must request IP addresses and host names, it must make requests of,
and receive replies from, a DMZ DNS server. At any time, multiple requests may be
outstanding. By virtue of item WC1, this satisfies the policy. However, several types
of attacks on DNS clients [800] involve “piggybacking” of multiple host name and
address associations onto a reply to a request for a single such association.11 The
Web server system’s DNS client will use only the requested data. It will discard any
additional data as well as any logs that such data has been received.12 Furthermore, if
the client receives a response that provides information that was not requested, or if
two responses provide different answers to the same query, both are logged and dis-
carded, and the client acts as though the DNS request has timed out.

The Web server system also runs a logging client to send log messages to the
log server. Programs use an internal message delivery system to send messages to the
logging client, which then delivers them to the appropriate hosts and files. The deliv-
ery addresses lie in a configuration file. Each log message is timestamped and has the
name of the process and (Web server) system attached.

The system is configured to log any attempts to connect to network ports on
which no servers are listening. The three reasons for doing this follow from item
WC4. First, it serves as a check that the outer firewall is intercepting all probes from
the Internet to the Drib’s Web server. Second, it detects probes from the internal net-
work to the DMZ Web server. Because the inner firewall has one port that is filtered
rather than proxied (the SSH port), such probing is possible if the filter does not
check the destination port number. This should never happen, of course, unless the
inner firewall is misconfigured or compromised. Thus, in order for an attack on the
firewall to be undetectable, two failures must occur (the firewall fails to block, and
the DMZ Web server fails to log).13 Third, probes to other ports from within the
DMZ indicate unauthorized activities on the DMZ systems, meaning that one of
them has been compromised. This requires immediate investigation.

24.3.2 The Development System

Item DC1 requires that the development system accept user connections only when
they are authenticated and encrypted. Like the DMZ Web server, the development
systems run SSH servers to provide such access. Both hosts and users use public key
authentication.14

10 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
11 See Section 13.6.1.2, “Security Issues with the Domain Name Service.”
12 See Section 12.2.1, “Principle of Least Privilege.”
13 See Section 12.2.6, “Principle of Separation of Privilege.”
14 See Section 8.3, “Public Key Cryptography.”

Bishop.book Page 526 Tuesday, September 28, 2004 1:46 PM

24.3 Networks 527

Unlike the DMZ Web server system, the development system runs several
other servers. It runs a line printer spooler to send print requests to a print server. It
runs a logging server to accept log messages and dispose of them properly. It also
runs servers to support access to both the file server and the user information data-
base system. These servers are necessary in order for the developers to be productive
on that system.

The development system does not have the ftp or Web services. Instead, special
ftp and Web server systems mount directories from the central file servers. The work-
stations run an SMTP server as a convenience to users,15 but all mail is forwarded to a
central mail server and is never delivered locally. (This allows workstation SMTP serv-
ers to be very simple programs.16) Users can access mail on any workstation, because
the mail spooling directory resides on the central file server. Similarly, users can make
files available for ftp and Web access by placing them into user-specific directories on
the central file server. The corresponding servers mount these directories for remote
access. They cannot access other parts of the file systems on the file servers.

Placing the mail, ftp, and Web services on systems other than the development
workstations has two advantages that satisfy item DC2. First, it minimizes the set of
network servers that each workstation has to run. Second, it minimizes the number of
systems that provide the services.17 This enables the firewall to be configured to
allow traffic for these services through to a small set of systems, and the security
administrators can configure those systems to handle access control appropriately.

The development system uses access control wrappers to support access con-
trols. The firewall provides this control for systems not on the devnet, but the work-
station’s access control wrappers provide this control for other devnet workstations,
as well as duplicating the firewall’s control rules. If the firewall’s access controls fail
(for example, as a result of a configuration error), the workstation will still honor the
network security policy.18 Furthermore, the development system logs all attempts to
access servers. These logs provide both evidence of intrusions and verification of the
correct functioning of the security mechanisms, as required by item DC8.

EXAMPLE: TCP wrappers [912] host-based wrappers that intercept requests (con-
nections or datagrams) to some set of servers. The wrapper determines the origin of
the request from the packet. If the wrapper is configured to allow the connection, it
then spawns the appropriate server and passes the open port to the server. Otherwise,
the request is ignored. In either case, the wrapper logs the request and its origin.

TCP wrappers determine if access is allowed by looking in configuration files.
PortSentry [175], another wrapper tool, is designed to examine network requests
from a wide variety of ports. If the ports indicate illicit activity (as configured by the
system manager), PortSentry can add appropriate commands to the configuration
files to block network access for the responsible hosts.

15 See Section 12.2.8, “Principle of Psychological Acceptability.”
16 See Section 12.2.3, “Principle of Economy of Mechanism.”
17 See Section 12.2.3, “Principle of Economy of Mechanism.”
18 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 527 Tuesday, September 28, 2004 1:46 PM

528 Chapter 24 System Security

Item DC8 requires checking of the security of the development workstations.
To ensure that they remain at the desired level of security, the system security officers
occasionally scan each system. Their scanner probes each port and records those that
are open. The results are compared with the list of ports that are expected to be open.
Any discrepencies are reported to the security officers. Moreover, the scanners
record the address of each system on the network. Any unauthorized system is
reported immediately, as are any unexpected changes in addresses. The security
officers make these scans periodically. To prevent an attacker from determining the
schedule, the security officers launch additional scans at irregular intervals as well.19

Finally, the security officers occasionally attack devnet systems to determine
how well they withstand attacks.20 These operations are sustained and take some
time, but the information gleaned from them has proven invaluable. When flaws are
discovered, the security officers determine whether they are attributable to the initial
configuration or to user changes in the system. In the former case, the security offic-
ers develop a patch or modification of the standard configuration. In the latter case,
they assess the situation in more detail, and act on the basis of that analysis.

24.3.3 Comparison

The difference between approaches to network services and accesses springs from
the use of, and the locations of, the systems.

The DMZ Web server system is dedicated to two specific tasks—serving Web
pages and accepting commercial transactions. Only those functions and processes
required to support this specific task are allowed. Any other programs, such as those
required for general use, are simply not present in the system. It need not provide
access to a line printer, or handle remote file systems from central servers. Every-
thing is present in the system itself. No extraneous services are provided or used.21

The development system performs many tasks, all designed to achieve the
goal of providing an environment in which the developers can be productive.22 It has
general-purpose tools ranging from compilers and text editors to electronic mail
reading programs. It shares user files with other workstations using a central file
server, and user information with a central user information system. Users can run
processes freely.

The environment plays a role in configuration. Both systems use a “defense in
depth” strategy of providing access controls that duplicate some of the firewall con-
trols.23 The DMZ Web server system does not depend on the firewall to filter or block
Web client requests. Even if the inner firewall allowed messages to flow through it with
no control, the DMZ Web server system would function as required by policy. How-

19 See Chapter 21, “Auditing.”
20 See Section 20.2, “Penetration Studies.”
21 See Section 12.2.7, “Principle of Least Common Mechanism.”
22 See Section 12.2.8, “Principle of Psychological Acceptability.”
23 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 528 Tuesday, September 28, 2004 1:46 PM

24.4 Users 529

ever, access to the development systems depends on the devnet firewall’s filtering abil-
ities. If a user from another internal subnet tries to access a development system, the
devnet firewall will determine whether or not access to the devnet is allowed. If it is,
then the developer system determines whether or not to accept the connection. This
allows the Drib network administrators to control access among the three subnets and
the DMZ independently of the system administrators within the subnets (who do not
control the firewalls). It also allows the developer workstations to support developers
on other subnets—if the Drib policy allows it.

24.4 Users

Our first step is to determine the accounts needed to run the systems. The user
accounts, as distinguished from the system administration accounts (system adminis-
trators), require enough privileges to use the computer to perform their jobs, but as
few others as possible.24 Creating, configuring, and maintaining their accounts are
crucial to the successful use of the computer. For brevity, we refer to a user account
as a “user” and a system administration account as a “sysadmin” in this section.

24.4.1 The Web Server System in the DMZ

Items WC2 and WC3 suggest that the number of user accounts on the system be mini-
mal. The Web server requires at most two users and a sysadmin. The first user is a user
with enough privileges to read (and serve) Web pages and to write to the Web server
transaction area. The second user is a user who can move files from the Web transac-
tion area to the commerce transaction spooling area. The reason the Web server has
minimal privileges lies in the assumption that the Web server, which interacts with
other systems on the Internet, may be compromised. A compromised Web server run-
ning with sysadmin privileges could allow the attacker to control the system, but if the
Web server had only enough priviliges to read Web pages, then compromising it would
be less likely to compromise the system. The commerce server and the Web server
should be different users in order to prevent an attacker from compromising the Web
server and then deleting files from the commerce server’s area. Access control mecha-
nisms25 can inhibit this, but defense should not depend on one control only.26 If the
Web server and commerce server are different users, and the Web server is compro-
mised, the attacker must then compromise either the sysadmin or the commerce server
user.

24 See Section 12.2.1, “Principle of Least Privilege.”
25 See Chapter 14, “Access Control Mechanisms.”
26 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 529 Tuesday, September 28, 2004 1:46 PM

530 Chapter 24 System Security

EXAMPLE: Let the Web server account’s name be webbie, and let the commerce
server’s account be ecommie. The Web server’s CGI script would create the transac-
tion file, with an ACL allowing ecommie to read and delete the file. The commerce
server then could simply copy the contents of the file into a file in the spooling area,
set the ACL to allow the administrator to read and delete the file, and delete the orig-
inal file. Note that with the given ACL, webbie can no longer read the file. This pro-
tects transactions against attack if the Web server is attacked.

Some systems (such as many UNIX systems) use a simplified mechanism that
does not allow individual users to be placed in an access control list.27 However,
group mechanisms achieve the same end.

EXAMPLE: The Web server’s transaction directory is group-owned by the group trans.
That group contains two members, webbie and ecommie. The CGI script writes a trans-
action file group-owned by trans and group-readable. The commerce server can read
the file and, because the directory is group-writable,28 delete the file.

There is a tension between the desire to minimize the number of accounts
(item WC2) and the desire to minimize the privileges of these accounts (item WC3).
Most computer systems allow the assignment of privilege to accounts independently
of name. This means that there can be multiple sysadmin accounts. Each person des-
ignated as a system administrator could have a separate sysadmin account or could
use a single, role account.29 The reason for having separate sysadmin accounts is to
tie each action to a particular user. Whether or not this can be done depends to some
extent on the implementation of the Web server system.

EXAMPLE: Most UNIX systems represent accounts by UIDs. The particular UID
determines the level of privilege, with 0 being the sysadmin. Having separate system
administration accounts would require the account names to be different, but the
account UIDs to be the same (0). Hence, the only benefit is to be able to track who
logged in as a system administrator. All logged actions would show up as having
been executed by the user with UID 0.

Some UNIX systems support an audit, or a login, UID.30 This UID is assigned
at login and is not changed throughout the lifetime of the process. Furthermore, all
children of the process inherit that audit UID. Assigning each system administrator a
unique user account (each with a unique UID) associates that UID with every action
that account takes. This includes acquiring administrator privileges.

27 See Section 14.1.1, “Abbreviations of Access Control Lists.”
28 Some UNIX variants allow the group owner of a file to delete it only if the directory and the
file itself are group-writable. In this case, the transaction file must be group-writable as well.
29 See Section 13.3, “Users,” and Section 13.4, “Groups and Roles.”
30 See Section 13.3, “Users.”

Bishop.book Page 530 Tuesday, September 28, 2004 1:46 PM

24.4 Users 531

EXAMPLE: Solaris 2.8 supports an audit UID. When the Web server system is set up,
each system administrator is assigned a separate, unprivileged account. After the sys-
tem administrator logs in as the ordinary user, she switches to the sysadmin role.
Each action will have three associated UIDs: the real, effective, and audit UIDs. Any
action that the sysadmin takes will be tied to the individual account of the particular
system administrator who takes it.

Because item WC4 requires strict user accountability, the Web server system
is set up to disallow direct logins from system administrators. Each user must log
into the system from the trusted administrative server. As stated in Section 24.3.1,
this requires the use of SSH, so the user must be an authorized user of the Web server
system.31 The set of allowed users is enumerated in the SSH configuration file in the
Web server system. Once logged in, the user may switch to a role account. To do so,
the user supplies a password. The program checks that the user has self-authenticated
correctly, and then that the user is authorized to access the requested role account. If
so, the user is switched into this role.

Direct login to a sysadmin account is allowed in one situation only. The Web
server system allows logins to role accounts (such as root) from the system console.
Although the system cannot identify the individual logging into the role, the console
itself is in a locked room to which only a few highly trusted individuals have access.
At least three people are in that room at all times, including one security officer. The
officer can identify by sight the set of people authorized to enter the room.32 So, if
someone walks up to the console and logs into a role account, the security officer
will log that individual’s use of the console.33 Thus, should the SSH server become
unexpectedly unavailable, a system administrator could fix it.

24.4.2 The Development System

Unlike the DMZ WWW server system, the development system requires at least one
user account per developer (items DC1, DC3, and DC6). It also requires administra-
tive accounts, as well as groups corresponding to projects (items DC2 and DC3).
Furthermore, an account on different development systems must refer to the same
individual, role, or project (item DC1). Otherwise, inconsistent use of identifiers may
allow access rights that exceed the level authorized by the security policy.

EXAMPLE: The r-protocols [493] define a set of protocols that implement a trusted
host relationship. The host stokes names host navier in the file /etc/hosts.equiv. Then,
if the user Abby has an account abby on navier, and there is an account abby on
stokes, then Abby can log into abby on stokes without supplying a password. The
system administrator configures the hosts.equiv file.

31 See Section 12.2.6, “Principle of Separation of Privilege.”
32 See Section 12.2.6, “Principle of Separation of Privilege.”
33 See Section 12.2.4, “Principle of Complete Mediation.”

Bishop.book Page 531 Tuesday, September 28, 2004 1:46 PM

532 Chapter 24 System Security

Suppose the Drib had two different users named Abraham and Abigail, both of
whom use the nickname “Abby.” Abraham’s account on navier is abby, and Abigail’s
account on stokes is abby. If navier trusts stokes as described above, then Abraham
can log into Abigail’s account on stokes. This violates the security policy requirement
of being able to tie actions to individual users (item DC3).

Shared files increase the risk of accidental or deliberate damage.34 The NFS
protocol for sharing files bases access on the UID of the user requesting access. If
abby has UID 8924 on navier, and sioban has UID 8924 on stokes, both have access
to files owned by the user with UID 8924 on the NFS file server. This violates the
security policy requirement of users being able to control access to their files from
any development system (item DC6).

To meet the requirement for consistency of naming, the Drib developers have
decided to use a central repository to define users and accounts, the UINFO system.
They use the NIS protocol [874] to allow distribution of user information. All sys-
tems on the developer subnet, except the firewall, use the NIS server to obtain infor-
mation about users and accounts. Any new account must be instantiated on the
databases of this server. No user accounts are created on the developer workstations
themselves, and all system accounts have entries in the server databases.

The developers benefit from this arrangement. Because their files are kept on
NFS file servers, a developer can access them at any devnet workstation, as required
by item DC6. If one workstation cannot function, the developer can walk to another
workstation and continue development. The system and network administrators can
then repair the malfunctioning workstation with minimal loss of developer time.

To satisfy item DC2, each developer workstation has a local root account and
one local account for each system administrator.35 This account gives administrators
access should the workstation be unable to contact the NIS server. Because there are
both primary and secondary NIS servers, and backups for each, the only reason that
this situation might arise would be either a network problem or a workstation prob-
lem. Using the local root account, the administrator could access the workstation,
diagnose the problem, and (if possible) correct the problem at the client.

As allowed by item DC2, the Drib administrators have set up several accounts
to perform system functions. Examples are the mail account, which allows the user
to manipulate mail queues and configuration files, and the daemon user, under which
most network daemons run. These accounts do not have root privileges. This is an
application of the principle of least privilege,36 because few functions require the
powers of the root account.

EXAMPLE: Backups require access to the raw disk device. Rather than require root
to do the backups, the Drib administrators have created the operator user. This user
is in the group devices. All files corresponding to raw disk devices are in that group

34 See Section 12.2.7, “Principle of Least Common Mechanism.”
35 See Section 12.2.7, “Principle of Least Common Mechanism.”
36 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 532 Tuesday, September 28, 2004 1:46 PM

24.4 Users 533

and are group-readable. The operator user can therefore dump the contents of the
disk using a backup program.

To enforce the individual accountability of item DC3, the operator account
does not allow password authentication. To access the account, the user must log in
to her normal account, and then change to the operator account.37 The version of the
UNIX operating system that is used here has a login UID, so when the user changes
to the operator account, the new process inherits the login UID. This is logged
(along with the real and effective UIDs), so each action taken as operator can be tied
to a particular user’s UID.

The NIS mechanism uses cleartext messages to transmit user information.
This violates requirement DC1, because the messages are not integrity-checked.
They are susceptible to network-based attack, because an attacker can inject
responses to queries. However, a quick analysis demonstrates why this is not a prob-
lem in the particular environment of the Drib.

The development system is not accessible to users from the Internet. The outer
firewall, inner firewall, and devnet firewall prevent any direct connections from the
Internet. The threat comes from insiders, people with access to the Drib’s internal
network. The security analysts classified these threats into two distinct sets.

The first set involves nonadministrative information. This data is sent enci-
phered and integrity-checked, using mechanisms that the analysts trust. Compromis-
ing this data could lead to corruption of user-specific data, and the analysts felt that
the other mechanisms provided sufficient protection to deter this.

The second set involves administrative information—specifically, the NIS
user records. These records are not encrypted. However, none of these records
include administrative accounts, so only ordinary users can be compromised.38 The
security analysts configured each workstation so that only root could inject false
information that either the clients or the server would accept as legitimate.39 They
then physically secured the network to prevent unauthorized personnel from con-
necting workstations to the Drib’s network. Fake NIS replies can be put on the net-
work only from the outside (such replies would have to go through the devnet
firewall) or from a host on the network (such replies would require root access). In
the first case, the devnet firewall would reject the packets before they entered the
devnet network. In the second case, root could access that user’s account by running
the su command on the system under attack, making unnecessary the injection of
false NIS packets to obtain access to a user’s account.

Given this analysis, the Drib’s policy managers agreed with the system devel-
opers, administrators, and security officers that the violation of item DC1 was
acceptable. However, if there is evidence of a problem, the policy managers reserved
the right to require that some other scheme be developed with security the foremost
consideration.

37 See Section 13.4, “Groups and Roles.”
38 See Section 12.2.7, “Principle of Least Common Mechanism.”
39 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 533 Tuesday, September 28, 2004 1:46 PM

534 Chapter 24 System Security

24.4.3 Comparison

The difference between selecting users for the DMZ Web server system and selecting
users for the development system reflects the differences between the security poli-
cies of the two systems. The root lies in the intended use of each system.

The DMZ Web server system is in an area that is accessible to untrusted users
(specifically, from the Internet). Although access is controlled, the controls may have
vulnerabilities. Limiting the number of users on the system, and ensuring that
untrusted users access servers running with minimal privileges, increase the diffi-
culty of an attacker obtaining unauthorized access to the system.40 Except for the
superuser, users can perform only restricted actions. Finally, the user information is
kept on the system, so attackers cannot inject false information (such as information
on other users) into the system’s accesses to a user information database.41

The development system allows general user access, so it has many more
accounts. Furthermore, the development system shares its user population with other sys-
tems on the same subnet, so it accesses a centralized database containing the information.
This keeps the user and file information consistent across platforms. The features of the
NIS system (notably, the “+” and “–”) [874] allow each devnet system administrator to
control authorization to use that particular system. System accounts other than that of the
superuser allow the system administrators to control administrative actions to a fairly
high degree of granularity. The trade-off is that these administrative accounts can access
files on the file server, whereas the superuser can access only public files.

Finally, the difference in means of access reflects the differences in the environ-
ments and uses of the two systems. The DMZ Web server system allows access only
through a small set of tightly controlled access points: the Web server (from the outer
firewall), the SSH server (from the inner firewall), and a login server bound to the
physical console of the system. This reflects the classes of users who are authorized to
use the system, as well as the ways in which they are authorized to use it.42 External
users can access only the Web server; internal users, only the SSH server. However, the
devnet system is in the internal network. Hence, users can come from a wide variety of
systems and can access any server. The only controls on access are that the accesses
must come from within the devnet, unless explicitly stated otherwise, and that the users
must have accounts on the devnet centralized database system.

24.5 Authentication

Authentication binds the identity of the user to processes. Incorrect or compromised
authentication leads to security problems. In this section, we consider the authentica-
tion techniques used in the two systems.

40 See Section 12.2.1, “Principle of Least Privilege.”
41 See Section 12.2.7, “Principle of Least Common Mechanism.”
42 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 534 Tuesday, September 28, 2004 1:46 PM

24.5 Authentication 535

24.5.1 The Web Server System in the DMZ

As required by WC1 and WC2, the SSH server uses cryptographic authentication to
ensure that the source of the connection is the trusted administrative host. If the con-
nection is from any other host, the SSH server is configured to reject the connection.
Furthermore, SSH uses a cryptographic method of authentication rather than relying
on IP addresses.43

When a user connects to the SSH server, that server attempts to perform cryp-
tographic authentication. If that attempt fails, that server requests a password from
the user. Were this likely to remain unchanged, the administrator would configure the
authentication routines directly in the SSH daemon. However, the Drib is experi-
menting with one smart card system and plans to try two more. Because such a sys-
tem would require changes in the authentication methods, the system administrator
has elected to use PAM to avoid having to modify the source to the SSH server,
recompile, and reinstall.44

The UNIX system used for the Web server system allows the use of an MD-5-
based password hashing mechanism. The advantage of this scheme over the standard
UNIX scheme is that the passwords may be of arbitrary length. The password chang-
ing program on the Web server system is set to require passwords to have a mixture
of letters, numbers, and punctuation (including white space) characters. When a
password is changed, the password changing program runs the proposed password
through a series of checks to determine if it is too easy to guess.45 If not, the change is
allowed.

The system administrator has disabled password aging. Password aging is
suitable when reusable passwords may be tried repeatedly until guessed, or if the
hashed passwords can be obtained and cracked.46 Here, all user connections come
from the trusted administrative host, so only users who are authorized to use that sys-
tem can get to the Web server system’s SSH server. These users are trusted. The pur-
pose of password aging is to limit the danger of passwords being guessed. Because
the only users who could guess passwords are trusted not to do so, password aging is
unnecessary.

24.5.2 Development Network System

The development system supports several users. It is in a physically secure area,
accessible only to Drib employees. However, employees other than developers (such
as custodians and managers) have access to the restricted area, so authentication con-
trols are required.47

43 See Section 8.3, “Public Key Cryptography.”
44 See Section 11.5, “Multiple Methods.”
45 See Section 11.2.2.3, “User Selection of Passwords.”
46 See Section 11.2.3, “Password Aging.”
47 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 535 Tuesday, September 28, 2004 1:46 PM

536 Chapter 24 System Security

Item DC1 means that each user must self-authenticate at login. Although the
Drib is moving toward a smart card system, each user currently has a reusable pass-
word. Because the users are not administrators (and therefore have no superuser priv-
ileges), cracking of passwords would gain them additional privileges. Hence,
password aging is in effect. The mechanism uses the time-based approach. Once
changed, a password may not be changed again for 3 days. Because the Drib has
administrators present at all times, if a user suspects a compromise, the system
administrator can reset the password. The Drib computed that guessing passwords in
180 days would require more computing power than was conveniently available on
site, so the system administrators require users to change their passwords every 90
days. One week before a user’s password expires, the user is warned at login that the
password is about to expire. Once the password expires, the user may begin logging
in but will be asked for a new password before the login can be completed. The user
is also given the option of terminating the login at that point rather than supplying a
new password.48

Each proposed password is checked to ensure that it is not easy to guess.49

The criteria include a mixture of case, character type, length, and testing against var-
ious word lists and transformations of those lists. Like the Web server system, the
development system uses a password hashing scheme based on MD-5.

Although the Drib does not expect to upgrade the methods of authentica-
tion on the development system, that system uses PAM to provide a uniform,
consistent interface for authentication. The system maintainers found that pro-
viding consistency and simplicity, as the interface to PAM does, eases the burden
of administration.

To allow developers to access the system from anywhere within the Drib’s
offices, the development system runs an SSH server. This is configured to accept
connections from any system within the internal network. It validates host identities
using public key encryption and validates users using public key authentication,
smart card authentication, and (if needed) password authentication.50 However, to
meet item DC3, root access is blocked. A system administrator must log in as an
ordinary user and then change to root. To enforce this, the server’s configuration file
disallows root logins, and the system is set to disallow root logins on all terminals
(network terminals and console). Other role accounts simply have a password hash
that cannot be produced when any password is entered. Thus, users cannot log into
them. To gain access, administrators must use a special program on the workstation
that validates their identities, and then checks their authorization to access the
desired role account.51

48 See Section 11.2.3, “Password Aging.”
49 See Section 11.2.2, “Countering Password Guessing.”
50 See Section 13.6.1, “Host Identity.”
51 See Section 13.4, “Groups and Roles.”

Bishop.book Page 536 Tuesday, September 28, 2004 1:46 PM

24.6 Processes 537

EXAMPLE: The programs lsu [104] and sudo both implement role-based access con-
trol for a variety of UNIX systems. These programs require that the user enter his or
her password and then, if the password is validated, determine whether or not the
user is authorized to assume the requested role.

24.5.3 Comparison

Both the DMZ Web server system and the devnet system use strong authentication
measures to ensure that users and hosts are correctly authenticated. The SSH server
requires cryptographic authentication of not only the user but also the host from
which the user is connecting, and the server responds only to known hosts. Host and
user identities are established using the RSA public key cryptosystem. The certifi-
cates are initialized by trusted system administrators, so systems that are set up by
unauthorized personnel will not be able to connect over SSH to any Drib system.

Both systems also allow reusable passwords. However, the DMZ Web server
system uses an MD-5-based hash, whereas the development system uses the tradi-
tional UNIX DES-based hash, because it is the version supported by NIS. An unde-
sirable side effect is that reusable passwords on the development system are
restricted to a maximum of eight characters, whereas those on the DMZ Web server
system may be of arbitrary length. This also explains why the development system
uses password aging but the DMZ Web server system does not. Because the users of
the Web server system have chosen very long passwords, attackers are expected to
take much longer to guess them than if they were only eight characters long, as they
are on the development system—assuming that attackers can even get to the SSH
server on the DMZ Web server system.

24.6 Processes

A system runs a collection of processes to perform specific tasks. Each process is a
potential vulnerability. This section examines the processes run on both systems.

24.6.1 The Web Server System in the DMZ

As required by WC5, the Web server runs a minimum set of processes52 because its
function is only to serve Web pages and batch transactions for off-line processing.
The required services are as follows.

52 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 537 Tuesday, September 28, 2004 1:46 PM

538 Chapter 24 System Security

• Web server
• Commerce server
• SSH server
• Login server, if there is a physical terminal or console
• Any essential operating system services (such as pagers)

Items WC2 and WC3 require each server to run with a minimum of privi-
leges. The SSH and login servers need enough privileges to change to the user log-
ging in. The Web and commerce servers run with minimal privileges, because they
only need to access public data. Neither the login nor the commerce server accepts
network connections.53 The former is tied to specific, hard-wired terminals (such as
a console); the latter simply responds to interprocess communication from the Web
server.

EXAMPLE: A typical UNIX system will have the following daemons running.

• init, the login server
• sshd, the SSH server
• webd, the Web server
• commerced, the commerce server
• Various servers for the operating system

For example, a Solaris system running with minimal services will include a schedul-
ing process, a paging process, a file system flushing process, and a process for
recording logins and logouts. Enabling of accounting creates one more process, but
the information gleaned may provide guidance for optimizing the performance of the
system.

Consider the level of privilege that the servers need.54 The SSH server must
run with sysadmin privileges to support the remote access and tunnelling facilities.
The login server (if present) must run with this level of privilege also. The Web
server requires enough privileges to read Web pages and invoke subordinate CGI
scripts. The Web pages can be world-readable, so the Web server simply needs mini-
mal privileges. The CGI scripts manipulate Web pages or generate transaction data,
and with appropriate settings of file permissions can write into the Web server’s area.
The commerce server needs enough privileges to copy transaction files from the Web
server area to the transaction spooling area. However, it should not have enough priv-
ileges to alter Web pages. Other required servers run with appropriate privileges.

53 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
54 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 538 Tuesday, September 28, 2004 1:46 PM

24.6 Processes 539

EXAMPLE: A program may require extra privileges when it begins. Most UNIX sys-
tems require that only root programs be able to access network ports with numbers of
1023 or lower. These UNIX systems do not enforce the principle of complete media-
tion, because access is checked only when the port is opened. This allows two
approaches to minimizing of privileges.

The Web server can run with root privileges. As soon as it opens the network
port, it discards those privileges. So it runs as the user webbie. This requires special
code in the Web server to drop the privileges. If the Web server does not do this, a
second approach is to write a wrapper program that runs as root, opens the port,
spawns the Web server (as the user webbie), and passes the file descriptor corre-
sponding to the port to that process. The wrapper then terminates.

File access is an important issue. File system access control lists55 provide
one defense. We can adapt another defense from capabilities.56 Recall that in a pure
capability system, the capability names the object; if the subject does not possess the
capability, it cannot even identify an object. An access control-based system does not
work this way. However, if we can change the meaning of a file system name, then
we can confine all references to a particular part of the file system. The Web server,
for example, needs to reference only programs and files within the hierarchy of Web
pages (and CGI scripts). The commerce server needs access only to the transaction
spooling area and the area where the Web server’s CGI script places transactions.

EXAMPLE: Most UNIX systems provide a system call chroot that changes the pro-
cess’ notion of the root of the file hierarchy. For example, suppose a process wishes
to open the file /usr/web/pages/index.html.The appropriate system call would be

if ((fd = open(“/usr/web/pages/index.html”,
O_RDONLY)) < 0)
perror(“open /usr/web/pages/index.html for reading
failed”);

But the system call chroot(“/usr/web”) changes the process’ notion of root to usr/web
rather than /. After this, the system call that would open the same file as above is

if ((fd = open(“/pages/index.html”, O_RDONLY)) < 0)
perror(“open /usr/web/pages/index.html for reading
failed”);

because the kernel maps the first / in /pages/index.html to the directory /usr/web.
Every full path name that the process refers to uses /usr/web as its beginning. The
process could not directly refer to the file /usr/trans/1.

55 See Section 14.1, “Access Control Lists.”
56 See Section 14.2, “Capabilities.”

Bishop.book Page 539 Tuesday, September 28, 2004 1:46 PM

540 Chapter 24 System Security

 Depending on the nature of the
hierarchy, the process may be able to
refer indirectly to the file /usr/trans/1.
Some variants of the UNIX system
allow the superuser to make links to a
directory. Consider the hierarchy
shown in Figure 24–1. The directory
xdir is a child of trans, so the entry ..
in xdir refers to trans. The superuser
has created a hard link in web that
refers to xdir. Now suppose a process
executes the call chroot(“/usr/web”).
The process can no longer access /usr/
trans/1 by that name, but it can access
it as xdir/../1 because the change in
root does not affect the interpretation
of the path name.

This shows that, in addition to
the chroot, the file hierarchy in which

the process is rooted must not have any hard links extending to directories not in that
file hierarchy.

Finally comes interprocess communication. Processes should be able to com-
municate only through known, well-defined communication channels.57 The issue
here is how the Web server communicates with the commerce server to tell it that
transaction files are present, and the names of those files.

The simplest method of communication is to use the directory that both the Web
server and commerce server share. The commerce server periodically checks for files
with names consisting of trns followed by a set of digits. When a transaction begins,
the CGI script creates a temporary transaction file. It builds the transaction data and
enciphers it using the appropriate public key. It then renames the temporary file with a
name consisting of trns followed by the integer representation of the date and time, fol-
lowed by one or more digits. (See Exercise 5.) When the commerce server checks the
directory, it moves any files with that type of name to the spooling area.

If the Web server and commerce server run with the same real or effective
UID, or either runs with superuser privileges,58 then they can communicate using the
UNIX signaling (asynchronous interrupt) mechanism. If an attacker acquires access
through the Web server, and can signal the commerce server, then the attacker can
damage the Drib with a denial of service attack. Hence, the Web server and the com-
merce server should run as distinct users, with different privileges.

57 See Chapter 16, “Confinement Problem.”
58 See Section 13.3, “Users.”

/

usr

Web

pages

trans

xdir 1

Figure 24–1 A UNIX file system. The
directed edges indicate the parents
of each directory. A hard link to
“xdir” lies in “Web.”

Bishop.book Page 540 Tuesday, September 28, 2004 1:46 PM

24.6 Processes 541

24.6.2 The Development System

Unlike the DMZ Web server system, the development workstation serves developers
who will compile, test, debug, and manage software. They will also write reports and
analyses, communicate with other developers on different systems in the devnet, and
send and receive electronic mail over the Internet. The system must support all these
functions.

Consider servers and clients first. The devnet workstations may run servers to
provide administrative information (such as who is currently logged into the system).
These servers require administrative users. As discussed in Section 24.4.2, item DC2
requires these users to be local. Item DC1 requires that users be named (and num-
bered) consistently. The NIS protocol provides user information to clients, ensuring
this consistency. Hence, the devnet workstation runs NIS clients. Similarly, the work-
station runs NFS clients to satisfy item DC6. Servers run with the fewest privileges
necessary to perform their tasks. In many cases, servers begin with root privileges to
open privileged ports. They then drop privileges to a more restricted user.59

EXAMPLE: Consider a mail server on the devnet mail server system. It must listen
for connections on port 25. That port (and all ports with numbers less than 1024) can
be opened only by root processes, but the mail server itself need not run as root to
perform other functions. It can forward mail to the central mail server as an ordinary
user. Thus, two alternatives arise.

Some mail servers allow the system administrator to specify an execution
UID. The mail server begins execution as root (either by being setuid to root or, more
commonly, by being started at boot time), opens port 25, and then switches to the
execution UID. The disadvantage of this approach is that the saved UID is root. If an
attacker can trick the server into executing a system call to set the UID to root, the
mail server can do so. This means that the mail server must be carefully pro-
grammed, as discussed in Chapter 26, “Program Security.”

The second approach is to use a wrapper. The wrapper runs as root. It opens
port 25, redirects standard input and output to that port, drops privileges, and then
spawns the mail server. For this to work, the mail server must be able to read mes-
sages from the standard input and write messages to the standard output.

The abilities of the mail server dictate which approach to use.

Server processes on the development machine run with as few privileges as
necessary, as required by item DC2. Whenever possible, they run with the nobody
UID and the nogroup GID to ensure that the clients can obtain only information that
the developers deem public (that is, available to others within the confines of the
Drib’s internal network).60 When access to privileged ports is required, one of two
methods is used. In the first, the inetd daemon (which runs with root privileges)

59 See Section 12.2.1, “Principle of Least Privilege.”
60 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 541 Tuesday, September 28, 2004 1:46 PM

542 Chapter 24 System Security

listens for messages at the port. When a message is received, inetd spawns the server
with the limited privileges. In the second method, the server starts with root privi-
leges, opens the ports and other files accessible only to root, and drops to a lesser
privilege level. This minimizes the actions that the process takes when it has unlim-
ited privilege.61 It also allows the operating system to enforce normal file system
access checks.62 As with the WWW server system, the servers run in a subtree of the
file system whenever possible.

To satisfy item DC3, the development system has a logging mechanism that
can record any operating system call, its parameters, and the result.63 Logged infor-
mation is recorded locally and sent to a central logging server. The security officers
monitor the logs from that server using an intrusion detection system.64 If an attack
is suspected, the central logging server can instruct the kernel to begin (or cease)
recording data to augment the current set of data. Initially, the system logs process
initiation and termination, along with the audit UID and effective UID of the user
executing the command.

In addition to requiring the use of file servers, item DC6 requires that the
workstations have sufficient disk space available for local users’ work. To meet this
goal, every night, or when disk space reaches 95% of capacity, a program scans the
file system and deletes auxiliary files such as editor backup files and files in tempo-
rary directories that are not in current use (defined as not having been accessed
within the last 3 days).

As required by item DC1, the devnet workstations allow remote access using
SSH. This allows devnet users to test software using multiple workstations, which is
useful when the software involves network connections or concurrency. It also
allows system administrators to log in remotely to perform maintenance activities.

24.6.3 Comparison

The DMZ Web server system uses a minimalist approach: only those processes nec-
essary for the Web server, remote administration, and the operating system are
present. All other processes are eliminated. This requires that any new software be
compiled on other systems and that all development be done elsewhere. Only those
programs essential to the serving of Web pages, to remote administration, and to the
operating system are available. The number of processes active at any time on this
system is small.65 By way of contrast, the devnet system must provide an environ-
ment in which developers can be productive. This requires that more programs be
available, and that more processes be active, than on the DMZ Web server system.

61 See Section 12.2.1, “Principle of Least Privilege.”
62 See Section 12.2.4, “Principle of Complete Mediation.”
63 See Section 21.3, “Designing an Auditing System,” and Section 21.4, “A Posteriori Design.”
64 See Chapter 22, “Intrusion Detection.”
65 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 542 Tuesday, September 28, 2004 1:46 PM

24.7 Files 543

Compilers, scripting languages, Web servers, and other tools help the developers
carry out their tasks.

Both systems run servers with the minimum level of privilege needed. This
includes not only minimizing user privileges but also restricting the environment in
which the process runs.66 The difference between the systems is that the “minimum
environment” for the DMZ Web server system is different from the minimum envi-
ronment for the Web servers on the devnet systems. In the latter, users wish to share
data, so users must be able to place data into areas in which the devnet system’s Web
server can make it available to other users on the development network. The DMZ
Web server system has no such requirement.67 The root user installs all new Web
pages. So the Web server needs to serve data only from a part of the file system to
which the root user can write. No other user needs access, except for the commerce
user—and that user has tightly restricted access.

Both systems have processes that log information, but the types of the logging
processes differ. The devnet system has a log server that accepts messages from other
programs, timestamps and formats them, and writes them to locations specified in a
control file. This conforms to the way most UNIX-like systems handle logging and
allows devnet systems to use off-the-shelf software. The DMZ Web server system has
no such daemon. Each program writes log entries to a local log and to a remote dae-
mon on the log server.68 This minimizes the number of servers on the DMZ Web
server system.

24.7 Files

The setting of protection modes, and the contents of files, affect the protection
domains of users and so are critical to a system satisfying a security policy. Again,
consider each system separately.

24.7.1 The Web Server System in the DMZ

The Web server system’s goal is to serve the Web pages. The system programs and
configuration files will not change; only the Web pages, log files, and spooling area
for the electronic commerce transactions will change. To preserve their integrity, as
required by item WC4, all system programs and files are on a CD-ROM. When the
system boots, it boots from the CD-ROM. The CD-ROM is mounted as a file system,
so even if attackers can break into the Web server, they cannot alter system files or

66 See Section 12.2.1, “Principle of Least Privilege.”
67 See Section 12.2.7, “Principle of Least Common Mechanism.”
68 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 543 Tuesday, September 28, 2004 1:46 PM

544 Chapter 24 System Security

configuration files.69 A hard drive provides space for temporary and spooled files, for
the home directories of authorized users, and for portions of the Web pages.

Because the Web pages change often, it is not feasible to burn them onto a
CD-ROM. However, the CGI programs change very infrequently, and are to be pro-
tected from any attacker who might gain access to the system, as required by item
WC4. Hence, the Web page root directory, and the subdirectory containing the CGI
programs, are on the CD-ROM. In the Web page root directory is a subdirectory
called pages that serves as a mount point for a file system on the hard drive. That file
system contains the Web pages. In other words, an attacker can alter Web pages, but
cannot alter the CGI programs or the internal public key, which is also kept in a
directory under the Web page root directory on the CD-ROM. (See Exercise 10.)

When the system boots, one of its start-up actions is to mount two directories
from the hard drive onto mount points on the CD-ROM. The hard drive file system
containing the Web pages is mounted onto the mount point in the Web page root
directory. A separate area, containing user home directories for the system adminis-
trators, a temporary file area, and spooling directories for transactions, is also
mounted on the root file system.

As dictated by item WC3, the Web server runs confined to the Web page root
directory and its subdirectories.70 An attacker who compromises the Web server
cannot alter the CGI programs, nor add new ones, but can only damage the Web
pages on the server.

The commerce server has access to the Web page directory and the spooling
area. When a CGI program has processed a request for an electronic transaction, it
names the transaction file appropriately (see Section 24.6.1). The commerce server
copies the data to the spooling area and deletes the original data. Because the Web
server is confined to the Web page partition, an attacker who seizes control of the
Web server will be unable to control the commerce server. Moreover, because the
CGI programs (and the containing directory) cannot be altered, an attacker could not
alter the programs to send raw data to the attacker. Because the CGI programs enci-
pher all data using a public key system before writing the data to disk, the attacker
cannot read the raw data there.71 The corresponding private key is on the internal
network, not the DMZ system, so the attacker cannot decipher the data without
breaking the public key system.72

The system administrator partition provides a home directory area when an
administrator logs in. It is small and intended for emergency use only.

EXAMPLE: Suppose the Web server system is a UNIX system and the Web server
runs as the user webbie. This user has access to all world-readable files, but to no oth-
ers. Moreover, the Web server changes its notion of the root directory to the root of
the Web page directory—on this system /mnt/www. The CGI programs are owned by

69 See Section 12.2.1, “Principle of Least Privilege.”
70 See Section 16.2, “Isolation.”
71 See Section 12.2.7, “Principle of Least Common Mechanism.”
72 See Section 8.3, “Public Key Cryptography.”

Bishop.book Page 544 Tuesday, September 28, 2004 1:46 PM

24.7 Files 545

root and are located in a separate directory, /mnt/www/cgi-bin, on the CD-ROM. The pub-
lic key used by the CGI program to encipher the data is in the directory /mnt/www/keys.
All three of these directories are owned by root and are not writable by anyone else.
The CGI program places all transaction data into the directory /mnt/www/pages/trans.
Because the executing process runs as the user webbie, this directory is writable by a group
containing the users webbie and ecommie.

The commerce server, running as the user ecommie, periodically checks the
directory /mnt/www/pages/trans for transaction files. When a transaction is com-
pleted, the CGI program names it appropriately. The commerce server then copies
the contents of the named file into the transaction directory spool /home/com/trans-
act area.

Both the commerce server and the Web server log to the log server.

Finally, WC5 also specifies that the number of programs on the system be
minimal.73 Fortunately, the system itself requires few programs. No compilers or
software development tools are available. Because all executables are statically
linked, the dynamic loader is not present (see Exercise 3). The only programs that are
available allow the users to log in and out; run commands (command interpreters);
monitor the system; copy, create, edit, or delete files; and stop and start servers. Pro-
grams such as mail readers, news readers, batching systems (the at and cron com-
mands), and Web browsers are not present. This minimizes what an attacker can
compromise.

WC4 suggests that the integrity of the system should be checked. Periodically,
or whenever there is a question about the integrity of the system, the Web server is
stopped, transaction files are transferred, the system is rebooted from the CD-ROM,
the hard drive is reformatted, and the contents of the user and Web page areas are
reloaded from the internal Web server system clone mirroring the DMZ system (see
Section 23.3.3.2). This restores the Web pages and user directories to a known, safe
state. If an attacker has left any back doors or other processes to gather information,
the reformatting of the hard drive eliminates them.

24.7.2 The Development System

The development system’s goal is to provide the resources that developers need to
develop new software for the Drib’s products and (if necessary) infrastructure and
systems. This requires a variety of software. A site can take two approaches.

The first approach is to allow each developer to configure his or her own work-
station. The Drib rejected this approach because it would create too many different sys-
tems for the system administrators to manage. Furthermore, tools available on one
workstation might not be available on another, violating the interchangeability required
by item DC6. Meeting item DC5 would also be infeasible because read-only media

73 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 545 Tuesday, September 28, 2004 1:46 PM

546 Chapter 24 System Security

would have to be created for each workstation separately—an effort that was deemed
unacceptable.74

The second approach is to develop a standard configuration that provides
developers and system administrators with needed software tools and configuration
settings. To create such a configuration, the Drib policy managers gathered develop-
ers, system administrators, security officers, and all other users of the development
workstations. The group developed a configuration that met the Drib’s policies and
that was acceptable to as many people as possible, and ensured that all members of
the group were willing and able to use systems with that configuration.75 The system
administrators then installed and configured a base system on an isolated workstation
system and created a bootable CD-ROM. This CD-ROM was copied and given to all
developers. The developers use this CD-ROM to boot their workstations, ensuring
that the resulting configuration is the standard one. All updates and upgrades are
made to that isolated workstation system and tested, and a new CD-ROM is created.
The CD-ROM is copied and distributed to the developers. This eliminates the
problem of inconsistent patching or upgrading of workstations.76 It also ensures that
files are available on all workstations (through mounting of the central file server’s
file systems) and that the naming scheme is consistent (through use of the same user
database system), satisfying items DC1 and DC5. Finally, the local system
configurations of all workstations are identical, so all have the same administrative
accounts.

Some members of the group pointed out the need for local writable storage. In
the event that no file servers are available, the local administrators may need to create
files (for example, to save output from a program for analysis). Furthermore, spool
files require space, and many programs use temporary storage. Hence, each worksta-
tion has a hard drive with several file systems. When the computer boots from the
CD-ROM, the root file system is located on the CD-ROM itself. All system programs
and configuration files lie on the CD-ROM, as indicated above. During the boot, the
workstation mounts the file systems on the hard drive at mount points in the CD-
ROM file system. This provides the workstation with appropriate writable storage,
satisfying item DC5.

This approach also prevents developers from adding new system programs to
the workstations. Programs can of course be added to the writable file systems, but
adding a program to the configuration requires that it be added to the isolated system
and that new CD-ROMs be burned.77 This satisfies part of item DC4. Procedural
mechanisms (ranging from warnings to firings) enforce the requirement that pro-
grams be inspected before they are added to the writable file system. The organiza-
tion of the various file systems allows the writable media to be wiped during the boot
procedure, eliminating any and all programs added to the workstation. This is part of
the recommended boot procedure, but it can be skipped if spool files are queued.

74 See Section 12.2.8, “Principle of Psychological Acceptability.”
75 See Section 12.2.5, “Principle of Open Design.”
76 See Section 12.2.7, “Principle of Least Common Mechanism.”
77 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 546 Tuesday, September 28, 2004 1:46 PM

24.7 Files 547

Wiping the writable disks deletes some local log files. However, the logging
server also forwards log messages to an infrastructure system that records messages
from all workstations. Security analysts examine these logs using various analysis
tools, including host-based and network-based intrusion detection tools, to detect
misuse and attacks. To validate that the analysis tools are working as expected and
are configured correctly, every day the analysts select 30 minutes’ worth of log
entries and examine them to determine if the analysis tools correctly analyzed those
entries. The analysis either validates the security mechanisms and procedures as
effective, or reports (or finds) problems. This serves two purposes: validation of the
current configuration and software (item DC4)78 and detection of security incidents
(item DC8).79

The use of read-only media eliminates the need for integrity checking of the
development system binaries and configuration files. Scans of the writable media
locate files that match patterns of intrusions. When such files are found, the security
officer merely reboots the system, wiping the writable hard drive. This cleans up the
workstation. An extensive check of the file servers follows.

EXAMPLE: The UNIX file scanning program binaudit [98, 103] allows the system
administrator to describe the names and attributes of files. If files do not match the
attributes, an alarm is raised. Other programs such as Tiger [768], COPS [309], and
TITAN [308] report files with names that match suspicious patterns. The Drib’s
developers developed their own tool to perform both of these functions.

24.7.3 Comparison

Both the Web server system and the development system rely on physical protection
of media to prevent unauthorized alteration of system programs and configuration
files. Both boot from the CD-ROM and use the CD-ROM’s file system as the main
file system. Because some files on both systems must change (for example, transac-
tion files on the Web server system and spooled files on the development system),
both have file systems on writable media that are mounted on the main file system.80

When the Web server system must be reloaded (because the integrity of the
system may have been violated), the spooled transaction files are removed from the
system, the system is booted, and the writable medium is reformatted. Then the Web
pages and user directories are reloaded from a clone kept in a state known to be safe.
The development system does not require this, because any nontransient files are
kept on a centralized file server that is itself regularly checked. The only local files
are temporary files that the users can reinstantiate when they log back in, so the

78 See Section 17.1.3, “Assurance Throughout the Life Cycle.”
79 See Chapter 22, “Intrusion Detection.”
80 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 547 Tuesday, September 28, 2004 1:46 PM

548 Chapter 24 System Security

system is simply rebooted and the media reformatted. Because the main file system
is on a CD-ROM, its integrity is ensured.

The differences between the approaches used in developing the two CD-
ROMs spring from the question of attack from within the company. The develop-
ers are all trusted not to attack the workstation, because at any time a developer
may have to use any workstation. However, the developers may be used as “vec-
tors of attack” if they should (accidentally or deliberately) make errors in pro-
gramming or bring in software from untrusted sources.81 This led to the
consensus-based development of the workstation CD-ROM. The developers had
great influence, because they would be using the workstations. Security was a
consideration, but it was weighted against productivity and morale. The outer,
inner, and devnet firewalls were to provide the bulwark of the security for the
development network systems.82

The set of users trusted to work on the DMZ Web server system was much
smaller. Thus, the DMZ Web server system was designed to withstand attack
from both the Internet and the internal network. For example, the Web server
originally was intended to handle transactions; the security people vetoed this as
allowing too many potential attacks, and instead suggested the staging approach,
in which the DMZ Web server acts as a proxy for the transaction processing sys-
tems on the customer data subnet (see Figure 23–1). The construction of the CD-
ROM began with the security officers devising the most secure, minimal Web
server system they could construct and then adding those features necessary for
the Drib’s special needs.83 They monitor activities on the Web server, and several
vulnerability tracking lists and news services, to ensure that they are up to date
on all potential problems.

The DMZ Web server system is self-contained in that all files are local. None
are served remotely.84 If an attacker alters files, a reboot and a reload restore the files
to their original state. No other system depends on those files. However, the develop-
ment workstation relies on file servers. This removes user file integrity from the pur-
view of the development workstation’s security. Integrity of the configuration
becomes critical, to ensure that the right servers are used, but the CD-ROM ensures
that the configuration file data is correct. However, the security of the development
systems depends more on the security of the infrastructure of the development net-
work than the security of the DMZ Web server system depends on the security of the
infrastructure of the DMZ network.

81 See Section 19.6, “Defenses.”
82 This approach violates the principle of fail-safe defaults, but it was deemed necessary to
allow the developers to be as productive and effective as possible. This illustrates a tension
between the principle of fail-safe defaults and the principle of psychological acceptability (see
Exercise 11).
83 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
84 See Section 12.2.7, “Principle of Least Common Mechanism.”

Bishop.book Page 548 Tuesday, September 28, 2004 1:46 PM

24.8 Retrospective 549

24.8 Retrospective

This section briefly reviews the basics of the security of the systems.

24.8.1 The Web Server System in the DMZ

The Web server on the DMZ Web server system runs a minimal set of services. It
keeps everything possible on unalterable media.85 Except for the Web server process,
the system accepts only enciphered, authenticated connections from a known, trusted
host by known, trusted users.86

The Web server process must accept connections from any host on the Inter-
net. However, all such connections go through an outer firewall that can (if desired)
be configured to reject requests.87 This means that denial of service attacks could be
handled at the outer firewall and not by the DMZ Web server.

The Web server and commerce server run with minimal privileges. Neither
may communicate with the other except through a shared directory used to transfer
transaction requests from the public Web server area to a private spooling area from
which they can be retrieved through the enciphered link.88 The transaction files
themselves are enciphered using a public key algorithm, so an attacker who compro-
mises the Web server cannot alter the transaction files, but can only delete them. To
minimize this risk, the commerce server moves the transaction files as quickly as
possible to an area that is inaccessible to the Web server.

Access to the administrative account requires that the user access a trusted
host (the internal trusted administrative host) and then authenticate to the DMZ Web
server using a public key protocol. Automated processes will authenticate on the
basis of the host from which they are run, which is the internal trusted administrative
host. The SSH server ignores connections from other hosts, and host identity is deter-
mined using public key authentication, not IP addresses.

Other servers and programs are simply deleted from the system, so they cannot
be run even by accident.89 This simplifies system maintenance. It also deprives any
attackers of available tools should they penetrate the Web server system.

85 See Section 12.2.1, “Principle of Least Privilege.”
86 See Section 12.2.4, “Principle of Complete Mediation.”
87 See Section 12.2.6, “Principle of Separation of Privilege.”
88 See Section 16.2, “Isolation.”
89 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 549 Tuesday, September 28, 2004 1:46 PM

550 Chapter 24 System Security

24.8.2 The Development System

The development system also runs a minimal set of programs and services.90 The
notion of “minimal” is different for the development system than for the DMZ Web
server system, because the systems must serve many functions. Users compile and
debug programs. They test programs, and they integrate different programs into a
single software system. They may use ancillary hardware (such as embedded sys-
tems) to support the development. The development systems must support this func-
tionality.

Given this, security plays a prominent but not dominant role. Hidden behind
three firewalls, each development workstation has sufficient security mechanisms to
hinder attackers, and to allow quick recovery if an attack does occur,91 but these sys-
tems rely more on the infrastructure than does the DMZ Web server system.

The development system allows a large number of users access from any
development network system and (possibly) from systems in other subnets of the
internal network. User information resides in a centralized repository to maintain
consistency across all development systems. Reusable passwords are supported, and
password aging is not enforced. However, passwords are tested for strength before
they are accepted, and the security officers periodically try to guess passwords. Other
password schemes are also supported.

Backups occur daily. Because each workstation has a local writable area,
users may keep files in that area rather than place them on the file servers. These
areas are backed up. The dumps are typically small, because most users work on
directories mounted from the file servers. The main reason for these backups is to
preserve the log files should an investigation require them.

24.9 Summary

This chapter refined parts of a security policy to derive requirements for mechanisms
on systems to implement the policy. The mechanisms rely in part on infrastructure
systems and the environment in which those systems function. The server in the
DMZ is based on assumptions under which a small set of users is trusted, and every-
one else is distrusted. This leads to a system that provides minimal services. System
files are kept on protected media so that they cannot be physically altered. Other
files, such as those containing transactions, are protected using cryptographic mecha-
nisms so that alterations will be detected, and sanity checks are performed on their
contents both before encryption and after delivery and decryption. By way of con-
trast, the development workstations are general-purpose workstations designed to
support a development environment. They support many more functions, and more

90 See Section 12.2.1, “Principle of Least Privilege.”
91 See Section 22.6.2, “Intrusion Handling.”

Bishop.book Page 550 Tuesday, September 28, 2004 1:46 PM

24.11 Exercises 551

open access, than the DMZ server. Furthermore, their user population is trusted to a
greater degree than that of the DMZ Web server. This leads to differences in infra-
structure support and workstation configuration.

24.10 Further Reading

Many books discuss system administration and security for UNIX and UNIX-like
systems [30, 341, 347, 380, 685], Windows systems [450, 479, 609, 946], and Mac-
intosh systems [744].

As sites grow in complexity and number of systems, automated system
administration tools are becoming more important. Several authors [142, 143, 214,
317, 387] discuss systems for administering sites.

The role of policy is increasingly driving work in systems administration. The
balance between centralized system administration and distributed system admini-
stration is delicate [430, 792], as is the balance between security and convenience
[474, 747]. Others [391, 444, 968] focus on case studies of system administration
and policy. Burgess [144] discusses some theory to evaluate system administration
policies. Sloman [839] and Lupu and Sloman [584] discuss policy and framework in
the context of distributed systems. Kubicki [536] adapts the Capabilities Maturity
Model to the examination of quality control in system administration.

24.11 Exercises

1. A system administrator on a development network workstation wants to
execute a program stored on a floppy disk. What steps could the Drib take
to configure the workstation to prevent the system administrator from
mounting the floppy and executing the program?

2. Suppose a user has physical access to computer hardware (specifically, the
box containing the CPU and a hard drive). The user does not have an
account on the computer. How can the user force the computer to shut
down? To reboot?

3. Some systems support dynamic loading, in which system library routines
are not loaded until they have been referenced. A library can be updated
independently of any programs that use the library. If the program loads
the library routines dynamically, the updated routines will be used. If the
program does not load the library routines dynamically, the program will
use the versions of the routines that were in the library at link time. This
exercise examines this property from the viewpoint of security.

Bishop.book Page 551 Tuesday, September 28, 2004 1:46 PM

552 Chapter 24 System Security

a. From the point of view of assurance, what problems might dynamic
loading introduce? (Hint: Think about the assumptions the
programmer made when writing the code that calls the library
functions.)

b. Does dynamic loading violate any of Saltzer and Schroeder’s
principles of secure design [773]? (See Chapter 12.) Justify your
answer.

c. If an attacker wanted to implant a Trojan horse into as many
processes as possible, how would dynamic loading lower the
amount of work that the attacker would need to do?

4. Suppose there is no system dedicated to the bootable CD-ROM discussed
in Section 24.7.2. How would you go about constructing such a CD-
ROM? Discuss procedures, and justify them. What is the problem with
updating a running system and burning a CD-ROM of the changes only?

5. The Web server on the DMZ Web server system renames temporary files
used to record transactions. The name has the form trns followed by the
integer representation of the date and time, followed by one or more digits.
Why are the extra digits necessary?

6. Consider a developer who has both an ISP workstation and a devnet
workstation on his desk, and who wants to move a program from the ISP
workstation to the devnet workstation.

a. Assume that the user is not allowed to mount media such as the
floppy disk. Thus, he would not be able to access the data on the disk
as though it were a file system. Would he be able to access the data
in some other way? (Hint: Must data on all media be accessed as
though it were a file system, or can it be read in some other way?)

b. Assume that the root user is asked to mount the floppy for the user,
so he can access data on it. What precautions should root take before
making the data available to the user?

c. Suppose the ISP workstation were removed. How could the Drib
prevent the developer from bringing a floppy into his office?

d. Suppose the floppy reader were removed from the development
network workstation. Would this solve the problem? Why or why
not? Discuss the advantages and disadvantages of this approach.

7. The second line of the Web server starting script puts the process ID
number of the Web server wrapper into a file. Why? (Hint: Think of how to
terminate the process automatically.)

8. This exercise reconsiders the use of NIS to distribute user information
such as password hashes.

Bishop.book Page 552 Tuesday, September 28, 2004 1:46 PM

24.11 Exercises 553

a. In general, why might an administration want to use encryption
techniques to protect the transmission of NIS records over a
network?

b. Why is secrecy of the NIS records not important to the system
administrators?

c. Assume the devnet firewall (and the inner and outer firewalls) did
not prevent outside users from monitoring the development network.
How important would secrecy of the NIS records be then? Why?

d. The NIS client accepts the first response to its query that it receives
from any NIS server. Why is physical control of the development
network critical to the decision not to use cryptography to protect
the NIS network traffic?

9. The system administrators on the development network believe that any
password can be guessed in 180 days of continuous trial and error. They
set the lifetime of each password at a maximum of 90 days. After 90 days,
a password must be changed. Why did they use 90 days rather than 180
days?

10. Section 24.7.1 discusses CGI scripts on the DMZ Web server system. It
points out that Web pages change too frequently to be placed on a CD-
ROM, but that the CGI scripts are changed infrequently enough to allow
them to be placed on the CD-ROM.

a. In light of the fact that the CGI scripts do not contain data, why is
their alteration a concern?

b. CGI scripts can generate Web pages from data stored on the server.
Discuss the integrity issues arising from storing of the data that
those scripts use on writable media but storing of the scripts
themselves on read-only media. In particular, how trustworthy are
the pages resulting from the script’s use of stored data? (Hint: See
Section 6.2.)

c. Assume that the CGI scripts are to be changed frequently. Devise a
method that allows such changes and also keeps the interface to
those scripts on read-only media. Where would you store the actual
scripts, and what are the benefits and drawbacks of such a scheme?

11. Brian Reid has noted that “[p]rogrammer convenience is the antithesis of
security” [747]. Discuss how the Drib’s trade-off between security and
convenience exemplifies the conflict between users (programmers) and
security. In particular, when should the principle of psychological
acceptability (see Section 12.2.8) override other principles of secure
design?

12. Computer viruses and worms are often transmitted as attachments to
electronic mail. The Drib’s development network infrastructure directs all

Bishop.book Page 553 Tuesday, September 28, 2004 1:46 PM

554 Chapter 24 System Security

electronic mail to a mail server. Consider an alteration of the development
network infrastructure whereby workstations download user mail rather
than mounting the file system containing the mailboxes.

a. The Drib has purchased a tool that scans mail as it is being received.
The tool looks for known computer worms and viruses in the
contents of attachments, and deletes them. Should this antivirus
software be installed on the mail server, on the desktop, or on both?
Justify your answer.

b. What other actions should the Drib take to limit incoming computer
worms and viruses in attachments? Specifically, what attributes
should cause the Drib to flag attachments as suspicious, even when
the antivirus software reports that the attachment does not contain
any known virus?

c. What procedural mechanisms (such as warnings) should be in place
to hinder the execution of computer worms and viruses that are not
caught by the antivirus filters? Specifically, what should users be
advised to do when asked to execute a set of instructions to (for
example) print a pretty picture?

Bishop.book Page 554 Tuesday, September 28, 2004 1:46 PM

555

Chapter 25
User Security

COMINIUS: Away! the tribunes do attend you: arm yourself
To answer mildly; for they are prepar’d

With accusations, as I hear, more strong
Than are upon you yet.

—Coriolanus, III, ii, 138–141.

Although computer systems provide security mechanisms and policies that can pro-
tect users to a great degree, users must also take security precautions for a variety of
reasons. First, although system controls limit the access of unauthorized users to the
system, such controls often are flawed and may not prevent all such access. Second,
someone with access to the system may want to attack an authorized user—for
example, by reading confidential or private data or by altering files. The success of
such attacks may depend on the victim’s failure to take certain precautions. Finally,
users may notice problems with their accounts, causing them to suspect compro-
mises. The system administrator can then investigate thoroughly.

This chapter considers a user of a workstation on the development network at
the Drib. The user’s primary job is to develop products or support for the Drib. It is
not to secure her system. We explore the precautions, settings, and procedures that
such a user can use to limit the effect of attacks on her account.

25.1 Policy

Most users have informal policies in mind when they decide on security measures to
protect their accounts, data, and programs. Few analyze the policies or even write
them down. However, as with the development of a network infrastructure, and of the
configuration and operation of a system, users’ security policies are central to the
actions and settings that protect them.

The components of users’ policies that we focus on are as follows.

Bishop.book Page 555 Tuesday, September 28, 2004 1:46 PM

556 Chapter 25 User Security

U1. Only users have access to their accounts.

U2. No other user can read or change a file without the owner’s permission.

U3. Users shall protect the integrity, confidentiality, and availability of their
files.

U4. Users shall be aware of all commands that they enter, or that are entered on
their behalf.

25.2 Access

Component U1 requires that users protect access to their accounts. Consider the
ways in which users gain access to their accounts. These points of entry are ideal
places for attackers to attempt to masquerade as users. Hence, they form the first
locus of users’ defenses.

25.2.1 Passwords

Section 11.2.2, “Countering Password Guessing,” discussed the theory behind good
password selection. Ideally, passwords should be chosen randomly.1 In practice, such
passwords are difficult to remember. So, either passwords are not assigned randomly,
or they require that some information be written down.

Writing down passwords is popularly considered to be dangerous. In reality,
the degree of danger depends on the environment in which the system is accessed
and on the manner in which the password is recorded.

EXAMPLE: Consider the isolated system that the development network administra-
tors use to create the CD-ROM from which other workstations boot (see Section
24.7.2). This system is kept in a locked room, and only the authorized users of the
system have keys. The system is not connected to networks or telephone lines and
can be accessed only from within that room. The password for the role account used
to construct the CD-ROM is written on a whiteboard in the room. Given that all users
of the isolated system are authorized to know that password, and that anyone else
entering the room is under observation, this arrangement meets policy component
U1. (But see Exercise 1.)

Users with accounts on many systems will choose the same password for each
system, choose passwords that follow a pattern, or write passwords down.2 On the

1 See Section 11.2.2.1, “Random Selection of Passwords.”
2 See Section 11.2.2.3, “User Selection of Passwords.”

Bishop.book Page 556 Tuesday, September 28, 2004 1:46 PM

25.2 Access 557

development network, the first of these is a result of centralizing the user database.
Even there, users (especially system administrators) may have multiple accounts,
including some on infrastructure systems that do not use the centralized user data-
base. These users must take precautions to protect their passwords.

EXAMPLE: The development network has 10 infrastructure systems (mail, file, Web,
and other servers). Anne and Paul are the lead system administrators for the infra-
structure systems. They must have privileged access to all those systems. To make
the root and Administrator passwords as difficult as possible to guess, those pass-
words are chosen randomly. But Paul and Anne cannot remember 10 random pass-
words. Instead, each has decided on a transformation algorithm.3 Anne’s is “Change
the third letter’s case, and delete the last character.” Paul’s is “Add 2 mod 10 to the
first digit, and delete the first letter.” The following table summarizes the actual pass-
words and what Paul and Anne have written on small pieces of paper that they carry
with them.

If someone obtains either Anne’s or Paul’s list, the thief will not be able to
determine the correct password before Anne or Paul notices that the list is missing
and takes appropriate action.

The users of development network workstations can choose their own pass-
words, but a proactive password checking program checks the proposed password
before accepting it.4 The proactive password checker rejects proposed passwords

3 See Section 11.2.2.1, “Random Selection of Passwords.”

Actual password Anne’s version Paul’s version

C04cEJxX C04ceJxX5 RC84cEJxX

4VX9q3GA 4VX9Q3GA2 a2VX9q3GA

8798Qqdt 8798QqDt$ 67f98Qqdt

3WXYwgnw 3WXywgnwS Z1WXYwgnw

feOioC4f feoioC4f9 YfeOioC2f

VRd0Hj9E VRD0Hj9Eq pVRd8Hj9E

e7Bukcba e7BUkcbaX Xe5Bukcba

ywyj5cVw ywYj5cVw* rywyj3cVw

5iUikLB4 5iUIkLB4m 3JiUikLB4

af4hC2kg af4HC2kg+ daf2hC2kg

4 See Section 11.2.2.3, “User Selection of Passwords.”

Bishop.book Page 557 Tuesday, September 28, 2004 1:46 PM

558 Chapter 25 User Security

that are deemed too easy to guess.5 Most users choose verses of poetry or sayings,
and use them to generate their passwords.

EXAMPLE: The third verse of the nonsense poem Jabberwocky [156] is

He took his vorpal sword in hand:
Long time the manxome foe he sought—
So rested he by the Tumtum tree,
And stood awhile in thought.

Marilyn, a developer at the Drib, chose her password by taking the first letter of the
second and fourth words from each line and putting an “&” between them. Her pass-
word is “ttrs&vmbi.”

If a user chooses a password that is easy to guess, it may cause a violation of
policy component U1.

25.2.2 The Login Procedure

To log in, the user must supply her login name and authentication information. First,
the user obtains a prompt at which she can enter the information. She then logs in.

The first potential attack arises from the lack of mutual authentication on most
systems. An attacker may place a program at the access point that emulates the login
prompt sequence. Then, if the user has a reusable password, the name and password
are captured. Crude versions of this Trojan horse6 save the name and password to a
file and then terminate by spawning a legitimate login session. The user will be
reprompted for the information. Most users simply assume that they have mistyped
some part of the password (which, after all, is usually not printed) and proceed to
repeat the login procedure. A more sophisticated version saves the name and pass-
word to a file and then spawns the login process and feeds it the name and password.
The program terminates, giving control of the access point to the login process.

EXAMPLE: Students at many university sites in the 1970s tried this attack in public
terminal rooms. They had varying degrees of success. An early version of one operat-
ing system had a feature that defeated the crude versions of this attack. If a user
mistyped his name or password, the login program would reprompt him for this
information. However, the prompt for the user name would change from “Login:” to
“Name:”. If a user saw the prompt “Login:” twice in a row, he had reason to believe
that a spoof was underway.

5 An example set of criteria begins on p. 178.
6 See Section 19.2, “Trojan Horses.”

Bishop.book Page 558 Tuesday, September 28, 2004 1:46 PM

25.2 Access 559

EXAMPLE: Secure Xenix [361] had an alternative approach that is common to sys-
tems that desire high assurance authentication of users. When a user wished to log in,
he struck a particular combination of keys that created a trusted path to the kernel.
No application program could disable this feature; no application program could
read or alter the information given to the kernel over that path. The kernel then per-
formed the identification and authentication processing and granted or denied the
user access.

The second potential attack arises from an attacker reading the password as it
is entered. At a later date, the attacker can reuse the password. This differs from the
first attack in that it succeeds even when the user and system mutually authenticate
each other. The problem is that the password is no longer confidential.

EXAMPLE: “Shoulder surfing” is a technique in which an attacker watches the target
enter the password. Variations on this attack include reading of the characters from
kernel variables, which requires that the attacker have access to those structures (usu-
ally as a result of a system configuration error7), and passive wiretapping of an unen-
ciphered connection.

The latter opportunity for reading the password is important. Many protocols,
such as ftp and telnet, do not encipher messages. If a user name and password are
sent over such a connection, they are visible at every intermediate node and network.
Other protocols, such as SSH and SSL, provide enciphered “tunnels” through which
other protocols can be sent.8 This provides the user with confidentiality even when
the protocols themselves do not. In some environments, this is unnecessary. For
example, the Drib firewalls block any traffic to the Internet, and hosts and networks
within the Drib are trusted not to capture network traffic. In other environments,
especially when messages are sent over untrusted links, enciphering of all messages
is prudent.

As part of the login procedure, many systems print useful information. If the
date, time, and location of the last successful login are shown, the user can verify that
no one has used her account since she last did. If the access point is shown, the user
can determine if some program is intercepting and rerouting her communications.

EXAMPLE: Suppose a user logs in from the console. After the login, the system
prints a message indicating that she last successfully logged in on the previous Tues-
day and was currently using a network terminal. The time of login happens to be cor-
rect, but the terminal is not, and the user should contact the system administrator.
One possible explanation is that a Trojan horse is capturing all commands, saving
them in a file, and then passing the commands back to the normal system login pro-
cess over a network connection.

7 See Section 24.4.2, “The Development System.”
8 See the examples in Section 10.4, “Example Protocols.”

Bishop.book Page 559 Tuesday, September 28, 2004 1:46 PM

560 Chapter 25 User Security

Policy component U1 suggests that the user should be alert when logging in.
If something suspicious occurs, or the link to the system is not physically or crypto-
graphically protected, an unauthorized user may acquire access to the system.

25.2.2.1 Trusted Hosts
The notion of “trusted hosts” comes from the belief that if two hosts are under the
same administrative control, each can rely on the other to authenticate a user. It
allows certain mechanisms, such as backups, to be automated without placing pass-
words or cryptographic keys on the system.

EXAMPLE: The Drib uses a remote backup scheme run from a backup system. It
logs into each system as the user “backup” and executes a backup program. The
backup program sends the data to be backed up over the network connection. If log-
ging in required a password, then an administrator password would have to be
present on the backup system. The Drib development network administrators consid-
ered this to be an unacceptable risk. Instead, they made all systems trust the backup
host. Then the backup user could simply log in without a password.

The trusted host mechanism requires accurate identification of the connecting
host. The primary identification token of a host is its IP address,9 but the authentication
mechanism can be either the IP address itself [493] or a challenge-response exchange10

based on cryptography [959]. The Drib uses the latter. This prevents IP spoofing.
The development network workstations use the cryptographically based

trusted host mechanism. The implementation provides enciphered and integrity-
checked connections. Because all development network workstations use the same
user information database, a developer need only log into one using a password. She
can then access any workstation on that subnet.

Hence, the development network provides an infrastructure that supports this
aspect of policy component U1.

25.2.3 Leaving the System

The Drib has many physical and procedural controls that limit access to its facility,
but some people not authorized to use the systems have access to the rooms in which
those systems reside. For example, custodians clean the rooms. If lights or air condi-
tioning units need to be repaired, maintenance workers need entry. Hence, physical
security is not sufficient to control access to the systems.

Users must authenticate themselves to begin a session. However, once authen-
ticated, the user must also control access to the session. A common problem is that
users will leave their sessions unattended—for example, by walking away from their

9 See Section 13.6.1, “Host Identity.”
10 See Section 11.3, “Challenge-Response.”

Bishop.book Page 560 Tuesday, September 28, 2004 1:46 PM

25.2 Access 561

monitors to go to the bathroom. If a custodian came into the room, she would see that
the monitor was logged in and could enter commands, thereby obtaining access to
the system even though she was not authorized to do so.

When a user of a system leaves a session unattended, he must restrict physical
access to the endpoint of the session.11 When that endpoint is a monitor or terminal,
a screen locking program provides an approriate defense against this threat.

EXAMPLE: The X window system provides a program called xlock. When run, xlock
blocks access to the monitor until the user’s password is entered. Only the user or the
system administrator can terminate the program without the password by sending an
appropriate termination signal to it from another session.

Screen locking programs may have security holes. The most common is a “master
password” that unlocks the terminal if the user forgets the password used to lock it.12

EXAMPLE: In one version of the UNIX operating system, the lock program
prompted the user for a password and then locked access to the terminal until the
password was entered. If the user forgot the password, the master password “Hasta la
vista!” would unlock the terminal. (See Exercise 2.)

A modem bank provides similar opportunities for open sessions. When a
modem detects carrier drop (that is, when the remote user hangs up), it terminates
the session. However, two problems arise. The first and simpler one is that the detec-
tion of carrier drop is configurable. Some modems have a physical switch that must
be set properly to detect the termination of a telephone call.13

EXAMPLE: The author once accessed a UNIX system through a modem to make
some changes in his role as a system administrator. Unfortunately, the configuration
of the system had changed so that he was unable to acquire superuser privileges. One
not only needed the password but also had to be a member of the group wheel.14 The
author logged out and hung up. When he accessed the system 20 minutes later,
through the same modem bank, the modem connected him to an ongoing session.
This session, left when a previous user had hung up without logging out, had super-
user privileges. The author made the required changes, sent electronic mail to warn
everyone to log out before disconnecting, and then logged out and hung up the tele-
phone. The next day, he checked the modem configurations and reset the switch that
detected carrier drop. (It had been bumped accidentally when someone was adding
two new modems to the rack of modems.)

11 See Section 12.2.1, “Principle of Least Privilege.”
12 Section 1.4, “Assumptions and Trust,” discusses the role of beliefs underlying security
mechanisms such as a screen locking program. Section 17.1.3, “Assurance Throughout the Life
Cycle,” discusses the role of assurance in developing software.
13 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
14 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 561 Tuesday, September 28, 2004 1:46 PM

562 Chapter 25 User Security

The second problem is similar but more subtle. Some older telephone systems
mishandle the propagation of call terminations. The result is a race condition,15 in
which a new connection arrives at the switch and is forwarded before the termination
signal arrives at the modem. The effect is exactly the same as in the example above:
the modem never sees the carrier drop. If the session is terminated, the modem ini-
tiates a new session and the race condition does not affect the system’s accessibility,
but if the session is unterminated, the new connection will have access to the session.

The Drib’s solution to these problems is a mixture of physical and technical
means. All workstations have display locking programs that do not accept a master
password. They use the user’s login password as the key to unlocking the display. If
the user is unable to supply that password (for example, if the user forgets it or
becomes ill and cannot communicate it), the system administrators can remotely log
into the workstation and terminate the process. The procedural mechanisms involve
disciplinary action against developers who fail to lock displays, or fail to lock the
doors of their offices when they leave. As far as modems go, the Drib does not allow
modems to be connected to the development network.

25.3 Files and Devices

Users keep information and programs in files. This makes file protection a security
mechanism that users can manipulate to refine the protection afforded their data.
Similarly, users manipulate the system through devices of various types. Their pro-
tection is to some degree under the user’s control. This section explores both.

25.3.1 Files

Users must protect confidentiality and integrity of the files to satisfy policy compo-
nent U2. To this end, they use the protection capabilities of the system to constrain
access. Complicating the situation are the interpretation of permissions on the con-
taining directories.

EXAMPLE: Peter is using a UNIX-based system. He wants to allow Deborah to read
the file design but prevent other users from doing so. He can use the abbreviated ACL
mechanism of standard UNIX systems16 to do this in three ways.

If Deborah and Peter are the only members of a group, Peter can make the file
owned by that group and readable by that group but not readable by others.

15 See Section 20.4.5.1, “The xterm Log File Flaw,” and Section 26.5.3.3, “Race Conditions in
File Accesses,” for other examples of race conditions.
16 See Section 14.1.1, “Abbreviations of Access Control Lists.”

Bishop.book Page 562 Tuesday, September 28, 2004 1:46 PM

25.3 Files and Devices 563

If Deborah is the only member of a group and the UNIX system semantics
allow the owner of a file to give the file to a group of which the owner is not a mem-
ber, Peter can give group ownership of the file to Deborah’s group and then set the
group ownership privileges as described above.

An alternative approach is to set permissions on the containing directory.
Peter can set the permissions of the directory to allow search access only to himself
and to the group of which Deborah is the only member by turning on read and exe-
cute permission for the group owner of the directory. Then the protections of the file
can allow anyone to read the file. Because only Peter and Deborah can search the
directory (the execute permission), only they can reach the file.

This example illustrates the cumbersome nature of abbreviated ACLs (see
Exercise 3; Exercise 4 explores an approach to the situation in which Peter and Deb-
orah are the only members in common to two groups). Ordinary ACLs make the task
considerably simpler.

EXAMPLE: The Windows NT access control lists17 allow Peter to give Deborah
access directly. Peter creates an ACL for design with two entries:

(Peter, full control) (Deborah, read)

The semantics of Windows NT disallow access to any user or group omitted from the
ACL. Hence, only Peter and Deborah can access the file.

Users can control several aspects of file protection. The remainder of this sec-
tion explores some of these aspects.

25.3.1.1 File Permissions on Creation
Many systems allow users to specify a template of permissions to be given to a file
when it is created. The owner can then modify this set as required.

EXAMPLE: When Roger creates a directory on Windows NT, it inherits the ACL of
its parent directory.

UNIX-like systems take an alternative approach. A user can identify specific
permissions to be denied on creation.

The variable umask contains a set of permissions to be disabled. It uses the nine-
bit format of the standard UNIX protection mask, in which the first set of three bits
corresponds to the owner, the second set corresponds to the group, and the third set
corresponds to others (everyone except the owner and members of the group). The first
bit in each triplet controls read access, the second bit controls write access, and the

17 See Section 14.1.4, “Example: Windows NT Access Control Lists.”

Bishop.book Page 563 Tuesday, September 28, 2004 1:46 PM

564 Chapter 25 User Security

third bit controls execute access. So, if a user sets her umask to 022, then, when she
creates a file, group and other write pemissions are turned off, regardless of the permis-
sions she requested. If she wants the group members to have write access, she can use a
command such as chmod to enable that access. (See Exercise 5.)

25.3.1.2 Group Access
Group access provides a selected set of users with the same access rights.18 The
problem is that the membership of the group is not under the control of the owner of
the file. This has an advantage and a disadvantage.

The advantage arises when the group is used as a role.19 Then, as users are
allowed to assume the role, their access to the file is altered. Because the owner of
the file is concerned only with controlling access of those role users, reconfiguration
of the access to the role reconfigures user access to the file, which is what the user
wants.

EXAMPLE: Tom is working on a project to develop the next generation of widgets,
called Widget-NG. All members of the Widget-NG design team are in the group wid-
getngd. The files that contain the design are group-owned by widgetngd, and the
members of that group can read from and write to the file.

Even when the membership of the group changes, the function of the group
does not. Hence, the new users are given access to the Widget-NG information. The
group ownership mechanism provides that access.

The disadvantage arises when a group is used as a shorthand for a set of spe-
cific users. If the membership of the group changes, unauthorized users may obtain
access to the file, or authorized users may be denied access to the file.

EXAMPLE: Maria wants her friends Anne and Joan to have access to the file movies.
She has the system administrator create a group called maj, which contains those
three users, and makes the file group-owned, readable, and writable by the group maj.

The system administrator is later asked to create a group containing Maria,
Anne, Joan, and Lorraine. He notices that the group maj contains three of those four
users, and he simply adds Lorraine to the group. Now Lorraine can read and alter the
file movies, even though Maria never intended for her to do so.

In general, users should limit access as much as possible when creating new
files. So ACLs and C-Lists should include as few entries as possible, and permissions
for each entry should be as restrictive as possible. Constructs such as the umask
should be set to deny permissions to as many users as possible (in the specific case of

18 See Section 13.4, “Groups and Roles.”
19 See Section 13.4, “Groups and Roles.”

Bishop.book Page 564 Tuesday, September 28, 2004 1:46 PM

25.3 Files and Devices 565

UNIX systems, umask should deny all permissions to all but the owner, unless there
are specific reasons to set it differently).

25.3.1.3 File Deletion
A user deletes a file. Either the file data or the file name is discarded. The effects of
these differ widely.

Computer systems store files on disk. The file attribute table contains infor-
mation about the file. The file mapping table contains information that allows the
operating system to locate the disk blocks that compose the file. Systems represent a
file being in a directory in a variety of ways. All involve an entry in the directory for
that file, but the entry may contain attribute information (such as permissions and file
type) or may merely point to an entry in the file attribute table.

Definition 25–1. A direct alias is a directory entry that points to (names) the
file. An indirect alias is a directory entry that points to a special file containing
the name of the target file. The operating system interprets the indirect alias
by substituting the contents of the special file for the name of the indirect alias
file.

All direct aliases that name the same file are equal. Each direct alias is an
alternative name for the same file.20

The representation of containment in a directory affects security. If each direct
alias can have different permissions, the owner of a file must change the access
modes of each alias in order to control access. To avoid this, most systems associate
the file attribute information with the actual data, and directory entries consist of a
pointer to the file attribute table.

When a user deletes a file, the directory entry is removed. The system tracks
the number of directory entries for each file, and when that number becomes 0, the
data blocks and table entries for that file are released. This means that deleting a file
does not ensure that the file is unavailable; it merely deletes the directory entry.

EXAMPLE: Anna uses a UNIX-based system. She has a program runasanna that is
setuid to herself.21 She wishes to delete it so that no one can use it. However, if she
executes the command

rm runasanna

she will delete the directory entry for that file. If no one else has a direct alias (or, in
UNIX terminology, a hard link) to the file, it will be removed from the system.

20 See Section 13.2, “Files and Objects.”
21 See Section 13.3, “Users.”

Bishop.book Page 565 Tuesday, September 28, 2004 1:46 PM

566 Chapter 25 User Security

Sandra, however, has made a direct alias to the file. Anna has deleted the file,
but there is still a directory entry (Sandra’s direct alias) corresponding to the file, so
the file has not been deleted. Sandra can still execute the program. Because it is still
setuid to Anna, the program runs with Anna’s, not Sandra’s, permissions.

On UNIX systems, Anna can delete the file from Sandra’s directory only if
Sandra has given Anna write permission to the directory. To prevent anyone from
using the program, Anna must change the permissions of the program to disable it.
She can then delete her direct alias. The first line turns off all access permissions to
the file, including the setuid permission.

chmod 000 runasanna
rm runasanna

Sandra will retain her alias, and the program will still reside on disk, but it will be
useless.

The second issue affecting file deletion is persistence. When a file is deleted,
its disk blocks are returned to the pool of unused disk blocks, and they may be
reused. However, the data on them remains, and if an attacker can read those blocks,
he may read information that was intended to be confidential. When sensitive files
are deleted, the contents should be erased before deletion.22

EXAMPLE: Many Windows and Macintosh system utilities programs have mecha-
nisms for “wiping” files before they are deleted. These mechanisms overwrite the
contents of the file with a bit patterm. The patterns used, and the number of times the
contents of the file are overwritten, are configurable. Some versions of the rm (file
deletion) command on UNIX systems have a similar option.

The third issue lies in the difference between direct and indirect aliases. When
a command that affects a file is executed, it may have different effects depending on
whether the file is a direct alias or an indirect alias. This may mislead a user into
believing that certain information has been protected or deleted when in fact the pro-
tection or deletion applied only to the indirect alias and not to the file itself.

EXAMPLE: Suppose Angie executes a command to add read permission to a file for
Lucy. If the file is a direct alias, Lucy will be able to read the contents of the file, but
if it is an indirect alias, does Lucy have permission to read the file or the indirect alias
file? The answer depends entirely on the semantics of the system. The semantics may
not be consistent. For example, on Red Hat Linux 7.1, the chmod command changes
the permissions of the file named by the indirect alias, whereas the rm command
deletes the indirect alias file itself.

22 See, for example, Section 18.2.1.1, “TCSEC Functional Requirements,” and Section 18.4.3,
“CC Security Functional Requirements.”

Bishop.book Page 566 Tuesday, September 28, 2004 1:46 PM

25.3 Files and Devices 567

25.3.2 Devices

Users communicate with the system through devices. The devices may be virtual,
such as network ports, or physical, such as terminals. Policy components U1 and U4
require that these devices be protected so that the user can control what commands
are sent to the system in her name and so that others are prevented from seeing her
interactions.

25.3.2.1 Writable Devices
Devices that allow any user to write to them can pose serious security problems.
Unless necessary for the correct functioning of the system, devices should restrict
write access as much as possible.23 Two examples will demonstrate why.

EXAMPLE: Many systems have tape drives set so that anyone can write to them.
When a process begins writing, the ACL of the device changes so that only that pro-
cess (or the user executing the process) can write to the device. However, between
the mounting of the media and the execution of the process is an interval during
which another user’s process can access the tape drive and read, or overwrite, the
tape. For this reason, users should always write-protect mounted media unless they
are to be altered.24 If possible, processes should be attached to such devices, or the
devices should be locked to prevent anyone except the user from accessing them,
before the media are mounted.

EXAMPLE: If any user can write to another user’s terminal, an attacker can erase the
terminal screen by writing an appropriate control sequence to it. On some early
UNIX systems, such a denial of service attack could terminate sessions because the
attacker could set the communications speed of the terminal line to 0. The terminal
session would immediately terminate [96].

The development network users have a default configuration that denies write
privileges to everyone except the user of a terminal.

25.3.2.2 Smart Terminals
A smart terminal provides built-in mechanisms for performing special functions.
Most importantly, a smart terminal can perform a block send. Using this mode, a pro-
cess can instruct a terminal to send a set of characters that are printed on the screen.
The instructions are simply a sequence of characters that the process sends to the ter-
minal. This can be used to implant a Trojan horse.25

23 See Section 12.2.1, “Principle of Least Privilege.”
24 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
25 See Section 19.2, “Trojan Horses.”

Bishop.book Page 567 Tuesday, September 28, 2004 1:46 PM

568 Chapter 25 User Security

EXAMPLE: Robert wants to trick Craig into executing the command

chmod 666 .profile

so that Robert can add commands to Craig’s startup file. Robert carefully crafts a let-
ter that contains the following.

Dear Craig,
Please be careful. Someone may ask you to execute
chmod 666 .profile
You shouldn’t do it!
Your friend,
Robert
<BLOCK SEND (-2,18), (-2,18)><BLOCK SEND
(-3,0),(3,18)><CLEAR>

(The sequence

<BLOCK SEND (a,b), (c,d)>

sends all characters from screen position (a,b) to position (c,d) to the system, as
though the user had typed them. On Craig’s terminal, a newline is stored as an invis-
ible character at the end of each line. The sequence

<CLEAR>

clears the terminal screen.) When Craig reads this letter, the command

!chmod 666 .profile

will be sent to the system as though the user had typed it. In this particular mail read-
ing program, the “!” causes the mail program to send the rest of the line to a com-
mand interpreter. That interpreter promptly executes the forbidden command and
clears the screen to hide the visible traces of the command.

The difference between a smart terminal and a writable terminal is subtle.
Only the user of the terminal need have write access to the smart terminal, whereas
the earlier attacks required the attacker as well as the user of the terminal to be able
to write to the terminal. An attacker must therefore trick the user into reading data in
order to spring the smart terminal attack. This requires malicious logic (or, in this
context, malicious data).26

26 See Chapter 19, “Malicious Logic.”

Bishop.book Page 568 Tuesday, September 28, 2004 1:46 PM

25.3 Files and Devices 569

25.3.2.3 Monitors and Window Systems
Window systems provide a graphical user interface to a system. Typically, a process
called the window manager controls what is displayed on the monitor and accepts
input from input devices. Other processes, called clients, register with the window
manager. They can then receive input from the window manager and send output to
the window manager. The window manager draws the output on the monitor screen
if appropriate. The window manager is also responsible for routing input to the cor-
rect client.

The obvious question is how the window manager determines which clients it
may talk to. If an attacker is able to register a client with the window manager, the
attacker can intercept input and send bogus output to the monitor.

EXAMPLE: In some versions of the X window system [347], it was possible for an
attacker to overlay an invisible window the size of the monitor screen. The attacker
could then record all mouse motions and keystrokes from that monitor and then
transmit them to the appropriate window on the screen. The effect was to record
everything, including passwords and cryptographic keys.

Window systems can use any of the access control mechanisms described in
Chapter 15 to control access to the window manager. The granularity of the access
control mechanism varies among different window systems.

EXAMPLE: The X window system controls access on the basis of host name or pos-
session of a token [132]. If access is granted to the window manager, the client may
control the display. The window manager cannot control which parts of the display,
or which clients, the new client communicates with. The X window system offers
two modes of control. Neither provides any confidentiality.

The first mode, called the xhost method, determines the name of the host from
which the client is trying to connect.27 The window manager then checks a list of
hosts from which processes are authorized to connect. If the process comes from one
of those hosts, access is granted. Otherwise, access is denied.

The second mode, called the xauth method, requires that a process be able to
supply a fixed random number (called a magic cookie).28 When the X window man-
ager starts, it creates (or is given) a magic cookie. This cookie is stored in the file
.Xauthority in the user’s home directory. Any client that attempts to connect to the win-
dow manager for that user’s display must supply that magic cookie. If the process is
local and is run by the user, it can obtain the magic cookie directly from the .Xauthority
file. If the process is to be run on a remote host, the user must ensure that the process
has the magic cookie before it connects to the window manager (this is usually done by
copying the .Xauthority file to the remote system).

27 See Section 13.6.1, “Host Identity.”
28 See Section 13.6.2, “State and Cookies.”

Bishop.book Page 569 Tuesday, September 28, 2004 1:46 PM

570 Chapter 25 User Security

25.4 Processes

Processes manipulate objects, including files. Policy component U3 requires the user
to be aware of how processes manipulate files. This section examines several aspects
of this requirement.

25.4.1 Copying and Moving Files

Copying a file duplicates its contents. The semantics of the copy command deter-
mine if the file attributes are also copied. If the attributes are not copied, the user may
need to take steps to preserve the integrity and confidentiality of the file.

EXAMPLE: Suppose Mona Anne wants to copy the file xyzzy on a UNIX system. She
gives the following command.

cp xyzzy plugh

If the file plugh does not exist, this command creates it and copies the contents of
xyzzy into it. The permissions will be the same as for xyzzy, except that the setuid and
setgid attributes will be discarded (see Section 25.4.5).

If the file plugh exists, the command copies the contents of xyzzy into it. It
does not alter the permissions of plugh. This is a security problem, because if xyzzy is
not readable by everyone but plugh is, the contents of xyzzy will no longer be confi-
dential because anyone reading plugh will learn them.

Similarly, sometimes the semantics of moving files involve copying a file and
deleting the original copy. In this case, the file attributes of the move command fol-
low those of the copy command. Otherwise, the move command may preserve the
attributes of the original command.

EXAMPLE: Now Mona Anne decides to move the file plugh to another directory. She
gives the command

mv plugh /usr/monaanne/advent

If the directory resides in the same file system, the direct alias is deleted from the
current directory and placed in the directory /usr/monaanne/advent. Otherwise, the
mv command executes:

cp plugh /usr/monaanne/advent/plugh
rm plugh

In the first case, the permissions of plugh are preserved. In the second, those permis-
sions may be changed, as noted above.

Bishop.book Page 570 Tuesday, September 28, 2004 1:46 PM

25.4 Processes 571

The semantics of the commands, and how well the user knows those seman-
tics and can take steps to handle potential security problems, affect their ability to
satisfy policy component U3.

25.4.2 Accidentally Overwriting Files

Part of policy component U3 is to protect users from themselves.29 Sometimes
people make mistakes when they enter commands. These mistakes can have unpleas-
ant consequences.

EXAMPLE: Scout wants to delete all the files in her directory whose names end in the
characters “.o”. She uses the pattern “*.o” to match these file names. The “*” is a
wildcard that matches 0 or more characters, so the pattern is read as “all file names
that end in .o”. Unfortunately, she mistypes the command, putting a space between
the “*” and the “.o” accidentally:

rm * .o

This command says to delete all files in the current directory, and the file “.o”. Scout
will discover this when the command prints the error message

.o: No such file or directory

after all the files have been deleted.

Many programs that delete or overwrite files have an interactive mode. Before
any file is deleted or overwritten, the program requests confirmation that the user
intends for this to happen.30 Policy component U3 strongly suggests that these
modes be used. In fact, the development workstations have these modes set in user
start-up files. The users can disable the modes, but generally do not.

25.4.3 Encryption, Cryptographic Keys, and Passwords

The basis for encryption is trust. Cryptographic considerations aside, if the encryp-
tion and decryption are done on a multiuser system, the cryptographic keys are
potentially visible to anyone who can read memory and, possibly, swap space. Any-
one who can alter the programs used to encipher and decipher the files, or any of the
supporting tools (such as the operating system), can also obtain the cryptographic
keys or the cleartext data itself. For this reason, unless users trust the privileged

29 See Section 12.2.2, “Principle of Fail-Safe Defaults.”
30 See Section 12.2.8, “Principle of Psychological Acceptability.”

Bishop.book Page 571 Tuesday, September 28, 2004 1:46 PM

572 Chapter 25 User Security

users,31 and trust that other users cannot acquire the privileges needed to read mem-
ory, swap space, or alter the relevant programs, the sensitive data should never be on
the system in cleartext.32

EXAMPLE: PGP protects a user’s private key by enciphering it with a pass-phrase.
Mary Ann receives a letter that the sender has enciphered for confidentiality using
PGP. She enters her pass-phrase to allow the PGP deciphering program to obtain her
private key. It uses her key to decipher the data encryption key, and then the message.
Unknown to Mary Ann, Eve has broken into her system and has implanted a key-
stroke recording module. When Eve retrieves the log of the session, she will have the
pass-phrase, from which she can obtain Mary Ann’s private key, and thus her identity
(as far as Mary Ann’s PGP recipients are concerned).

The saving of passwords on a multiuser system suffers from the same prob-
lem. In addition, some programs that allow users to put passwords into a file do not
rely on enciphering the passwords; they simply require the user to set file permis-
sions so that only the owner can read the file.

EXAMPLE: An implementation of the ftp client under some versions of the UNIX
system allows users to keep account names, host names, and passwords in a file
called .netrc. Kathy uses the remote host gleep to store files, so she often connects
using ftp. Her .netrc file looks like this:

machine gleep
login kathy
password oi4ety98

The security risks of keeping her information in this file were brought home when
one day ftp ignored the file. On investigation, Kathy determined that the .netrc file
was readable by all users on the system. By looking at her previously typed com-
mands, Kathy realized that she had mistyped one of them. The unfortunate effect of
that command was to make the .netrc file readable.

The circumstances under which a password should reside in a system are
few.33 Unless unavoidable, no password should reside unenciphered in a system,
either on disk or in memory. The Drib has modified its ftp programs to ignore .netrc
files. This discourages their use. Furthermore, system administrators have embedded
a check for such files in their audit tools that check the systems.

31 Here, “privileged users” means those who can read memory, swap space, or alter system
programs.
32 See Section 12.2.1, “Principle of Least Privilege.”
33 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 572 Tuesday, September 28, 2004 1:46 PM

25.4 Processes 573

25.4.4 Start-up Settings

Many programs, such as text editors and command interpreters, use start-up informa-
tion. These variables and files contain commands that are executed when the pro-
gram begins but before any input is accepted from the user. The set of start-up files,
and the order in which they are accessed, affect the execution of the program.

EXAMPLE: When a user logs in to a FreeBSD 4.4 system, her login shell sh initial-
izes itself by accessing start-up information in the following order.

1. The contents of the start-up file /etc/profile
2. The contents of the start-up file .profile in the user’s home directory
3. The contents of the start-up file named in the environment variable ENV

If any of these files do not exist, the step is skipped.
The security threat lies in the program’s trust of the start-up information. For

example, if the environment variable ENV were to name a file that an untrusted user
could alter, then that user could insert commands to delete files or give the attacker
privileges to perform actions that violate policy. This Trojan horse can be difficult to
detect, especially because it can erase itself after execution but before the shell
allows interaction.

25.4.5 Limiting Privileges

Users should know which of their programs grant additional privileges to others.
They should also understand the implications of granting such privileges.

EXAMPLE: Part of Toni’s job as a secretary to the manager of the Drib Development
Group is to read mail sent to her boss, Fran. Because Fran knew about the dangers of
sharing passwords, she copied the UNIX command interpreter into a file that she
owned, and turned on the setuid permission.34 This allowed Toni to read Fran’s mail.

Toni quickly discovered that the command interpreter allowed her to do any-
thing as Fran. She suggested to Fran that perhaps some other approach could be
found.35 After some discussion, the two decided to forward to Toni a copy of every
letter that Fran received. This enabled Toni to process Fran’s mail without having
access to her account.

The two had considered an alternative approach—to make a copy of the mail
reading program setuid to Fran. Unfortunately, the mail program had an escape
mechanism that allowed the user to pass commands to a command interpreter—and
that had the same effect as giving Toni the shell.

34 See Section 13.3, “Users.”
35 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 573 Tuesday, September 28, 2004 1:46 PM

574 Chapter 25 User Security

25.4.6 Malicious Logic

Section 24.2.2 discusses mechanisms for preventing users from bringing malicious
software from outside the development network. However, insiders can write mali-
cious programs in order to gain additional privileges or to sabotage others’ work.
Also, if an attacker breaks in, he may not acquire the desired privileges and may
leave traps for authorized users to spring. Hence, users need to take precautions.

Definition 25–2. A search path is a sequence of directories that a system uses
to locate an object (program, library, or file).

Because programs rely on search paths, users must take care to set theirs
appropriately.

EXAMPLE: Johannes’ coworker wants to see Johannes’ confidential designs. The
coworker has created a small program called ls that will copy the designs to a public
area, from which the coworker can retrieve them. She has placed copies of ls in vari-
ous publicly writable directories, including /tmp. Johannes changed to that directory
to clean up files he had left there. Johannes’ program search path was

. /bin /usr/bin /usr/local/bin

where “.” means the current directory. Johannes executed the ls program. The com-
mand interpreter first looked in the current directory for an executable named ls,
found it, and executed it. The coworker got the desired files.

Some systems have many types of search paths. In addition to searching for
executables, a common search path contains directories that are used to search for
libraries when the system supports dynamic loading. In this case, an attacker can cre-
ate a new library that the unsuspecting victim will load, much as Johannes executed
the wrong program in the example above.36

Part of policy component U4 requires that the users have only trusted directo-
ries in their search paths. Here, “trusted” means that only trusted users can alter the
contents of the directory. The default start-up files for all the development worksta-
tion users have search paths set in this way.37

36 See Section 20.2.8, “Example: Penetrating a UNIX System.”
37 See Section 12.2.2, “Principle pf Fail-Safe Defaults.”

Bishop.book Page 574 Tuesday, September 28, 2004 1:46 PM

25.5 Electronic Communications 575

25.5 Electronic Communications

Electronic communications deserves discussion to emphasize the importance of
users understanding basic security precautions. Electronic mail may pass through
firewalls (as the Drib policy allows; see Section 23.3.3.1). Although it can be
checked for malicious content, such checking cannot detect all forms of such con-
tent.38 Finally, users may unintentionally send out more material than they realize.
Hence, users must understand the threats and follow the procedures that are appro-
priate to the site policy.

25.5.1 Automated Electronic Mail Processing

Some users automate the processing of electronic mail. When mail arrives, a pro-
gram determines how to handle it. The mail may be stored for the user, or it may be
interpreted as a sequence of commands causing execution of either programs already
on the system or part of the content of the message, or both. The danger is that the
execution may have unintended side effects.

EXAMPLE: The NIMDA worm [204] used several methods to propagate itself. One
method involved the use of e-mail. The worm would mail itself to a user on the target
system, encapsulated as an attachment to a letter. When the user opened the letter, the
default configuration of the mail programs involved would pass the attachment to
another program to be displayed. The other program would execute the code com-
prising the worm, thereby infecting the system.

Electronic mail comes from untrusted sources. Hence, in general, the contents
of e-mail messages are not trustworthy. Mail programs should be configured not to
execute attachments, or indeed any component of the letter.39 The trust in the result
of such execution is the same as the trust the reader puts in the data contained in the
mail message.

25.5.2 Failure to Check Certificates

Electronic signatures can be misleading. In particular, a certificate may validate a
signature, but the certificate itself may be compromised, invalid, or expired. Mail
reading programs must notify the user of these problems, as well as provide a mech-
anism for allowing the user to validate certificates.

38 See Section 19.6, “Theory of Malicious Logic.”
39 See Section 19.6.1, “Malicious Logic Acting as Both Data and Instructions.”

Bishop.book Page 575 Tuesday, September 28, 2004 1:46 PM

576 Chapter 25 User Security

EXAMPLE: Someone pretending to be a Microsoft employee obtained two certifi-
cates that could be used to sign programs under the name of Microsoft Corporation
[203].40 The issuer (not Microsoft Corporation) immediately revoked both certifi-
cates and placed them on the Certificate Revocation List,41 but sites that had not
received the revocation notice would accept the certificates as valid and could exe-
cute malicious logic that the attackers had signed. Although the mechanism involved
used Web pages, the generalization to electronic mail is obvious.

The Drib has enhanced all mail reading programs that use certificates to vali-
date the certificates as far as possible. The programs then display the certificates that
could not be validated, to allow users to determine how to proceed.

25.5.3 Sending Unexpected Content

Attachments to electronic mail may contain data of which the sender is not aware.
When these files are sent, the recipient may see more than the sender intended.

EXAMPLE: A sales director once sent her sales team a chart showing the effects of a
proposed reorganization. Unfortunately, she did not realize that the spreadsheet in
which she had created the chart also contained confidential information such as
names and addresses, salaries, and personal comments about each employee. The
information disrupted the efficiency of the sales force [43].

Some programs perform “rapid saves,” in which data is appended to the file
and pointers are updated. When the program rereads the file, the document appears
as it was last saved, and the extraneous data is ignored. However, if the file is sent to
a different system, or if other programs are used to access the file, the “deleted” con-
tents will be accessible.

The users of the development workstations are periodically warned about this
risk. Furthermore, all programs with “rapid saves” have them disabled by default.42

25.6 Summary

This chapter covered only a few aspects of how users can protect the data and pro-
grams with which they work. The security policy of the site and the desires of the
user combine to provide a personalized, if unwritten, security policy.

40 See Section 13.5, “Naming and Certificates.”
41 See Section 9.4.2, “Key Revocation.”
42 See Section 12.2.8, “Principle of Psychological Acceptability.”

Bishop.book Page 576 Tuesday, September 28, 2004 1:46 PM

25.8 Exercises 577

Well-chosen reusable passwords, or (even better) one-time passwords, inhibit
unauthorized access. Other authentication mechanisms allow users to control access
to some degree on the basis of the host of origin and cryptographic keys (although in
some cases the system administrator can override these access controls). Users can
prevent interference with their sessions by using enciphered, integrity-checked ses-
sions and by physically securing the monitors or terminals they use to interact with
the system (as well as the system of origin, if they are working remotely).

Basic file permission mechanisms help protect the confidentiality and integrity
of data and programs. The user can check programs for an “interactive” mode that will
require verification of any request to delete or overwrite files. Other aspects of file han-
dling, such as erasing files before deleting them, and verifying that deletion of a file
does not delete only an alias and leave the file accessible, also affect file security.

Equally important are the controls on devices. The sophistication of most
modern equipment allows devices to be programmed from the computer to which
they are connected. Hence, devices should be configured to refuse unexpected or
untrusted connections. Ideally, access control mechanisms will provide sufficient
granularity to allow access based on users or processes.

Processes act on the user’s behalf, and can perform any action that the user
requests. Malicious logic, or corrupt input, can cause the process to act in ways that
the user does not want. Users can minimize this risk by setting up their environments
carefully and by not executing untrusted programs or giving untrusted data to trusted
programs.

25.7 Further Reading

Discussions of user level mechanisms in various systems abound. Books on the secu-
rity of various systems (such as Braun [132], Garfinkel and Spafford [347], and
McLean [609]) focus on the system administration aspects of security but also
describe user level mechanisms. Books on how to use the systems (such as Crawford
[219] and Glass [359]) cover the material more effectively for ordinary users.

Zurko and Simon discuss the notion of user-centered security as fundamental
to secure systems [966]. Whitten and Tygar examine PGP from a usability point of
view [939].

25.8 Exercises

1. Consider the isolated system described in the first example in Section
25.2.1. If custodians and other people not authorized to use the isolated
system were allowed into the room without observation, would that violate
policy component U1? Justify your answer.

Bishop.book Page 577 Tuesday, September 28, 2004 1:46 PM

578 Chapter 25 User Security

2. Reconsider the lock program discussed in Section 25.2.3.

a. The program requires a user to choose a password (rather than using her
login password) to lock the screen. Does this violate the principle of
psychological acceptability (see Section 12.2.8)? Justify your answer.

b. If a user forgets her password, how might she terminate the program
without using the master password? (Hint: Although she cannot use
that terminal, she can use another terminal to access the system.)

c. How might a user determine the master password? Discuss steps
that the implementer could take to prevent such a discovery. In
particular, could a per-system master password be implemented
(rather than a single master password for the program)? How?

3. The example of Peter and Deborah on the UNIX system in Section 25.3.1
assumes that Deborah is the only member, or that Deborah and Peter are
the only members, of a group. If this is not so, can Peter give only himself
and Deborah access to the file by using the abbreviated ACL? Explain
either how he can or why he cannot.

4. Suppose that Deborah, Peter, and Kathy are the only members of the group
proj and that Deborah, Peter, and Elizabeth are the only members of the
group exeter. Show how Peter can restrict access to the file design to
himself and Deborah using only abbreviated ACLs. (Hint: Consider both
design and its containing directory.)

5. The UNIX umask disables access by default. The Windows scheme
enables it. Discuss the implications of enabling access by default and of
disabling access by default with respect to security. In particular, which of
Saltzer and Schroeder’s design principles [773] (see Chapter 12, “Design
Principles”) is violated by either enabling or disabling access by default?

6. Many UNIX security experts say that the umask should be set to 077 (that is,
to allow access only to the owner). Why? What problems might this cause?

Bishop.book Page 578 Tuesday, September 28, 2004 1:46 PM

579

Chapter 26
Program Security

CLOWN: What is he that builds stronger than either
the mason, the shipwright, or the carpenter?

OTHER CLOWN: The gallows-maker; for that frame outlives
a thousand tenants.

—Hamlet, V, i, 42–45.

The software on systems implements many mechanisms that support security. Some
of these mechanisms reside in the operating system, whereas others reside in applica-
tion and system programs. This chapter discusses the design and implementation of a
system program. It also presents common programming errors that create security
problems, and offers suggestions for avoiding those problems. Finally, testing and
distribution are discussed.

This chapter shows the development of the program from requirements to
implementation, testing, and distribution.

26.1 Introduction

This section considers a specific problem on the Drib’s development network infra-
structure systems. Numerous system administrators must assume certain roles, such
as bin (the installers of software), mail (the manager of electronic mail), and root (the
system administrator). Each of these roles is implemented as a separate account,
called a role account. Unfortunately, this raises the problem of password manage-
ment. To avoid this problem, as well as to control when access is allowed, the Drib
will implement a program that verifies a user’s identity, determines if the requested
change of account is allowed, and, if so, places the user in the desired role.

Bishop.book Page 579 Tuesday, September 28, 2004 1:46 PM

580 Chapter 26 Program Security

26.2 Requirements and Policy

The problem of sharing a password arises when a system implements administrative
roles as separate user accounts.

EXAMPLE: Linux systems implement the administrator role as the account root (and
several other accounts that have more limited functionality).1 All individuals who
share access to the account know the account’s password. If the password is changed,
all must be notified. All these individuals must remember to notify the other individ-
uals should they change the password.

An alternative to using passwords is to constrain access on the basis of iden-
tity and other attributes. With this scheme, a user would execute a special program
that would check the user’s identity and any ancillary conditions. If all these condi-
tions were satisfied, the user would be given access to the role account.

26.2.1 Requirements

The first requirement comes directly from the description of the alternative scheme
above. The system administrators choose to constrain access through known paths
(locations) and at times of day when the user is expected to access the role account.

Requirement 26.2.1. Access to a role account is based on user, location, and
time of request.

Users often tailor their environments to fit their needs. This is also true of role
accounts. For example, a role account may use special programs kept in a subdirec-
tory of the role account’s home directory. This new directory must be on the role
account’s search path. A question is whether the user’s environment should be dis-
carded and replaced by the role account’s environment, or whether the two environ-
ments should be merged. The requirement chosen for this program is as follows.

Requirement 26.2.2. The settings of the role account’s environment shall
replace the corresponding settings of the user’s environment, but the remainder
of the user’s environment shall be preserved.

The set of role accounts chosen for access using this scheme is critical. If
unrestricted access is given (essentially, a full command interpreter), then any user in
the role that maintains the access control information can change that information

1 See Section 12.2.1, “Principle of Least Privilege,” for an explanation of how the existence of
the root account violates the principle of least privilege.

Bishop.book Page 580 Tuesday, September 28, 2004 1:46 PM

26.2 Requirements and Policy 581

and acquire unrestricted access to the system. Presumably, if the access control infor-
mation is kept accessible only to root, then the users who can alter the information—
all of whom have access to root—are trusted. Thus:

Requirement 26.2.3. Only root can alter the access control information for
access to a role account.

In most cases, a user assuming a particular role will perform specific actions
while in that role. For example, someone who enters the role of oper may perform
backups but may not use other commands. This restricts the danger of commands
interacting with the system to produce undesirable effects (such as security viola-
tions) and follows from the principle of least privilege.2 This form of access is called
“restricted access.”

Requirement 26.2.4. The mechanism shall allow both restricted access and
unrestricted access to a role account. For unrestricted access, the user shall have
access to a standard command interpreter. For restricted access, the user shall be
able to execute only a specified set of commands.

Requirement 26.2.4 implicitly requires that access to the role account be
granted to authorized users meeting the conditions in Requirement 26.2.1. Finally,
the role account itself must be protected from unauthorized changes.

Requirement 26.2.5. Access to the files, directories, and objects owned by any
account administered by use of this mechanism shall be restricted to those authorized
to use the role account, to users trusted to install system programs, and to root.

We next check that these requirements are complete.

26.2.2 Threats

The threats against this mechanism fall into distinct classes. We enumerate the
classes and discuss the requirements that handle each threat.

26.2.2.1 Group 1: Unauthorized Users Accessing Role Accounts
There are four threats that involve attackers trying to acquire access to role accounts
using this mechanism.

Threat 26.2.1. An unauthorized user may obtain access to a role account as
though she were an authorized user.

2 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 581 Tuesday, September 28, 2004 1:46 PM

582 Chapter 26 Program Security

Threat 26.2.2. An authorized user may use a nonsecure channel to obtain access
to a role account, thereby revealing her authentication information to
unauthorized individuals.

Threat 26.2.3. An unauthorized user may alter the access control information to
grant access to the role account.

Threat 26.2.4. An authorized user may execute a Trojan horse (or other form of
malicious logic),3 giving an unauthorized user access to the role account.

Requirements 26.2.1 and 26.2.5 handle Threat 26.2.1 by restricting the set of
users who can access a role account and protecting the access control data. Require-
ment 26.2.1 also handles Threat 26.2.2 by restricting the locations from which the
user can request access. For example, if the set of locations contains only those on
trusted or confidential networks, a passive wiretapper cannot discover the authorized
user’s password or hijack a session begun by an authorized user. Similarly, if an
authorized user connects from an untrusted system, Requirement 26.2.1 allows the
system administrator to configure the mechanism so that the user’s request is
rejected.

The access control information that Requirement 26.2.1 specifies can be
changed. Requirement 26.2.3 acknowledges this but restricts changes to trusted users
(defined as those with access to the root account). This answers Threat 26.2.3.

Threat 26.2.4 is more complex. This threat arises from an untrusted user,
without authorization, planting a Trojan horse at some location at which an autho-
rized user might execute it. If the attacker can write into a directory in the role
account’s search path, this attack is feasible. Requirement 26.2.2 states that the role
account’s search path may be selected from two other search paths: the default
search path for the role account, and the user’s search path altered to include those
components of the role account’s search path that are not present. This leads to
Requirement 26.2.5 which states that, regardless of how the search path is derived,
the final search path may contain only directories (and may access only programs)
that trusted users or the role account itself can manipulate. In this case, the attacker
cannot place a Trojan horse where someone using the role account may execute it.

Finally, if a user is authorized to use the role account but is a novice and may
change the search path, Requirement 26.2.4 allows the administrators to restrict the
set of commands that the user may execute in that role.

26.2.2.2 Group 2: Authorized Users Accessing Role Accounts
Because access is allowed here, the threats relate to an authorized user changing
access permissions or executing unauthorized commands.

3 See Chapter 19, “Malicious Logic.”

Bishop.book Page 582 Tuesday, September 28, 2004 1:46 PM

26.3 Design 583

Threat 26.2.5. An authorized user may obtain access to a role account and per-
form unauthorized commands.

Threat 26.2.6. An authorized user may execute a command that performs func-
tions that the user is not authorized to perform.

Threat 26.2.7. An authorized user may change the restrictions on the user’s abil-
ity to obtain access to the account.

The difference between Threats 26.2.5 and 26.2.6 is subtle but important. In
the former, the user deliberately executes commands that violate the site security pol-
icy. In the latter, the user executes authorized commands that perform covert, unau-
thorized actions as well as overt, authorized actions—the classic Trojan horse. Threat
26.2.6 differs from Threat 26.2.4 because the action may not give access to autho-
rized users; it may simply damage or destroy the system.

Requirement 26.2.4 handles Threat 26.2.5. If the user accessing the role
account should execute only a specific set of commands, then the access controls
must be configured to restrict the user’s access to executing only those commands.

Requirements 26.2.2 and 26.2.5 handle Threat 26.2.6 by preventing the intro-
duction of a Trojan horse, as discussed in the preceding section.

Requirement 26.2.3 answers Threat 26.2.7. Because all users who have access
to root are trusted by definition, then the only way for an authorized user to change
the restrictions on obtaining access to the role account is to implant a back door
(which is equivalent to a Trojan horse) or to modify the access control information.
But the requirement holds that only trusted users can do that, so the authorized user
cannot change the information unless he is trusted—in which case, by definition, the
threat is handled.

26.2.2.3 Summary
Because the requirements handle the threats, and because all requirements are used,
the set of requirements is both necessary and sufficient. We now proceed with the
design.

26.3 Design

To create this program, we build modules that fit together to supply security services
that satisfy the requirements. First, we create a general framework to guide the devel-
opment of each interface. Then we examine each requirement separately, and design
a component for each requirement.

Bishop.book Page 583 Tuesday, September 28, 2004 1:46 PM

584 Chapter 26 Program Security

26.3.1 Framework

The framework begins with the user interface and then breaks down the internals of
the program into modules that implement the various requirements.

26.3.1.1 User Interface
The user can run the program in two ways. The first is to request unrestricted access
to the account. The second is to request that a specific program be run from the role
account. Any interface must be able to handle both.

The simplest interface is a command line. Other interfaces, such as graphical
user interfaces, are possible and may make the program easier to use. However, these
GUIs will be built in such a way that they construct and execute a command line ver-
sion of the program.

The interface chosen is

role role_account [command]

where role_account is the name of the role account and command is the (optional)
command to execute under that account. If the user wants unrestricted access to the
role account, he omits command. Otherwise, the user is given restricted access and
command is executed with the privileges of the role account.

The user need not specify the time of day using the interface, because the pro-
gram can obtain such information from the system. It can also obtain the location
from which the user requests access, although the method used presents potential
problems (see Section 26.4.3.1). The individual modules handle the remainder of the
issues.

26.3.1.2 High-Level Design
The basic algorithm is as follows.

1. Obtain the role account, command, user, location, and time of day. If the
command is omitted, the user requests unrestricted access to the role
account.

2. Check that the user is allowed to access the role account

a. at the specified location;
b. at the specified time; and
c. for the specified command (or without restriction).

If the user is not, log the attempt and quit.
3. Obtain the user and group information for the role account. Change the

privileges of the process to those of the role account.

Bishop.book Page 584 Tuesday, September 28, 2004 1:46 PM

26.3 Design 585

4. If the user has requested that a specific command be run, overlay the child
process with a command interpreter that spawns the named command.

5. If the user has requested unrestricted access, overlay the child process with
a command interpreter.

This algorithm points out an important ambiguity in the requirements.
Requirements 26.2.1 and 26.2.4 do not indicate whether the ability of the user to exe-
cute a command in the given role account requires that the user work from a particu-
lar location or access the account at a particular time. This design uses the
interpretation that a user’s ability to run a command in a role account is conditioned
on location and time.

The alternative interpretation, that access only is controlled by location and
time, and that commands are restricted by role and user, is equally valid. But some-
times the ability to run commands may require that users work at particular times. For
example, an operator may create the daily backups at 1 A.M. The operator is not to do
backups at other times because of the load on the system. The interpretation of the
design allows this. The alternative interpretation requires the backup program, or some
other mechanism, to enforce this restriction. Furthermore, the design interpretation
includes the alternative interpretation, because any control expressed in the alternative
interpretation can be expressed in the design interpretation.

Requirement 26.2.4 can now be clarified. The addition is in italics.

Requirement 26.3.1. The mechanism shall allow both restricted access and
unrestricted access to a role account. For unrestricted access, the user shall have
access to a standard command interpreter. For restricted access, the user shall be
able to execute only a specified set of commands. The level of access (restricted
or unrestricted) shall depend on the user, the role, the time, and the location.

Thus, the design phase feeds back into the requirements phase, here clarifying
the meaning of the requirements. It is left as an exercise for the reader to verify that
the new form of this requirement counters the appropriate threats (see Exercise 2).

26.3.2 Access to Roles and Commands

The user attempting access, the location (host or terminal), the time of day, and the
type of access (restricted or unrestricted) control access to the role account. The
access checking module returns a value indicating success (meaning that access is
allowed) or failure (meaning that access is not allowed). By the principle of fail-safe
defaults, an error causes a denial of access.

We consider two aspects of the design of this module. The interface controls
how information is passed to the module from its caller, and how the module returns
success or failure. The internal structure of the module includes how it handles
errors. This leads to a discussion of how the access control data is stored. We con-
sider these issues separately to emphasize that the interface provides an entry point

Bishop.book Page 585 Tuesday, September 28, 2004 1:46 PM

586 Chapter 26 Program Security

into the module, and that the entry point will remain fixed even if the internal design
of the module is completely changed. The internal design and structures are hidden
from the caller.

26.3.2.1 Interface
Following the practice of hiding information among modules,4 we minimize the
amount of information to be passed to the access checking module. The module
requires the user requesting access, the role to which access is requested, the loca-
tion, the time, and the command (if any). The return value must indicate success or
failure. The question is how this information is to be obtained.

The command (or request for unrestricted access) must come from the caller,
because the caller provides the interface for the processing of that command. The
command is supplied externally, so the principles of layering require it to pass
through the program to the module.

The caller could also pass the other information to the module. This would
allow the module to provide an access control result without obtaining the information
directly. The advantage is that a different program could use this module to determine
whether or not access had been or would be granted at some past or future point in
time, or from some other location. The disadvantage is a lack of portability, because the
interface is tied to a particular representation of the data. Also, if the caller of the mod-
ule is untrusted but the module is trusted, the module might make trusted decisions
based on untrusted data, violating a principle of integrity.5 Either approach is reasonable.
In this design, we choose to have the module determine all of the data.

This suggests the following interface.

boolean accessok(role rname, command cmd);

where rname is the name of the requested role and cmd is the command to be exe-
cuted (or is empty if unrestricted access is desired). The routine returns true if access
is to be granted, and false otherwise.

26.3.2.2 Internals
This module has three parts. The first part gathers the data on which access is to be
based. The second part retrieves the access control information. The third part deter-
mines whether or not the data and the access control information require access to be
granted.

The module queries the operating system to determine the needed data. The
real user identification data is obtained through a system call, as is the current time of
day. The location consists of two components: the entry point (terminal or network

4 This is one aspect of the principle of least common mechanism (see Section 12.2.7).
5 This follows from Biba’s integrity model (see Section 6.2).

Bishop.book Page 586 Tuesday, September 28, 2004 1:46 PM

26.3 Design 587

connection) and the remote host from which the user is accessing the local system.
The latter component may indicate that the entry point is directly connected to the
system, rather than using a remote host.

Part I: Obtain user ID, time of day, entry point, and remote host.
Next, the module must access the access control information. The access con-

trol information resides in a file. The file contains a sequence of records of the fol-
lowing form.

role account
user names
locations from which the role account can be accessed
times when the role account can be accessed
command and arguments

If the “command and arguments” line is omitted, the user is granted unrestricted
access. Multiple command lines may be listed in a single record.

Part II: Obtain a handle (or descriptor) to the access control information. The
programmer will use this handle to read the access control records from the access
control information.

Finally, the program iterates through the access control information. If the
role in the current record does not match the requested role, it is ignored. Otherwise,
the user name, location, time, and command are compared with the appropriate fields
of the record. If they all match, the module releases the handle and returns success.6

If any of them does not match, the module continues on to the next record. If the
module reaches the end of the access control information, the handle is released and
the module returns failure. Note that records never deny access, but only grant it. The
default action is to deny. Granting access requires an explicit record.

If any record is invalid (for example, if there is a syntax error in one of the
fields or if the user field contains a nonexistent user name), the module logs the error
and ignores the record. This again follows the principle of fail-safe defaults, in which
the system falls into a secure state when there is an error.

Part III: Iterate through the records until one matches the data or there are no
more records. In the first case, return success; in the second case, return failure.

26.3.2.3 Storage of the Access Control Data
The system administrators of the local system are to control access to privileged
accounts. To keep maintenance of this information simple, the administrators store
the access control information in a file. Then they need only edit the file to change a
user’s ability to access the privileged account. The file consists of a set of records,

6 If the time interval during which access is allowed expires after the access control check but
before the access is granted, Requirement 26.2.1 is met (as it refers to the time of request). This
eliminates a possible race condition.

Bishop.book Page 587 Tuesday, September 28, 2004 1:46 PM

588 Chapter 26 Program Security

each containing the components listed above. This raises the issue of expression.
How should each part of the record be written?

For example, must each entry point be listed, or are wildcards acceptable?
Strictly speaking, the principle of fail-safe defaults7 says that we should list explic-
itly those locations from which access may be obtained. In practice, this is too cum-
bersome. Suppose a particular user was trusted to assume a role from any system on
the Internet. Requiring the administrators to list all hosts would be time-consuming
as well as infeasible. Worse, if the user were not allowed to access the role account
from one system, the administrators would need to check the list to see which system
was missing. This would violate the principle of psychological acceptability.8 Given
the dynamic nature of the Internet, this requirement would be absurd. Instead, we
allow the following special host names, all of which are illegal [644].

any (a wildcard matching any system)
local (matches the local host name)

In BNF form, the language used to express location is

location ::= ‘(‘ location ’)’ | ‘not’ location | location ‘or’ location | basic
basic ::= ‘*any*’ | ‘*local*’ | ‘.’ domain | host

where domain and host are domain names and host names, respectively. The strings
in single quotation marks are literals. The parentheses are grouping operators, the
‘not’ complements the associated locations, and the ‘or’ allows either location.

EXAMPLE: A user is allowed to assume a role only when logged into the local sys-
tem, the system “control.fixit.com”, and the domain “watchu.edu”. The appropriate
entry would be

local | control.fixit.com | .watchu.edu

A similar question arises for times. Ignoring how times are expressed, how do
we indicate when users may access the role account? Considerations similar to those
above lead us to the following language, in which the keyword

any (allow access at any time)

allows access at any time. In BNF form, the language used to express time is

time ::= ‘(‘ time ’)’ | ‘not’ time | time ‘or’ time | time time | time ‘-’ time | basic
basic ::= day_of_year day_of_week time_of_day | ‘*any*’ |

7 See Section 12.2.2.
8 See Section 12.2.8.

Bishop.book Page 588 Tuesday, September 28, 2004 1:46 PM

26.3 Design 589

day_of_year ::= month [day] [‘,’ year] | nmonth ‘/’ [day ‘/’] year | empty
day_of_week ::= ‘Sunday’ | ... | ‘Saturday’ | ‘Weekend’ | ‘Weekday’ | empty
time_of_day ::= hour [‘:’ min] [‘:’ sec] [‘AM’ | ‘PM’] | special | empty
special ::= ‘noon’ | ‘midnight’ | ‘morning’ | ‘afternoon’ | ‘evening’
empty ::= ‘’

where month is a string naming the month, nmonth is an integer naming the month,
day is an integer naming the day of the month, and year is an integer specifying the
year. Similarly, hour, min, and sec are integers specifying the hour, minute, and sec-
ond. If basic is empty, it is treated as not allowing access.9

EXAMPLE: A user is allowed to assume a role between the hours of 9 o’clock in the
morning and 5 o’clock in the evening on Monday through Thursday. An appropriate
entry would be

Monday–Thursday 9 AM–5 PM

This is different than saying

Monday 9 AM–Thursday 5 PM

because the latter allows access on Monday at 10 PM, whereas the former does not.

Finally, the users field of the record has a similar structure.

any (match any user)

In BNF form, the language used to express the set of users who may access a role is

userlist ::= ‘(‘ userlist ’)’ | ‘not’ userlist | userlist ‘,’ userlist | user

where user is the name of a user on the system.
These “little languages” are straightforward and simple (but incomplete; see

Exercise 4). Various implementation details, such as allowing abbreviations for day
and month names, can be added, as can an option to change the American expression
of days of the year to an international one. These points must be considered in light
of where the program is to be used. Whatever changes are made, the administrators
must be able to configure times and places quickly and easily, and in a manner that a
reader of the access control file can understand quickly.10

The listing of commands requires some thought about how to represent argu-
ments. If no arguments are listed, is the command to be run without arguments, or

9 By the principle of fail-safe defaults (see Section 12.2.2).
10 See Section 12.2.8, “Principle of Psychological Acceptability.”

Bishop.book Page 589 Tuesday, September 28, 2004 1:46 PM

590 Chapter 26 Program Security

should it allow any set of arguments? Conversely, if arguments are listed, should the
command be run only with those arguments? Our approach is to force the adminis-
trator to indicate how arguments are to be treated.

Each command line contains a command followed by zero or more argu-
ments. If the first word after the command is an asterisk (“*”), then the command
may be run with any arguments. Otherwise, the command must be run with the exact
arguments provided.

EXAMPLE: Charles is allowed to run the install command when he accesses the bin
role. He may supply any arguments. The line in the access control file is

/bin/install *

He may also copy the file log from the current working directory to the directory
/var/install. The line for this is

/bin/cp log /var/install/log

Finally, he may run the id command to ensure that he is working as bin. He may not
supply other arguments to the command, however. This would be expressed by

/usr/bin/id

The user must type the command as given in the access control file. The full
path names are present to prevent the user from accidentally executing the command
id with bin privileges when id is a command in the local directory, rather than the
system id command.11

26.4 Refinement and Implementation

This section focuses on the access control module of the program. We refine the
high-level design presented in the preceding section until we produce a routine in a
programming language.

26.4.1 First-Level Refinement

Rather than use any particular programming language, we first implement the mod-
ule in pseudocode. This requires two decisions. First, the implementation language
will be block-structured, like C or Modula, rather than functional, like Scheme or

11 See Chapter 19, “Malicious Logic.”

Bishop.book Page 590 Tuesday, September 28, 2004 1:46 PM

26.4 Refinement and Implementation 591

ML. Second, the environment in which the program will function will be a UNIX-
like system such as FreeBSD or Linux.

The basic structure of the security module is

boolean accessok(role rname, command cmd);
stat ← false
user ← obtain user ID
timeday ← obtain time of day
entry ← obtain entry point (terminal line, remote host)
open access control file
repeat

rec ← get next record from file; EOF if nonw
if rec ≠ EOF then

stat ← match(rec, rname, cmd,
user, timeday, entry)

until rec = EOF or stat = true
close sccess control file

return stat

We now verify that this sketch matches the design. Clearly, the interface is
unchanged. The variable stat will contain the status of the access control file check,
becoming true when a match is found. Initially, it is set to false (deny access) because
of the principle of fail-safe defaults. If stat were not set, and the access control file
were empty, stat would never be set and the returned value would be undefined.

The next three lines obtain the user ID, the current time of day, and the system
entry point. The following line opens the access control file.

The routine then iterates through the records of that file. The iteration has two
requirements—that if any record allows access, the routine is to return true, and that
if no record grants access, the routine is to return false. From the structure of the file,
one cannot create a record to deny access. By default, access is denied. Entries
explicitly grant access. So, iterating over the records of the file either produces a
record that grants access (in which case the match routine returns true, terminating
the loop and causing accessok to return with a value of true) or produces no such
record. In that case, stat is false, and rec is set to EOF when the records in the access
control file are exhausted. The loop then terminates, and the routine returns the value
of stat, which is false. Hence, this pseudocode matches the design and, transitively,
the requirements.

26.4.2 Second-Level Refinement

Now we will focus on mapping the pseudocode above to a particular language and
system. The C programming language is widely available and provides a convenient
interface to UNIX-like systems. Given that our target system is a UNIX-like system,
C is a reasonable choice. As for the operating system, there are many variants of the

Bishop.book Page 591 Tuesday, September 28, 2004 1:46 PM

592 Chapter 26 Program Security

UNIX operating system. However, they all have fundamental similarities. The Linux
operating system will provide the interfaces discussed below, and they work on a
wide variety of UNIX systems.

On these systems, roles are represented as normal user accounts. The root
account is really a role account,12 for example. Each user account has two distinct
representations of identity:13 an internal user type uid_t,14 and a string (name). When
a user specifies a role, either representation may be used. For our purposes, we will
assume that the caller of the accessok routine provides the uid_t representation of the
role identity. Two reasons make this representation preferable. First, the target sys-
tems are unable to address privilege in terms of names, because, within the kernel,
process identity is always represented by a uid_t. So the routines will need to do the
conversion anyway. The second reason is more complex. Roles in the access control
file can be represented by numbers or names. The routine for reading the access con-
trol file records will convert the roles to uid_ts to ensure consistency of representa-
tion. This also allows the input routine to check the records for consistency with the
system environment. Specifically, if the role name refers to a nonexistent account,
the routine can ignore the record. So any comparisons would require the role from
the interface to be converted to a uid_t.

This leads to a design decision: represent all user and role IDs as integers
internally. Fortunately, none of the design decisions discussed so far depend on the
representation of identity, so we need not review or change our design.

Next, consider the command. On the target system, a command consists of a
program name followed by a sequence of words, which are the command line argu-
ments to the command. The command representation is an array of strings, in which
the first string is the program name and the other strings are the command line argu-
ments.

Putting this all together, the resulting interface is

int accessok(uid_t rname, char *cmd[])

Next comes obtaining the user ID. Processes in the target system have several
identities, but the key ones are the real UID (which identifies the user running the
process) and the effective UID (which identifies the privileges with which the process
runs).15 The effective UID of this program must have root privileges (see Exercise 3),
regardless of who runs the process. Hence, it is useless for this purpose. Only the real
UID identifies the user running the program. So, to obtain the user ID of the user run-
ning the program:

userid = getuid();

12 See Section 13.4, “Groups and Roles.”
13 See Section 13.3, “Users.”
14 On Linux systems, and on most UNIX-like systems, this is an integer.
15 See Section 13.3, “Users.”

Bishop.book Page 592 Tuesday, September 28, 2004 1:46 PM

26.4 Refinement and Implementation 593

The time of day is obtained from the system and expressed in internal format.
The internal representation can be given in seconds since a specific date and time
(the epoch)16 or in microseconds since that time. It is unlikely that times will need to
be specified in microseconds in the access control file, so for both simplicity of code
and simplicity of the access control data,17 the internal format of seconds will be
used. So, to obtain the current time:

timeday = time(NULL);

Finally, we need to obtain the location. There is no simple method for obtain-
ing this information, so we defer it until later by encapsulating it in a function. This
also localizes any changes should we move this program to a different system (for
example, the methods used on a Linux system may differ from those used on a
FreeBSD system).

entry = getlocation();

Opening the access control file for reading is straightforward:

if ((fp = fopen(acfile, “r”)) == NULL{
logerror(errno, acfile);
return(stat);

}

Notice first the error checking, and the logging of information on an error. The vari-
able errno is set to a code indicating the nature of the error. The variable acfile points
to the access control file name.

The processing of the access control records follows:

do {
acrec = getnextacrec(fp);
if (acrec != NULL)

stat = match(rec, rname, cmd, user, timeday, entry);
} until (acrec == NULL || stat == 1);

Here, we read in the record—assuming that any records remain—and check the
record to see if it allows permission. This looping continues until either some record
indicates that permission is to be given or all records are checked. The exact internal
record format is not yet specified; hence, the use of functions.

16 On Linux and most other UNIX-like systems, the epoch is midnight on January 1, 1970
(GMT).
17 See Section 12.2.3, “Principle of Economy of Mechanism,” and Section 12.2.8, “Principle of
Psychological Acceptability.”

Bishop.book Page 593 Tuesday, September 28, 2004 1:46 PM

594 Chapter 26 Program Security

The routine concludes by closing the access control file and returning status:

(void) fclose(fp);
return(stat);

26.4.3 Functions

Three functions remain: the function for obtaining location, the function for getting
an access control record, and the function for checking the access control record
against the information of the current process. Each raises security issues.

26.4.3.1 Obtaining Location
UNIX and Linux systems write the user’s account name, the name of the terminal on
which the login takes place, the time of login, and the name of the remote host (if
any) to the utmp file. Any process may read this file. As each new process runs, it
may have an associated terminal. To determine the utmp record associated with the
process, a routine may obtain the associated terminal name, open the utmp file, and
scan through the record to find the one with the corresponding terminal name. That
record contains the name of the host from which the user is working.

This approach, although clumsy, works on most UNIX and Linux systems. It
suffers from two problems related to security.

1. If any process can alter the utmp file, its contents cannot be trusted.
Several security holes have occurred because any process could alter the
utmp file [189].

2. A process may have no associated terminal. Such a detached process must
be mapped into the corresponding utmp record through other means.
However, if the utmp record contains only the information described
above, this is not possible because the user may be logged into multiple
terminals. The issue does not arise if the process has an associated
terminal, because only one user at a time may be logged into a terminal.

In the first case, we make a design decision that if the data in the utmp file
cannot be trusted because any process can alter that file, we return a meaningless
location. Then, unless the location specifier of the record allows access from any
location, the record will not match the current process information and will not grant
access. A similar approach works if the process does not have an associated terminal.

The outline of this routine is

hostname getlocation()
myterm ← name of terminal associated with process
obtain utmp file access control list

Bishop.book Page 594 Tuesday, September 28, 2004 1:46 PM

26.4 Refinement and Implementation 595

if any user other than root can alter it then
return “*nowhere*”
open utmp file
repeat
term ← get next record from utmp file; EOF if none
if term ≠ EOF and myterm = term then

stat ← true
else

stat ← false
until term = EOF or stat = true
if host field in utmp record = empty

host = “localhost”
else

host = host field of utmp record
close utmp file
return host

We omit the implementation due to space limitations.

26.4.3.2 The Access Control Record
The format of the records in the access control file affects both the reading of the file
and the comparison with the process information, so we design it here.

Our approach is to consider the match routine first. Four items must be
checked: the user name, the location, the time, and the command. Consider these
items separately.

The user name is represented as an integer. Thus, the internal format of the
user field of the access control record must contain either integers or names that the
match routine can convert to integers. If a match occurs before all user names have
been checked, then the program needs to convert no more names to integers. So, we
adopt the strategy of representing the user field as a string read directly from the file.
The match routine will parse the line and will use lazy evaluation to check whether
or not the user ID is listed.

A similar strategy can be applied to the location and the set of commands in
the record.

The time is somewhat different, because in the previous two cases, the process
user ID and the location had to match one of the record entries exactly. However, the
time does not have to do so. Time in the access control record is (almost always) a
range. For example, the entry “May 30” means any time on the date of May 30. The
day begins at midnight and ends at midnight, 24 hours later. So, the range would be
from May 30 at midnight to May 31 at midnight, or in internal time (for example)
between 1022742000 and 1022828400. In those rare cases in which a user may
assume a role only at a precise second, the range can be treated as having the same
beginning and ending points. Given this view of time as ranges, checking that the

Bishop.book Page 595 Tuesday, September 28, 2004 1:46 PM

596 Chapter 26 Program Security

current time falls into an acceptable range suggests having the match routine parse
the times and checking whether or not the internal system time falls in each range as
it is constructed.

This means that the routine for reading the record may simply load the record
as a sequence of strings and let the match routine do the interpretation. This yields
the following structure.

record
role rname
string userlist
string location
string timeofday
string commands[]
integer numcommands

end record;

The commands field is an array of strings, each command and argument being
one string, and numcommands containing the number of commands.

Given this information, the function used to read the access control records,
and the function used to match them with the current process information, are not
hard to write, but error handling does deserve some mention.

26.4.3.3 Error Handling in the Reading and Matching Routines
Assume that there is a syntax error in the access control file. Perhaps a record speci-
fies a time incorrectly (for example, “Thurxday”), or a record divider is garbled. How
should the routines handle this?

The first observation is that they cannot ignore the error. To do so violates basic
principles of security (specifically, the principle of psychological acceptability18). It
also defeats the purpose of the program, because access will be denied to users who
need it.19 So, the program must produce an indication of error. If it is printed, then the
user will see it and should notify the system administrator maintaining the access con-
trol file. Should the user forget, the administrator will not know of the error. Hence, the
error must be logged. Whether or not the user should be told why the error has occurred
is another question. One school of thought holds that the more information users have,
the more helpful they will be. Another school holds that information should be denied
unless the user needs to know it, and in the case of an error in the access control file,
the user only needs to know that access will be denied.

Hence, the routines must log information about errors. The logged informa-
tion must enable the system administrator to locate the error in the file. The error
message should include the access control file name and line or record number. This

18 See Section 12.2.8, “Principle of Psychological Acceptability.”
19 Note that a record with a syntax error will never grant access (see Exercise 5).

Bishop.book Page 596 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 597

suggests that both routines need access to that information. Hence, the record counts,
line numbers, and file name must be shared. For reasons of modularity, this implies
that these two routines should be in a submodule of the access checking routine. If
they are placed in their own module, no other parts of the routine can access the line
or record numbers (and none need to, given the design described here). If the module
is placed under the access control routine, no external functions can read records
from the access control file or check data against that file’s contents.

26.4.4 Summary

This section has examined the development of a program for performing a security-
critical function. Beginning with a requirements analysis, the design and parts of the
implementation demonstrate the need for repeated analysis to ensure that the design
meets the requirements and that design decisions are documented. From the point at
which the derivation stopped, the implementation is simple.

We will now discuss some common security-related programming problems.
Then we will discuss testing, installation, and maintenance.

26.5 Common Security-Related Programming
Problems

Unfortunately, programmers are not perfect. They make mistakes. These errors can
have disastrous consequences in programs that change the protection domains.
Attackers who exploit these errors may acquire extra privileges (such as access to a
system account such as root or Administrator). They may disrupt the normal func-
tioning of the system by deleting or altering services over which they should have no
control. They may simply be able to read files to which they should have no access.20

So the problem of avoiding these errors, or security holes, is a necessary issue to
ensure that the programs and system function as required.

We present both management rules (installation, configuration, and mainte-
nance) and programming rules together. Although there is some benefit in separating
them, doing so creates an artificial distinction by implying that they can be consid-
ered separately. In fact, the limits on installation, configuration, and maintenance
affect the implementation, just as the limits of implementation affect the installation,
configuration, and maintenance procedures.

Researchers have developed several models for analyzing systems for these
security holes.21 These models provide a framework for characterizing the problems.

20 See Chapter 20, “Vulnerability Analysis.”
21 See Section 20.4, “Frameworks.”

Bishop.book Page 597 Tuesday, September 28, 2004 1:46 PM

598 Chapter 26 Program Security

The goal of the characterization guides the selection of the model. Because we are
interested in technical modeling and not in the reason or time of introduction, many
of the categories of the NRL model22 are inappropriate for our needs. We also wish
to analyze the multiple components of vulnerabilities rather than force each vulnera-
bility into a particular point of view, as Aslam’s model23 does. So either the PA
model24 or the RISOS model25 is appropriate. We have chosen the PA model for our
analysis.

We examine each of the categories and subcategories separately. We consider
first the general rules that we can draw from the vulnerability class, and then we
focus on applying those rules to the program under discussion.

26.5.1 Improper Choice of Initial Protection Domain

Flaws involving improper choice of initial protection domain arise from incorrect
setting of permissions or privileges. There are three objects for which permissions
need to be set properly: the file containing the program, the access control file, and
the memory space of the process. We will consider them separately.

26.5.1.1 Process Privileges
The principle of least privilege26 dictates that no process have more privileges than it
needs to complete its task, but the process must have enough privileges to complete
its task successfully.

Ideally, one set of privileges should meet both criteria. In practice, different
portions of the process will need different sets of privileges. For example, a process
may need special privileges to access a resource (such as a log file) at the beginning
and end of its task, but may not need those privileges at other times. The process
structure and initial protection domain should reflect this.

Implementation Rule 26.5.1. Structure the process so that all sections requiring
extra privileges are modules. The modules should be as small as possible and
should perform only those tasks that require those privileges.

The basis for this rule lies in the reference monitor.27 The reference monitor is
verifiable, complete (it is always invoked to access the resource it protects), and
tamperproof (it cannot be compromised). Here, the modules are kept small and

22 See Section 20.4.3, “The NRL Taxonomy.”
23 See Section 20.4.4, “Aslam’s Model.”
24 See Section 20.4.2, “Protection Analysis Model.”
25 See Section 20.4.1, “The RISOS Study.”
26 See Section 12.2.1, “Principle of Least Privilege.”
27 See Section 17.3, “Building Security In or Adding Security Later.” Programs implemented
following this rule are not reference monitors.

Bishop.book Page 598 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 599

simple (verifiable), access to the privileged resource requires the process to invoke
these modules (complete), and the use of separate modules with well-defined inter-
faces minimizes the chances of other parts of the program corrupting the module
(tamperproof).

Management Rule 26.5.1. Check that the process privileges are set properly.

Insufficient privileges could cause a denial of service. Excessive privileges
could enable an attacker to exploit vulnerabilities in the program. To avoid these
problems, the privileges of the process, and the times at which the process has these
privileges, must be chosen and managed carefully.

One of the requirements of this program is availability (Requirements 26.2.1
and 26.2.4). On Linux and UNIX systems, the program must change the effective
identity of the user from the user’s account to the role account. This requires special
(setuid) privileges of either the role account or the superuser.28 The principle of least
privilege29 says that the former is better than the latter, but if one of the role accounts
is root, then having multiple copies of the program with limited privileges is irrele-
vant, because the program with privileges to access the root role account is the logi-
cal target of attack. After all, if one can compromise a less privileged account
through this program, the same attack will probably work against the root account.
Because the Drib plans to control access to root in some cases, the program requires
setuid to root privileges.

If the program does not have root privileges initially, the UNIX protection
model does not allow the process to acquire them; the permissions on the program
file corresponding to the program must be changed. The process must log enough
information for the system administrator to identify the problem,30 and should notify
users of the problem so that the users can notify the system administrator. An alterna-
tive is to develop a server that will periodically check the permissions on the program
file and reset them if needed, or a server that the program can notify should it have
insufficient privileges. The designers felt that the benefits of these servers were not
sufficient to warrant their development. In particular, they were concerned that the
system administrators investigate any unexpected change in file permissions, and an
automated server that changed the permissions back would provide insufficient
incentive for an analysis of the problem.

As a result, the developers required that the program acquire root permission
at start-up. The access control module is executed. Within that module, the privileges
are reset to the user’s once the log file and access control file have been opened.31

Superuser privileges are needed only once more—to change the privileges to those of
the role account should access be granted. This routine, also in a separate module,

28 See Section 13.3, “Users.”
29 See Section 12.2.1, “Principle of Least Privilege.”
30 See Section 21.3, “Designing an Auditing System.”
31 Section 12.2.4, “Principle of Complete Mediation,” provides detail on why this works.

Bishop.book Page 599 Tuesday, September 28, 2004 1:46 PM

600 Chapter 26 Program Security

supplies the granularity required to provide the needed functionality while minimiz-
ing the time spent executing with root privileges.

26.5.1.2 Access Control File Permissions
Biba’s models32 emphasize that the integrity of the process relies on both the integ-
rity of the program and the integrity of the access control file. The former requires
that the program be properly protected so that only authorized personnel can alter it.
The system managers must determine who the “authorized personnel” are. Among
the considerations here are the principle of separation of duty33 and the principle of
least privilege.34

Verifying the integrity of the access control file is critical, because that file con-
trols the access to role accounts. Some external mechanism, such as a file integrity
checking tool, can provide some degree of assurance that the file has not changed.
However, these checks are usually periodic, and the file might change after the check.
So the program itself should check the integrity of the file when the program is run.

Management Rule 26.5.2. The program that is executed to create the process,
and all associated control files, must be protected from unauthorized use and
modification. Any such modification must be detected.

In many cases, the process will rely on the settings of other files or on some
other external resources. Whenever possible, the program should check these depen-
dencies to ensure that they are valid. The dependencies must be documented so that
installers and maintainers will understand what else must be maintained in order to
ensure that the program works correctly.

Implementation Rule 26.5.2. Ensure that any assumptions in the program are
validated. If this is not possible, document them for the installers and maintain-
ers, so they know the assumptions that attackers will try to invalidate.

The permissions of the program, and its containing directory, are to be set so
only root can alter or move the program. According to Requirement 26.2.2, only root
can alter the access control file. Hence, the file must be owned by root, and only root
can write to it. The program should check the ownership and permissions of this file,
and the containing directories, to validate that only root can alter it.

EXAMPLE: The naive way to check that only root can write to the file is to check that
the owner is root and that the file permissions allow only the owner to write to it. But
consider the group permissions. If root is the only member of the group, then the

32 See Section 6.2, “Biba Integrity Model.”
33 See Section 6.1, “Goals.”
34 See Section 12.2.1, “Principle of Least Privilege.”

Bishop.book Page 600 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 601

group permissions may allow members of the group to write to the file. The problem
is that checking group membership is more complicated than looking up the mem-
bers of the group. A user may belong to a group without being listed as a member,
because the GID of the user is assigned from the password file, and group member-
ship lists are contained in a different file.35 Either the password file and the group
membership list must both be checked, or the program should simply report an error
if anyone other than the user can write to the file. For simplicity,36 the designers chose
the second approach.

26.5.1.3 Memory Protection
As the program runs, it depends on the values of variables and other objects in mem-
ory. This includes the executable instructions themselves. Thus, protecting memory
against unauthorized or unexpected alteration is critical.

Consider sharing memory. If two subjects can alter the contents of memory,
then one could change data on which the second relies. Unless such sharing is
required (for example, by concurrent processes), it poses a security problem because
the modifying process can alter variables that control the action of the other process.
Thus, each process should have a protected, unshared memory space.

If the memory is represented by an object that processes can alter, it should be
protected so that only trusted processes can access it. Access here includes not only
modification but also reading, because passwords reside in memory after they are
types. Multiple abstractions are discussed in more detail in the next section.

Implementation Rule 26.5.3. Ensure that the program does not share objects in
memory with any other program, and that other programs cannot access the
memory of a privileged process.

Interaction with other processes cannot be eliminated. If the running process
obtains input or data from other processes, then that interface provides a point
through which other processes can reach the memory. The most common version of
this attack is the buffer overflow.

Buffer overflows involve either altering of data or injecting of instructions that
can be executed later. There are a wide variety of techniques for this [13].37 Several
remedies exist. For example, if buffers reside in sections of memory that are not exe-
cutable, injecting of instructions will not work. Similarly, if some data is to remain
unaltered, the data can be stored in read-only memory.

35 Specifically, if the group field of the password file entry for matt is 30, and the group file lists
the members of group 30 as root, the user matt is still in group 30, but a query to the group file
(the standard way to determine group membership) will show that only root is a member.
36 See Section 12.2.3, “Principle of Economy of Mechanism.”
37 However, alternative techniques involving corrupting data, causing the flow of control to
change improperly, do work. See Section 26.5.6, “Improper Validation.”

Bishop.book Page 601 Tuesday, September 28, 2004 1:46 PM

602 Chapter 26 Program Security

Management Rule 26.5.3. Configure memory to enforce the principle of least
privilege. If a section of memory is not to contain executable instructions, turn
execute permission off for that section of memory. If the contents of a section of
memory are not to be altered, make that section read-only.

These rules appear in three ways in our program. First, the implementers use
the language constructs to flag unchanging data as constant (in the C programming
language, this is the keyword const). This will cause compile-time errors if the vari-
ables are assigned to, or runtime errors if instructions try to alter those constants.

The other two ways involve program loading. The system’s loader places data
in three areas: the data (initialized data) segment, the stack (used for function calls
and variables local to the functions), and the heap (used for dynamically allocated
storage). A common attack is to trick a program into executing instructions injected
into three areas. The vector of injection can be a buffer overflow,38 for example. The
characteristic under discussion does not stop such alteration, but it should prevent the
data from being executed by making the segments or pages of all three areas nonexe-
cutable. This suffices for the data and stack segments and follows Management Rule
26.5.3.

If the program uses dynamic loading to load functions at runtime, the system
on which the program runs will load those functions into the heap. Thus, if the seg-
ments or pages of the heap are not executable, the program cannot use dynamic load-
ing or it will not execute properly. One solution is to compile the program in such a
way that it does not use dynamic loading. Thus, the heap segment or pages can also
be made nonexecutable, meeting Management Rule 26.5.3. It also prevents the pro-
gram from loading a module at runtime that may be missing. This could occur if a
second process deleted the appropriate library. So disabling of dynamic loading also
follows Implementation Rule 26.5.3.39

Finally, some UNIX-like systems (including the one on which this program is
being developed) allow execution permission to be turned off for the stack. The boot
file sets the kernel flag to enforce this.

26.5.1.4 Trust in the System
This analysis overlooks several system components. For example, the program relies
on the system authentication mechanisms to authenticate the user, and on the user
information database to map users and roles into their corresponding UIDs (and,
therefore, privileges). It also relies on the inability of ordinary users to alter the sys-
tem clock. If any of this supporting infrastructure can be compromised, the program
will not work correctly. The best that can be done is to identify these points of trust in
the installation and operation documentation so that the system administrators are
aware of the dependencies of the program on the system.

38 Buffer overflows can also alter data. See Section 26.5.3.1, “Memory,” for an example.
39 Other considerations contributed. See Section 26.5.4, “Improper Naming.”

Bishop.book Page 602 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 603

Management Rule 26.5.4. Identify all system components on which the pro-
gram depends. Check for errors whenever possible, and identify those compo-
nents for which error checking will not work.

For this program, the implementers should identify the system databases and
information on which the program depends, and should prepare a list of these depen-
dencies. They should discuss these dependencies with system managers to determine
if the program can check for errors. When this is not possible, or when the program
cannot identify all errors, they should describe the possible consequences of the
errors. This document should be distributed with the program so that system admin-
istrators can check their systems before installing the program.

26.5.2 Improper Isolation of Implementation Detail

The problem of improper isolation of implementation detail arises when an abstrac-
tion is improperly mapped into an implementation detail. Consider how abstractions
are mapped into implementations. Typically, some function (such as a database
query) occurs, or the abstraction corresponds to an object in the system. What hap-
pens if the function produces an error or fails in some other way, or if the object can
be manipulated without reference to the abstraction?

The first rule is to catch errors and failures of the mappings. This requires an
analysis of the functions and a knowledge of their implementation. The action to take
on failure also requires thought. In general, if the cause cannot be determined, the
program should fail by returning the relevant parts of the system to the states they
were in when the program began.40

Implementation Rule 26.5.4. The error status of every function must be
checked. Do not try to recover unless the cause of the error, and its effects, do not
affect any security considerations. The program should restore the state of the
system to the state before the process began, and then terminate.

The abstractions in this program are the notion of a user and a role, the access
control information, and the creation of a process with the rights of the role. We will
examine these abstractions separately.

26.5.2.1 Resource Exhaustion and User Identifiers
The notion of a user and a role is an abstraction because the program can work with
role names and the operating system uses integers (UIDs). The question is how those
user and role names are mapped to UIDs. Typically, this is done with a user informa-
tion database that contains the requisite mapping, but the program must detect any
failures of the query and respond appropriately.

40 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 603 Tuesday, September 28, 2004 1:46 PM

604 Chapter 26 Program Security

EXAMPLE: A mail server allowed users to forward mail by creating a forwarding file
[194]. The forwarding file could specify files to which the mail should be appended.
In this case, the mail server would deliver the letter with the privileges of the owner
of the forwarding file (represented on the system as an integer UID). In some cases,
the mail server would queue the message for later delivery. When it did so, it would
write the name (not the UID) of the user into a control file. The system queried a
database, supplying the UID, and obtaining the corresponding name. If the query
failed, the mail server used a default name specified by the system administrator.

Attackers discovered how to make the queries fail. As a result, the user was set
to a default user, usually a system-level user (such as daemon). This enabled the
attackers to have the mail server append mail to any file to which the default user
could write. They used this to implant Trojan horses into system programs. These
Trojan horses gave them extra privileges, compromising the system.

The designers and implementers decided to have the program fail if, for any
reason, the query failed. This application of the principle of fail-safe defaults41 ensured
that in case of error, the users would not get access to the role account.

26.5.2.2 Validating the Access Control Entries
The access control information implements the access control policy (an abstrac-
tion). The expression of the access control information is therefore the result of map-
ping an abstraction to an implementation. The question is whether or not the given
access control information correctly implements the policy. Answering this question
requires someone to examine the implementation expression of the policy.

The programmers developed a second program that used the same routines as
the role-assuming program to analyze the access control entries. This program prints
the access control information in an easily readable format. It allows the system
managers to check that the access control information is correct. A specific proce-
dure requires that this information be checked periodically, and always after the file
or the program is altered.

26.5.2.3 Restricting the Protection Domain of the Role Process
Creating a role process is the third abstraction. There are two approaches. Under
UNIX-like systems, the program can spawn a second, child, process. It can also sim-
ply start up a second program in such a way that the parent process is replaced by the
new process. This technique, called overlaying, is intrinsically simpler than creating
a child process and exiting. It allows the process to replace its own protection domain
with the (possibly) more limited one corresponding to the role. The programmers
elected to use this method. The new process inherits the protection domain of the
original one. Before the overlaying, the original process must reset its protection

41 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 604 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 605

domain to that of the role. The programmers do so by closing all files that the origi-
nal process opened, and changing its privileges to those of the role.

EXAMPLE: The effective UIDs and GIDs42 control privileges. Hence, the program-
mers reset the effective GID first, and then the effective UID (if resetting were done
in the opposite order, the change to GIDs would fail because such changes require
root privileges). However, if the UNIX-like system supports saved UIDs, an autho-
rized user may be able to acquire root privileges even if the role account is not root.
The problem is that resetting the effective UID sets the saved UID to the previous
UID—namely, root. A process may then reacquire the rights of its saved UID. To
avoid this problem, the programmers used the setuid system call to reset all of the
real, effective, and saved UIDs to the UID of the role. Thus, all traces of the root UID
are eliminated and the user cannot reacquire those privileges.

Similarly, UNIX-like systems check access permissions only when the file is
opened. If a root process opens a privileged file and then the process drops root priv-
ileges, it can still read (or write to) the file.

The components of the protection domain that the process must reset before
the overlay are the open files (except for standard input, output, and error), which
must be closed, the signal handlers, which must be reset to their default values, and
any user-specific information, which must be cleared.

26.5.3 Improper Change

This category describes data and instructions that change over time. The danger is
that the changed values may be inconsistent with the previous values. The previous
values dictate the flow of control of the process. The changed values cause the pro-
gram to take incorrect or nonsecure actions on that path of control.

The data and instructions can reside in shared memory, in nonshared memory,
or on disk. The last includes file attribute information such as ownership and access
control list.

26.5.3.1 Memory
First comes the data in shared memory. Any process that can access shared memory
can manipulate data in that memory. Unless all processes that can access the shared
memory implement a concurrent protocol for managing changes, one process can
change data on which a second process relies. As stated above, this could cause the
second process to violate the security policy.

42 See Section 13.3, “Users.”

Bishop.book Page 605 Tuesday, September 28, 2004 1:46 PM

606 Chapter 26 Program Security

EXAMPLE: Two processes share memory. One process reads authentication data and
writes it into the shared memory space. The second process performs the authentica-
tion, and writes a boolean true back into the shared memory space if the authentica-
tion succeeds, and false if it fails. Unless the two processes use concurrent constructs
to synchronize their reading and writing, the first process may read the result before
the second process has completed the computation for the current data. This could
allow access when it should be denied, or vice versa.

Implementation Rule 26.5.5. If a process interacts with other processes, the
interactions should be synchronized. In particular, all possible sequences of
interactions must be known and, for all such interactions, the process must
enforce the required security policy.

A variant of this situation is the asynchronous exception handler. If the han-
dler alters variables and then returns to the previous point in the program, the
changes in the variables could cause problems similar to the problem of concurrent
processes. For this reason, if the exception handler alters any variables on which
other portions of the code depend, the programmer must understand the possible
effects of such changes. This is just like the earlier situation in which a concurrent
process changes another’s variables in a shared memory space.

Implementation Rule 26.5.6. Asynchronous exception handlers should not alter
any variables except those that are local to the exception handling module. An
exception handler should block all other exceptions when begun, and should not
release the block until the handler completes execution, unless the handler has
been designed to handle exceptions within itself (or calls an uninvoked exception
handler).

A second approach applies whether the memory is shared or not. A user feeds
bogus information to the program, and the program accepts it. The bogus data over-
flows its buffer, changing other data, or inserting instructions that can be executed
later.

EXAMPLE: The buffer overflow attack on fingerd described in Section 20.4.5.2 illus-
trates this approach. The return address is pushed onto the stack when the input rou-
tine is called. That address is not expected to change between its being pushed onto
the stack and its being popped from the stack, but the buffer overflow changes it.
When the input function returns, the address popped from the stack is that of the
input buffer. Execution resumes at that point, and the input instructions are used.

This suggests an approach to detecting such transformations (the stack guard
approach) [216]. Immediately after the return address is pushed onto the stack, push
a random number onto the stack (the canary). Assume that the input overflows the
buffer on the stack and alters the return address on the stack. If the canary is n bits
long and has been chosen randomly, the probability of the attacker not changing that

Bishop.book Page 606 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 607

cookie is 2–n. When the input procedure returns, the canary is popped and compared
with the value that was pushed onto the stack. If the two differ, there has been an
overflow.43

In terms of trust, the return address (a trusted datum) can be affected by
untrusted data (from the input). This lowers the trustworthiness of the return address
to that of input data. One need not supply instructions to breach security.

EXAMPLE: One version of a UNIX login program allocated two adjacent arrays. The
first held the user’s cleartext password and was 80 characters long, and the second
held the password hash44 and was 13 characters long. The program’s logic loaded the
password hash into the second array as soon as the user’s name was determined. It
then read the user’s cleartext password and stored it in the first array. If the contents
of the first array hashed to the contents of the second array, the user was authenti-
cated. An attacker simply selected a random password (for example, “password”)
and generated a valid hash for it (here, “12CsGd8FRcMSM”). The attacker then
identified herself as root. When asked for a password, the attacker entered “pass-
word,” typed 72 spaces, and then typed “12CsGd8FRcMSM.” The system hashed
“password,” got “12CsGd8FRcMSM,” and logged the user in as root.

A technique in which canaries protect data, not only the return address, would
work, but raises many implementation problems (see Exercise 6).

Implementation Rule 26.5.7. Whenever possible, data that the process trusts
and data that it receives from untrusted sources (such as input) should be kept in
separate areas of memory. If data from a trusted source is overwritten with data
from an untrusted source, a memory error will occur.

In more formal terms, the principle of least common mechanism45 indicates
that memory should not be shared in this way.

These rules apply to our program in several ways. First, the program does not
interact with any other program except through exception handling.46 So Implemen-
tation Rule 26.5.5 does not apply. Exception handling consists of calling a procedure
that disables further exception handling, logs the exception, and immediately termi-
nates the program.

Illicit alteration of data in memory is the second potential problem. If the user-
supplied data is read into memory that overlaps with other program data, it could

43 If the goal is to alter data on the stack other than the return address, the canary will not be
altered. This technique will not detect the change. (See Exercise 6.)
44 See Section 11.2, “Passwords.”
45 See Section 12.2.7, “Principle of Least Common Mechanism.”
46 If the access control information or the authentication information came from servers, then
there would be interaction with other programs (the servers). The method of communication
would need to be considered, as discussed above.

Bishop.book Page 607 Tuesday, September 28, 2004 1:46 PM

608 Chapter 26 Program Security

erase or alter that data. To satisfy Implementation Rule 26.5.7, the programmers did
not reuse variables into which users could input data. They also ensured that each
access to a buffer did not overlap with other buffers.

The problem of buffer overflow is solved by checking all array and pointer
references within the code. Any reference that is out of bounds causes the program to
fail after logging an error message to help the programmers track down the error.

26.5.3.2 Changes in File Contents
File contents may change improperly. In most cases, this means that the file permis-
sions are set incorrectly or that multiple processes are accessing the file, which is
similar to the problem of concurrent processes accessing shared memory. Manage-
ment Rule 26.5.2 and Implementation Rule 26.5.5 cover these two cases.

A nonobvious corollary is to be careful of dynamic loading. Dynamic load
libraries are not part of this program’s executable. They are loaded, as needed, when
the program runs. Suppose one of the libraries is changed, and the change causes a
side effect. The program may cease to function or, even worse, work incorrectly.

If the dynamic load modules cannot be altered, then this concern is minimal,
but if they can be upgraded or otherwise altered, it is important. Because one of the
reasons for using dynamic load libraries is to allow upgrades without having to
recompile programs that depend on the library, security-related programs using
dynamic load libraries are at risk.

Implementation Rule 26.5.8. Do not use components that may change between
the time the program is created and the time it is run.

This is another reason that the developers decided not to use dynamic loading.

26.5.3.3 Race Conditions in File Accesses
A race condition in this context is the time-of-check-to-time-of-use problem. As with
memory accesses, the file being used is changed after validation but before access.47

To thwart it, either the file must be protected so that no untrusted user can alter it, or
the process must validate the file and use it indivisibly. The former requires appropri-
ate settings of permission, so Management Rule 26.5.2 applies. Section 26.5.7,
“Improper Indivisibility,” discusses the latter.

This program validates that the owner and access control permissions for the
access control file are correct (the check). It then opens the file (the use). If an attacker
can change the file after the validation but before the opening, so that the file checked is
not the file opened, then the attacker can have the program obtain access control informa-
tion from a file other than the legitimate access control file. Presumably, the attacker
would supply a set of access control entries allowing unauthorized accesses.

47 Section 20.3.1, “Two Security Flaws,” discusses this problem in detail.

Bishop.book Page 608 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 609

EXAMPLE: The UNIX operating system allows programs to refer to files in two
ways: by name and by file descriptor.48 Once a file descriptor is bound to a file, the
referent of the descriptor does not change. Each access through the file descriptor
always refers to the bound file (until the descriptor is closed). However, the kernel
reprocesses the file name at each reference, so two references to the same file name
may refer to two different files. An attacker who is able to alter the file system in such
a way that this occurs is exploiting a race condition. So any checks made to the file
corresponding to the first use of the name may not apply to the file corresponding to
the second use of the name. This can result in a process making unwarranted
assumptions about the trustworthiness of the file and the data it contains.

In the xterm example49 the program can be fixed by opening the file and then
using the file descriptor (handle) to obtain the owner and access permissions.50

Those permissions belong to the opened file, because they were obtained using the
file descriptor. The validation is now ensured to be that of the access control file.

The program does exactly this. It opens the access control file and uses the file
descriptor, which references the file attribute information directly to obtain the
owner, group, and access control permissions. Those permissions are checked. If
they are correct, the program uses the file descriptor to read the file. Otherwise, the
file is closed and the program reports a failure.

26.5.4 Improper Naming

Improper naming refers to an ambiguity in identifying an object. Most commonly,
two different objects have the same name.51 The programmer intends the name to
refer to one of the objects, but an attacker manipulates the environment and the pro-
cess so that the name refers to a different object. Avoiding this flaw requires that
every object be unambiguously identified. This is both a management concern and an
implementation concern.

Objects must be uniquely identifiable or completely interchangeable. Manag-
ing these objects means identifying those that are interchangeable and those that are
not. The former objects need a controller (or set of controllers) that, when given a
name, selects one of the objects. The latter objects need unique names. The managers
of the objects must supply those names.

Management Rule 26.5.5. Unique objects require unique names. Interchange-
able objects may share a name.

48 See Section 13.2, “Files and Objects.”
49 See Section 20.3.1, “Two Security Flaws.”
50 The system call used would be fstat(2).
51 See the example on page 363 in Section 19.1.

Bishop.book Page 609 Tuesday, September 28, 2004 1:46 PM

610 Chapter 26 Program Security

A name is interpreted within a context. At the implementation level, the pro-
cess must force its own context into the interpretation, to ensure that the object
referred to is the intended object. The context includes information about the charac-
ter sets, process and file hierarchies, network domains, and any accessible variables
such as the search path.

EXAMPLE: Stage 3 in Section 20.2.8 discussed an attack in which a privileged pro-
gram called loadmodule executed a second program named ld.so. The attack
exploited loadmodule’s failure to specify the context in which ld.so was named.
Loadmodule used the context of the user invoking the program. Normally, this
caused the correct ld.so to be invoked. In the example, the attacker changed the con-
text so that another version of ld.so was executed. This version had a Trojan horse
that would grant privileged access. When the attacker executed loadmodule, the Tro-
jan horse was triggered and maximum privileges were acquired.

Implementation Rule 26.5.9. The process must ensure that the context in which
an object is named identifies the correct object.

This program uses names for external objects in four places: the name of the
access control file, the names of the users and roles, the names of the hosts, and the
name of the command interpreter (the shell) that the program uses to execute com-
mands in the role account.

The two file names (access control file and command interpreter) must iden-
tify specific files. Absolute path names specify the location of the object with respect
to a distinguished directory called / or the “root directory.” However, a privileged
process can redefine / to be any directory.52 This program does not do so. Further-
more, if the root directory is anything other than the root directory of the system, a
trusted process has executed it. No untrusted user could have done so. Thus, as long
as absolute path names are specified, the files are unambiguously named.

The name provided may be interpreted in light of other aspects of the environ-
ment. For example, differences in the encoding of characters can transform file
names. Whether characters are made up of 16 bits, 8 bits, or 7 bits can change the
interpretation, and therefore the referent, of a file name. Other environment variables
can change the interpretation of the path name. This program simply creates a new,
known, safe environment for execution of the commands.53

This has two advantages over sanitization of the existing context. First, it
avoids having the program analyze the environment in detail. The meaning of each
aspect of the environment need not be analyzed and examined. The environment is
simply replaced. Second, it allows the system to evolve without compromising the
security of the program. For example, if a new environment variable is assigned a

52 Specifically, the system call chroot(2) resets / to mean the named directory. All absolute path
names are interpreted with respect to that directory. Only the superuser, root, may execute this
system call.
53 The principle of fail-safe defaults (see Section 12.2.2) supports this approach.

Bishop.book Page 610 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 611

meaning that affects how programs are executed, the variable will not affect how the
program executes its commands because that variable will not appear in the com-
mand’s environment. So this program closes all file descriptors, resets signal han-
dlers, and passes a new set of environment variables for the command.

These actions satisfy Implementation Rule 26.5.9.
The developers assumed that the system was properly maintained, so that the

names of the users and roles would map into the correct UIDs. (Section 26.5.2.1 dis-
cusses this.) This applies to Management Rule 26.5.5.

The host names are the final set of names. These may be specified by names or
IP addresses. If the former, they must be fully qualified domain names to avoid ambi-
guity. To see this, suppose an access control entry allows user matt to access the role
wheel when logging in from the system amelia. Does this mean that the system
names amelia in the local domain, or any system named amelia from any domain?
Either interpretation is valid. The former is more reasonable,54 and applying this
interpretation resolves the ambiguity. (The program implicitly maps names to fully
qualified domain names using the former interpretation. Thus, amelia in the access
control entry would match a host named amelia in the local domain, and not a host
named amelia in another domain.) This implements Implementation Rule 26.5.9.55

As a side note, if the local network is mismanaged or compromised, the name
amelia may refer to a system other than the one intended. For example, the real host
amelia may crash or go offline. An attacker can then reset the address of his host to
correspond to amelia. This program will not detect the impersonation.

26.5.5 Improper Deallocation or Deletion

Failing to delete sensitive information raises the possibility of another process seeing
that data at a later time. In particular, cryptographic keywords, passwords, and other
authentication information should be discarded once they have been used. Similarly,
once a process has finished with a resource, that resource should be deallocated. This
allows other processes to use that resource, inhibiting denial of service attacks.

A consequence of not deleting sensitive information is that dumps of memory,
which may occur if the program receives an exception or crashes for some other rea-
son, contain the sensitive data. If the process fails to release sensitive resources
before spawning unprivileged subprocesses, those unprivileged subprocesses may
have access to the resource.

Implementation Rule 26.5.10. When the process finishes using a sensitive
object (one that contains confidential information or one that should not be

54 According to the principle of least privilege (see Section 12.2.1).
55 As discussed in Section 13.6.1, “Host Identity,” host names can be spoofed. For reasons
discussed in the preceding chapters, the Drib management and security officers are not
concerned with this threat on the Drib’s internal network.

Bishop.book Page 611 Tuesday, September 28, 2004 1:46 PM

612 Chapter 26 Program Security

altered), the object should be erased, then deallocated or deleted. Any resources
not needed should also be released.

Our program uses three pieces of sensitive information. The first is the clear-
text password, which authenticates the user. The password is hashed, and the hash is
compared with the stored hash. Once the hash of the entered password has been com-
puted, the process must delete the cleartext password. So it overwrites the array hold-
ing the password with random bytes.

The second piece of sensitive information is the access control information.
Suppose an attacker wanted to gain access to a role account. The access control
entries would tell the attacker which users could access that account using this pro-
gram. To prevent the attacker from gaining this information, the developers decided
to keep the contents of the access control file confidential. The program accesses this
file using a file descriptor. File descriptors remain open when a new program over-
lays a process. Hence, the program closes the file descriptor corresponding to the
access control file once the request has been validated (or has failed to be validated).

The third piece of sensitive information is the log file. The program alters this
file. If an unprivileged program such as one run by this program were to inherit the
file descriptor, it could flood the log. Were the log to fill up, the program could no
longer log failures. So the program also closes the log file before spawning the role’s
command.

26.5.6 Improper Validation

The problem of improper validation arises when data is not checked for consistency and
correctness. Ideally, a process would validate the data against the more abstract policies
to ensure correctness. In practice, the process can check correctness only by looking for
error codes (indicating failure of functions and procedures) or by looking for patently
incorrect values (such as negative numbers when positive ones are required).

As the program is designed, the developers should determine what conditions
must hold at each interface and each block of code. They should then validate that
these conditions hold.

What follows is a set of validations that are commonly overlooked. Each pro-
gram requires its own analysis, and other types of validation may be critical to the
correct, secure functioning of the program, so this list is by no means complete.

26.5.6.1 Bounds Checking
Errors of validation often occur when data is supposed to lie within bounds. For
example, a buffer may contain entries numbered from 0 to 99. If the index used to
access the buffer elements takes on a value less than 0 or greater than 99, it is an
invalid operand because it accesses a nonexistent entry. The variable used to access
the element may not be an integer (for example, it may be a set element or pointer),
but in any case it must reference an existing element.

Bishop.book Page 612 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 613

Implementation Rule 26.5.11. Ensure that all array references access existing
elements of the array. If a function that manipulates arrays cannot ensure that
only valid elements are referenced, do not use that function. Find one that does,
write a new version, or create a wrapper.

In this program, all loops involving arrays compare the value of the variable
referencing the array against the indexes (or addresses) of both the first and last ele-
ments of the array. The loop terminates if the variable’s value is outside those two
values. This covers all loops within the program, but it does not cover the loops in the
library functions.

For loops in the library functions, bounds checking requires an analysis of the
functions used to manipulate arrays. The most common type of array for which
library functions are used is the character string, which is a sequence of characters
(bytes) terminating with a 0 byte. Because the length of the string is not encoded as
part of the string, functions cannot determine the size of the array containing the
string. They simply operate on all bytes until a 0 byte is found.

EXAMPLE: The program sometimes must copy character strings (defined in C as arrays
of character data terminating with a byte containing 0). The canonical function for copy-
ing strings does no bounds checking. This function, strcpy(x, y), copies the string from
the array y to the array x, even if the string is too long for x. A different function,
strncpy(x, y, n), copies at most n characters from array y to array x. However, unlike
strcpy, strncpy may not copy the terminating 0 byte.56 The program must take two actions
when strncpy is called. First, it must insert a 0 byte at the end of the x array. This ensures
that the contents of x meet the definition of a string in C. Second, the process must check
that both x and y are arrays of characters, and that n is a positive integer.

The programmers use only those functions that bound the sizes of arrays. In
particular, the function fgets is used to read input, because it allows the programmer
to specify that a maximum number of characters are to be read. (This solves the
problem that plagued fingerd.57)

26.5.6.2 Type Checking
Failure to check types is another common validation problem. If a function parame-
ter is an integer, but the actual argument passed is a floating point number, the
function will interpret the bit pattern of the floating point number as an integer and
will produce an incorrect result.

56 If the string in y is longer than n characters, strncpy will not add a 0 byte to the characters
copied into x.
57 See Section 20.4.5.2, “fingerd Buffer Overflow.”

Bishop.book Page 613 Tuesday, September 28, 2004 1:46 PM

614 Chapter 26 Program Security

Implementation Rule 26.5.12. Check the types of functions and parameters.

A good compiler and well-written code will handle this particular problem.
All functions should be declared before they are used. Most programming languages
allow the programmer to specify the number and types of arguments, as well as the
type of the return value (if any). The compiler can then check the types of the decla-
rations against the types of the actual arguments and return values.

Management Rule 26.5.6. When compiling programs, ensure that the compiler
flags report inconsistencies in types. Investigate all such warnings and either fix
the problem or document the warning and why it is spurious.

26.5.6.3 Error Checking
A third common problem involving improper validation is failure to check return
values of functions. For example, suppose a program needs to determine ownership
of a file. It calls a system function that returns a record containing information from
the file attribute table. The program obtains the owner of the file from the appropriate
field of the record. If the function fails, the information in the record is meaningless.
So, if the function’s return status is not checked, the program may act erroneously.

Implementation Rule 26.5.13. Check all function and procedure executions for
errors.

This program makes extensive use of system and library functions, as well as
its own internal functions (such as the access control module). Every function returns
a value, and the value is checked for an error before the results of the function are
used. For example, the function that obtains the ownership and access permissions of
the access control file would return meaningless information should the function fail.
So the function’s return value is checked first for an error; if no error has occurred,
then the file attribute information is used.

As another example, the program opens a log file. If the open fails, and the
program tries to write to the (invalid) file descriptor obtained from the function that
failed, the program will terminate as a result of an exception. Hence, the program
checks the result of opening the log file.

26.5.6.4 Checking for Valid, not Invalid, Data
Validation should apply the principle of fail-safe defaults.58 This principle requires
that valid values be known, and that all other values be rejected. Unfortunately, pro-
grammers often check for invalid data and assume that the rest is valid.

58 See Section 12.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 614 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 615

EXAMPLE: A metacharacter is a character that is interpreted as something other
than itself. For example, to the UNIX shells, the character “?” is a metacharacter that
represents all single character files. A vendor upgraded its version of the command
interpreter for its UNIX system. The new command interpreter (shell) treated the
character “`” (back quote) as a delimiter for a command (and hence a metacharacter).
The old shell treated the back quote as an ordinary character. Included in the distribu-
tion was a program for executing commands on remote systems. The set of allowed
commands was restricted. This program carefully checked that the command was
allowed, and that it contained no metacharacters, before sending it to a shell on the
remote system. Unfortunately, the program checked a list of metacharacters to be
rejected, rather than checking a list of characters that were allowed in the commands.
As a result, one could embed a disallowed command within a valid command
request, because the list of metacharacters was not updated to include the back quote.

Implementation Rule 26.5.14. Check that a variable’s values are valid.

This program checks that the command to be executed matches one of the
authorized commands. It does not have a set of commands that are to be denied. The
program will detect an invalid command as one that is not listed in the set of autho-
rized commands for that user accessing that role at the time and place allowed.

As discussed in Section 26.3.2.3, it is possible to allow all users except some
specific users access to a role by an appropriate access control entry (using the key-
word not). The developers debated whether having this ability was appropriate
because its use could lead to violations of the principle of fail-safe defaults. On one
key system, however, the only authorized users were system administrators and one
or two trainees. The administrators wanted the ability to shut the trainees out of cer-
tain roles. So the developers added the keyword and recommended against its use
except in that single specific situation.

Management Rule 26.5.7. If a trade-off between security and other factors
results in a mechanism or procedure that can weaken security, document the rea-
sons for the decision, the possible effects, and the situations in which the com-
promise method should be used. This informs others of the trade-off and the
attendant risks.

26.5.6.5 Checking Input
All data from untrusted sources must be checked. Users are untrusted sources. The
checking done depends on the way the data is received: into an input buffer (bounds
checking) or read in as an integer (checking the magnitude and sign of the input).

Implementation Rule 26.5.15. Check all user input for both form and content.
In particular, check integers for values that are too big or too small, and check
character data for length and valid characters.

Bishop.book Page 615 Tuesday, September 28, 2004 1:46 PM

616 Chapter 26 Program Security

The program determines what to do on the basis of at least two pieces of data
that the user provides: the role name and the command (which, if omitted, means
unrestricted access).59 Users must also authenticate themselves appropriately. The
program must first validate that the supplied password is correct. It then checks the
access control information to determine whether the user is allowed access to the role
at that time and from that location.

The length of the input password must be no longer than the buffer in which it
is placed. Similarly, the lines of the access control file must not overflow the buffer
allocated for it. The contents of the lines of the access control file must make up a
valid access control entry. This is most easily done by constraining the format of the
contents of the file, as discussed in the next section.

An excellent example of the need to constrain user input comes from format-
ted print statements in C.

EXAMPLE: The printf function’s first parameter is a character string that indicates
how printf is to format output data. The following parameters contain the data. For
example,

printf(“%d %d\n”, i, j);

prints the values of i and j. Some versions of this library function allow the user to
store the number of characters printed at any point in the string. For example, if i
contains 2, j contains 21, and m and n are integer variables,

printf(“%d %d%n %d\n%n”, i, j, &m, i, &n);

prints

2 21 2

and stores 4 in m and 7 in n, because four characters are printed before the first “%n”
and seven before the second “%n” (the sequence “\n” is interpreted as a single char-
acter, the newline). Now, suppose the user is asked for a file name. This input is
stored in the array str. The program then prints the file name with

printf(str);

If the user enters the file name “log%n”, the function will overwrite some memory
location with the integer 3. The exact location depends on the contents of the program
stack, and with some experimentation it is possible to cause the program to change the
return address stored on the stack. This leads to the buffer overflow attack described
earlier.

59 See Section 12.2.6, “Principle of Separation of Privilege.”

Bishop.book Page 616 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 617

26.5.6.6 Designing for Validation
Sometimes data cannot be validated completely. For example, in the C programming
language, a programmer can test for a NULL pointer (meaning that the pointer does
not hold the address of any object), but if the pointer is not NULL, checking the
validity of the pointer may be very difficult (or impossible). Using a language with
strong type checking is another example.

The consequence of the need for validation requires that data structures and
functions be designed and implemented in such a way that they can be validated. For
example, because C pointers cannot be properly validated, programmers should not
pass pointers or use them in situations in which they must be validated. Methods of
data hiding, type checking, and object-oriented programming often provide mecha-
nisms for doing this.

Implementation Rule 26.5.16. Create data structures and functions in such a
way that they can be validated.

An example will show the level of detail necessary for validation. The entries
in the access control file are designed to allow the program to detect obvious errors.
Each access control entry consists of a block of information in the following format.

role name
users comma-separated list of users
location comma-separated list of locations
time comma-separated list of times
command command and arguments
…
command command and arguments

endrole

This defines each component of the entry. (The lines need not be in any partic-
ular order.) The syntax is well-defined, and the access control module in the program
checks for syntax errors. The module also performs other checks, such as searching
for invalid user names in the users field and requiring that the full path names of all
commands be specified. Finally, note that the module computes the number of com-
mands for the module’s internal record. This eliminates a possible source of error—
namely, that the user may miscount the number of commands.

In case of any error, the process logs the error, if possible, and terminates. It
does not allow the user to access the role.

26.5.7 Improper Indivisibility

Improper indivisibility60 arises when an operation is considered as one unit (indivis-
ible) in the abstract but is implemented as two units (divisible). The race conditions

60 This is often called “atomicity.”

Bishop.book Page 617 Tuesday, September 28, 2004 1:46 PM

618 Chapter 26 Program Security

discussed in Section 26.5.3.3 provide one example. The checking of the access con-
trol file attributes and the opening of that file are to be executed as one operation.
Unfortunately, they may be implemented as two separate operations, and an attacker
who can alter the file after the first but before the second operation can obtain access
illicitly. Another example arises in exception handling. Often, program statements
and system calls are considered as single units or operations when the implementa-
tion uses many operations. An exception divides those operations into two sets: the
set before the exception, and the set after the exception. If the system calls or state-
ments rely on data not changing during their execution, exception handlers must not
alter the data.

Section 26.5.3 discusses handling of these situations when the operations cannot
be made indivisible. Approaches to making them indivisible include disabling interrupts
and having the kernel perform operations. The latter assumes that the operation is indivis-
ible when performed by the kernel, which may be an incorrect assumption.

Implementation Rule 26.5.17. If two operations must be performed sequen-
tially without an intervening operation, use a mechanism to ensure that the two
cannot be divided.

In UNIX systems, the problem of divisibility arises with root processes such
as the program under consideration. UNIX-like systems do not enforce the principle
of complete mediation.61 For root, access permissions are not checked. Recall the
xterm example in Section 20.4.5.1. A user needed to log information from the execu-
tion of xterm, and specified a log file. Before appending to that file, xterm needed to
ensure that the real UID could write to the log file. This required an extra system call.
As a result, operations that should have been indivisible (the access check followed
by the opening of the file) were actually divisible. One way to make these operations
indivisible on UNIX-like systems is to drop privileges to those of the real UID, then
open the file. The access checking is done in the kernel as part of the open.

Improper indivisibility arises in our program when the access control module
validates and then opens the access control file. This should be a single operation, but
because of the semantics of UNIX-like systems, it must be performed as two distinct
operations. It is not possible to ensure the indivisibility of the two operations. How-
ever, it is possible to ensure that the target of the operations does not change, as dis-
cussed in Section 26.5.3, and this suffices for our purposes.

26.5.8 Improper Sequencing

Improper sequencing means that operations are performed in an incorrect order. For
example, a process may create a lock file and then write to a log file. A second pro-
cess may also write to the log file, and then check to see if the lock file exists. The

61 See Section 12.2.4, “Principle of Complete Mediation.”

Bishop.book Page 618 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 619

first program uses the correct sequence of calls; the second does not (because that
sequence allows multiple writers to access the log file simultaneously).

Implementation Rule 26.5.18. Describe the legal sequences of operations on a
resource or object. Check that all possible sequences of the program(s) involved
match one (or more) legal sequences.

In our program, the sequence of operations in the design shown in Section
26.3.1.2 follow a proper order. The user is first authenticated. Then the program uses
the access control information to determine if the requested access is valid. If it is,
the appropriate command is executed using a new, safe environment.

A second sequence of operations occurs when privileges to the role are
dropped. First, group privileges are changed to those of the role. Then all user identi-
fication numbers are changed to those of the role. A common error is to switch the
user identification numbers first, followed by the change in group privileges.
Because changing group privileges requires root privileges, the change will fail.
Hence, the programmers used the stated ordering.

26.5.9 Improper Choice of Operand or Operation

Preventing errors of choosing the wrong operand or operation requires that the algo-
rithms be thought through carefully (to ensure that they are appropriate). At the
implementation level, this requires that operands be of an appropriate type and value,
and that operations be selected to perform the desired functions. The difference
between this type of error and improper validation lies in the program. Improper
implementation refers to a validation failure. The operands may be appropriate, but
no checking is done. In this category, even though the operands may have been
checked, they may still be inappropriate.

EXAMPLE: The UNIX program su allows a user to substitute another user’s identity,
obtaining the second user’s privileges. According to an apocryphal story, one version
of this program granted the user root privileges if the user information database did
not exist (see Exercise 10 in Chapter 12). If the program could not open the user
information database file, it assumed that the database did not exist. This was an
inappropriate choice of operation because one could block access to the file even
when the database existed.

Assurance techniques62 help detect these problems. The programmer docu-
ments the purpose of each function and then checks (or, preferably, others check)
that the algorithms in the function work properly and that the code correctly imple-
ments the algorithms.

62 See Chapter 17, “Introduction to Assurance,” and Chapter 18, “Evaluating Systems.”

Bishop.book Page 619 Tuesday, September 28, 2004 1:46 PM

620 Chapter 26 Program Security

Management Rule 26.5.8. Use software engineering and assurance techniques
(such as documentation, design reviews, and code reviews) to ensure that opera-
tions and operands are appropriate.

Within our program, many operands and operations control the granting (and
denying) of access, the changing to the role, and the execution of the command. We
first focus on the access part of the program, and afterwards we consider two other
issues.

First, a user is granted access only when an access control entry matches all
characteristics of the current session. The relevant characteristics are the role name,
the user’s UID, the role’s name (or UID), the location, the time, and the command.
We begin by checking that if the characteristics match, the access control module
returns true (allowing access). We also check that the caller grants access when the
module returns true and denies access when the module returns false.

Next, we consider the user’s UID. That object is of type uid_t. If the interface
to the system database returns an object of a different type, conversion becomes an
issue. Specifically, many interfaces treat the UID as an integer. The difference
between the types int and uid_t may cause problems. On the systems involved, uid_t
is an unsigned integer. Since we are comparing signed and unsigned integers, C sim-
ply converts the signed integers to unsigned integers, and the comparison succeeds.
Hence, the choice of operation (comparison, here) is proper.

Checking location requires the program to derive the user’s location, as dis-
cussed above, and pass it to the validator. The validator takes a string and determines
whether it matches the pattern in the location field of the access control entry. If the
string matches, the module should continue; otherwise, it should terminate and
return false.

Unlike the location, a variable of type time_t contains the current time.
The time checking portion of the module processes the string representing the
allowed times and determines if the current time falls in the range of allowed
times. Checking time is different than checking location because legal times are
ranges, except in one specific situation: when an allowed time is specified to the
exact second. A specification of an exact time is useless, because the program may
not obtain the time at the exact second required. This would lead to a denial of ser-
vice, violating Requirement 26.2.4. Also, allowing exact times leads to ambiguity.

EXAMPLE: The system administrator specifies that user matt is allowed access to the
role mail at 9 AM on Tuesdays. Should this be interpreted as exactly 9 AM (that is,
9:00:00 AM) or as sometime during the 9 AM hour (that is, from 9:00:00 to 9:59:59 AM)?
The latter interprets the specification as a range rather than an exact time, so the
access control module uses that interpretation.

The use of signal handlers provides a second situation in which an improper
choice of operation could occur. A signal indicates either an error in the program or a
request from the user to terminate, so a signal should cause the program to terminate.
If the program continues to run, and then grants the user access to the role account,

Bishop.book Page 620 Tuesday, September 28, 2004 1:46 PM

26.5 Common Security-Related Programming Problems 621

either the program has continued in the face of an error or it has overridden the user’s
attempt to terminate the program.

26.5.10 Summary

This type of top-down analysis differs from the more usual approach of taking a
checklist of common vulnerabilities and using it to examine code. There is a place
for each of these approaches. The top-down approach presented here is a design
approach, and should be applied at each level of design and implementation. It
emphasizes documentation, analysis, and understanding of the program, its inter-
faces, and the environment in which it executes. A security analysis document should
describe the analysis and the reasons for each security-related decision. This docu-
ment will help other analysts examine the program and, more importantly, will pro-
vide future developers and maintainers of the program with insight into potential
problems they may encounter in porting the program to a different environment, add-
ing new features, or changing existing features.

Once the appropriate phase of the program has been completed, the develop-
ers should use a checklist to validate that the design or implementation has no com-
mon errors. Given the complexity of security design and implementation, such
checklists provide valuable confirmation that the developers have taken common
security problems into account. The following lists summarize the implementation
and management rules above.

List of Implementation Rules

Implementation Rule 26.5.1. Structure the process so that all sections requiring
extra privileges are modules. The modules should be as small as possible and
should perform only those tasks that require those privileges.

Implementation Rule 26.5.2. Ensure that any assumptions in the program are
validated. If this is not possible, document them for the installers and maintainers, so
they know the assumptions that attackers will try to invalidate.

Implementation Rule 26.5.3. Ensure that the program does not share objects in
memory with any other program, and that other programs cannot access the memory
of a privileged process.

Implementation Rule 26.5.4. The error status of every function must be checked. Do
not try to recover unless the cause of the error, and its effects, do not affect any
security considerations. The program should restore the state of the system to the
state before the process began, and then terminate.

Implementation Rule 26.5.5. If a process interacts with other processes, the
interactions should be synchronized. In particular, all possible sequences of
interactions must be known and, for all such interactions, the process must enforce
the required security policy.

Bishop.book Page 621 Tuesday, September 28, 2004 1:46 PM

622 Chapter 26 Program Security

Implementation Rule 26.5.6. Asynchronous exception handlers should not alter any
variables except those that are local to the exception handling module. An exception
handler should block all other exceptions when begun, and should not release the
block until the handler completes execution, unless the handler has been designed to
handle exceptions within itself (or calls an uninvoked exception handler).

Implementation Rule 26.5.7. Whenever possible, data that the process trusts and
data that it receives from untrusted sources (such as input) should be kept in
separate areas of memory. If data from a trusted source is overwritten with data from
an untrusted source, a memory error will occur.

Implementation Rule 26.5.8. Do not use components that may change between the
time the program is created and the time it is run.

Implementation Rule 26.5.9. The process must ensure that the context in which an
object is named identifies the correct object.

Implementation Rule 26.5.10. When the process finishes using a sensitive object
(one that contains confidential information or one that should not be altered), the
object should be erased, then deallocated or deleted. Any resources not needed
should also be released.

Implementation Rule 26.5.11. Ensure that all array references access existing
elements of the array. If a function that manipulates arrays cannot ensure that only
valid elements are referenced, do not use that function. Find one that does, write a
new version, or create a wrapper.

Implementation Rule 26.5.12. Check the types of functions and parameters.

Implementation Rule 26.5.13. Check all function and procedure executions for
errors.

Implementation Rule 26.5.14. Check that a variable’s values are valid.

Implementation Rule 26.5.15. Check that a variable’s values are valid.

Implementation Rule 26.5.16. Create data structures and functions in such a way
that they can be validated.

Implementation Rule 26.5.17. If two operations must be performed sequentially
without an intervening operation, use a mechanism to ensure that the two cannot be
divided.

Implementation Rule 26.5.18. Describe the legal sequences of operations on a
resource or object. Check that all possible sequences of the program(s) involved
match one (or more) legal sequences.

List of Implementation Rules (Continued)

Bishop.book Page 622 Tuesday, September 28, 2004 1:46 PM

26.6 Testing, Maintenance, and Operation 623

26.6 Testing, Maintenance, and Operation

Testing provides an informal validation of the design and implementation of the pro-
gram. The goal of testing is to show that the program meets the stated requirements.
When design and implementation are driven by the requirements, as in the method
used to create the program under discussion, testing is likely to uncover only minor
problems, but if the developers do not have well-articulated requirements, or if the
requirements are changed during development, testing may uncover major problems,
requiring changes up to a complete redesign and reimplementation of a program. The
worst mistake managers and developers can make is to take a program that does not
meet the security requirements and add features to it to meet those requirements. The
problem is that the basic design does not meet the security requirements. Adding
security features will not ameliorate this fundamental flaw.

Once the program has been written and tested, it must be installed. The instal-
lation procedure must ensure that when a user starts the process, the environment in

List of Management Rules

Management Rule 26.5.1. Check that the process privileges are set properly.

Management Rule 26.5.2. The program that is executed to create the process, and
all associated control files, must be protected from unauthorized use and
modification. Any such modification must be detected.

Management Rule 26.5.3. Configure memory to enforce the principle of least
privilege. If a section of memory is not to contain executable instructions, turn
execute permission off for that section of memory. If the contents of a section of
memory are not to be altered, make that section read-only.

Management Rule 26.5.4. Identify all system components on which the program
depends. Check for errors whenever possible, and identify those components for
which error checking will not work.

Management Rule 26.5.5. Unique objects require unique names. Interchangeable
objects may share a name.

Management Rule 26.5.6. When compiling programs, ensure that the compiler flags
report inconsistencies in types. Investigate all such warnings and either fix the
problem or document the warning and why it is spurious.

Management Rule 26.5.7. If a trade-off between security and other factors results in
a mechanism or procedure that can weaken security, document the reasons for the
decision, the possible effects, and the situations in which the compromise method
should be used. This informs others of the trade-off and the attendant risks.

Management Rule 26.5.8. Use software engineering and assurance techniques
(such as documentation, design reviews, and code reviews) to ensure that
operations and operands are appropriate.

Bishop.book Page 623 Tuesday, September 28, 2004 1:46 PM

624 Chapter 26 Program Security

which the process is created matches the assumptions embodied in the design. This
constrains the configuration of the program parameters as well as the manner in
which the system is configured to protect the program. Finally, the installers must
enable trusted users to modify and upgrade the program and the configuration files
and parameters.

26.6.1 Testing

The results of testing a program are most useful if the tests are conducted in the envi-
ronment in which the program will be used (the production environment). So, the
first step in testing a program is to construct an environment that matches the produc-
tion environment. This requires the testers to know the intended production environ-
ment. If there are a range of environments, the testers must test the programs in all of
them. Often there is overlap between the environments, so this task is not so daunting
as it might appear.

The production environment should correspond to the environment for which
the program was developed. A symptom of discrepancies between the two environ-
ments is repeated failures resulting from erroneous assumptions. This indicates that the
developers have implicity embedded information from the development environment
that is inconsistent with the testing environment. This discrepancy must be reconciled.

The testing process begins with the requirements. Are they appropriate? Do
they solve the problem? This analysis may be moot (if the task is to write a program
meeting the given requirements), but if the task is phrased in terms of a problem to be
solved, the problem drives the requirements. Because the requirements drive the
design of the program, the requirements must be validated before designing begins.

As many of the software life cycle models indicate, this step may be revisited
many times during the development of the program. Requirements may prove to be
impossible to meet, or may produce problems that cannot be solved without chang-
ing the requirements. If the requirements are changed, they must be reanalyzed and
verified to solve the problem.

Then comes the design. Section 26.4 discusses the stepwise refinement of the
program. The decomposition of the program into modules allows us to test the pro-
gram as it is being implemented. Then, once it has been completed, the testing of the
entire program should demonstrate that the program meets its requirements in the
given environment.

The general philosophy of testing is to execute all possible paths of control
and compare the results with the expected results. In practice, the paths of control are
too numerous to test exhaustively. Instead, the paths are analyzed and ordered. Test
data is generated for each path, and the testers compare the results obtained from the
actual data with the expected results. This continues until as many paths as possible
have been tested.

For security testing, the testers must test not only the most commonly used
paths but also the least commonly used paths. The latter often create security prob-
lems that attackers can exploit. Because they are relatively unused, traditional testing

Bishop.book Page 624 Tuesday, September 28, 2004 1:46 PM

26.6 Testing, Maintenance, and Operation 625

places them at a lower priority than that of other paths. Hence, they are not as well
scrutinized, and vulnerabilities are missed.

The ordering of the paths relies on the requirements. Those paths that perform
multiple security checks are more critical than those that perform single (or no) secu-
rity checks because they introduce interfaces that affect security requirements. The
other paths affect security, of course, but there are no interfaces.

First, we examine a module that calls no other module. Then we examine the
program as a composition of modules. We conclude by testing the installation, con-
figuration, and use instructions.

26.6.1.1 Testing the Module
The module may invoke one or more functions. The functions return results to the
caller, either directly (through return values or parameter lists) or indirectly (by
manipulation of the environment). The goal of this testing is to ensure that the mod-
ule exhibits correct behavior regardless of what the functions returns.

The first step is to define “correct behavior.” During the design of the pro-
gram, the refinement process led to the specification of the module and the module’s
interface. This specification defines “correct behavior,” and testing will require us to
check that the specification holds.

We begin by listing all interfaces to the module. We will then use this list to
execute four different types of tests. The types of test are as follows.

1. Normal data tests. These tests provide unexceptional data.The data should
be chosen to exercise as many paths of control through the module as
possible.

2. Boundary data tests. These tests provide data that tests any limits to the
interfaces. For example, if the module expects a string of up to 256
characters to be passed in, these tests invoke the module and pass in arrays
of 255, 256, and 257 characters. Longer strings should also be used in an
effort to overflow internal buffers. The testers can examine the source code
to determine what to try. Limits here do not apply simply to arrays or
strings. In the program under discussion, the lowest allowed UID is 0, for
root. A good test would be to try a UID of –1 to see what happens. The
module should report an error.

EXAMPLE: One UNIX system had UIDs of 16 bits. The system used a file server that
would not allow a client’s root user to access any files. Instead, it remapped root’s
UID to the public UID of –2. Because that UID was not assigned to any user, the
remapped root could access only those files that were available to all users. The limit
problem arose because one user, named Mike, had the UID 65534. Because 65534 = –2
in twos’ complement 16-bit arithmetic, the remote root user could access all of
Mike’s files—even those that were not publicly available.

Bishop.book Page 625 Tuesday, September 28, 2004 1:46 PM

626 Chapter 26 Program Security

3. Exception tests. These tests determine how the program handles interrupts
and traps. For example, many systems allow the user to send a signal that
causes the program to trap to a signal handler, or to take a default action such
as dumping the contents of memory to a core file. These tests determine if
the module leaves the system in a nonsecure state—for example, by leaving
sensitive information in the memory dump. They also analyze what the
process does if ordinary actions (such as writing to a file) fail.

EXAMPLE: An FTP server ran on a system that kept its authentication information
confidential. An attacker found that she could cause the system to crash by sending
an unexpected sequence of commands, causing multiple signals to be generated
before the first signal could be handled. The crash resulted in a core dump. Because
the server would be restarted automatically, the attacker simply connected again and
downloaded the core dump. From that dump, she extracted the authentication infor-
mation and used a dictionary attack63 to obtain the passwords of several users.

4. Random data tests. These tests supply inputs generated at random and
observe how the module reacts. They should not corrupt the state of the
system. If the module fails, it should restore the system to a safe state.64

EXAMPLE: In a study of UNIX utilities [636], approximately 30% crashed when given
random inputs. In one case, an unprivileged program caused the system to crash.

Throughout the testing, the testers should keep track of the paths taken. This
allows them to determine how complete the testing is. Because these tests are highly
informal, the assurance they provide is not as convincing as the techniques used to
develop high assurance systems. However, it is more than random tests, or no tests,
would provide.

26.6.2 Testing Composed Modules

Now consider a module that calls other modules. Each of the invoked modules has a
specification describing its actions. So, in addition to the tests discussed in the pre-
ceding section, one other type of test should be performed.

5. Error handling tests. These tests assume that the called modules violate their
specifications in some way. The goal of these tests is to determine how robust
the caller is. If it fails gracefully, and restores the system to a safe state, then
the module passes the test. Otherwise, it fails and must be rewritten.

63 See Section 11.2.1, “Attacking a Password System.”
64 See Section 13.2.2, “Principle of Fail-Safe Defaults.”

Bishop.book Page 626 Tuesday, September 28, 2004 1:46 PM

26.7 Distribution 627

EXAMPLE: Assume that a security-related program, running with root privileges,
logs all network connections to a UNIX system. It also sends mail to the network
administrator with the name of the connecting host on the subject line. To do this, it
executes a command such as

mail -s hostname netadmin

where hostname is the name of the connecting host. This module obtains hostname
from a different module that is passed the connecting host’s IP address and uses the
Domain Name Service to find the corresponding host name. A serious problem arose
because the DNS did not verify that the hostname was composed of legal characters.
The effects were discovered when one attacker changed the name of his host to

hi nobody; rm -rf *; true

causing the security-related program to delete critical files. Had the calling module
expected failure, and checked for it, the error would have been caught before any
damage was done.

26.6.3 Testing the Program

Once the testers have assembled the program and its documentation, the final phase of
testing begins. The testers have someone follow the installation and configuration
instructions. This person should not be a member of the testing team, because the test-
ing team has been working with the program and is familiar with it. The goal of this
test is to determine if the installation and configuration instructions are correct and easy
to understand. The principle of psychological acceptability65 requires that the tool be
as easy to install and use as possible. Because most installers and users will not have
experience with the program, the testers need to evaluate how they will understand the
documentation and whether or not they can install the program correctly by following
the instructions. An incorrectly installed security tool does not provide security; it may
well detract from it. Worse, it gives people a false sense of security.

26.7 Distribution

Once the program has been completed, it must be distributed. Distribution involves
placing the program in a repository where it cannot be altered except by authorized

65 See Section 12.2.8, “Principle of Psychological Acceptability.”

Bishop.book Page 627 Tuesday, September 28, 2004 1:46 PM

628 Chapter 26 Program Security

people, and from which it can be retrieved and sent to the intended recipients. This
requires a policy for distribution. Specific factors to be considered are as follows.

1. Who can use the program? If the program is licensed to a specific
organization, or to a specific host, then each copy of the program that is
distributed must be tied to that organization or host so it cannot be
redistributed or pirated. This is an originator controlled policy.66 One
approach is to provide the licensee with a secret key and encipher the
software with the same key. This prevents redistribution without the
licensee’s consent, unless the attacker breaks the cryptosystem or steals
the licensee’s key.67

2. How can the integrity of the master copy be protected? If an attacker can
alter the master copy, from which distribution copies are made, then the
attacker can compromise all who use the program.

EXAMPLE: The program tcp_wrappers68 provides host-level access control for net-
work servers. It is one of the most widely used programs in the UNIX community. In
1996, attackers broke into the site from which that program could be obtained [199].
They altered the program to allow all connections to succeed. More than 50 groups
obtained the program before the break-in was detected.

Part of the problem is credibility. If an attacker can pose as the
vendor, then all who obtain the program from the attacker will be
vulnerable to attack. This tactic undermines trust in the program and can
be surprisingly hard to counter. It is analogous to generating a
cryptographic checksum for a progam infected with a computer virus.69
When an uninfected program is obtained, the integrity checker complains
because the checksum is wrong. In our example, when the real vendor
contacts the duped customer, the customer usually reacts with disbelief, or
is unwilling to concede that his system has been compromised.

3. How can the availability of the program be ensured? If the program is sent
through a physical medium, such as a CD-ROM, availability is equivalent
to the availability of mail or messenger services between the vendor and
the buyer. If the program is distributed through electronic means, however,
the distributor must take precautions to ensure that the distribution site is
available. Denial of service attacks such as SYN flooding70 may hamper
the availability.

66 See Section 7.3, “Originator Controlled Access Control.”
67 See Section 12.2.5, “Principle of Open Design.”
68 See Section 24.3.2, “The Development System.”
69 See Section 19.6.4, “Malicious Logic Altering Files.”
70 See Section 23.4, “Availability and Network Flooding.”

Bishop.book Page 628 Tuesday, September 28, 2004 1:46 PM

26.10 Further Reading 629

Like a program, the distribution is controlled by a policy. All considerations
that affect a security policy affect the distribution policy as well.

26.8 Conclusion

The purpose of this chapter was to provide a glimpse of techniques that provide bet-
ter than ordinary assurance that a program’s design and implementation satisfy its
requirements. This chapter is not a manual on applying high-assurance techniques.
In terms of the techniques discussed in Part 6, “Assurance,” this chapter describes
low-assurance techniques.

However, given the current state of programming and software development,
these low-assurance techniques enable programmers to produce significantly better,
more robust, and more usable code than they could produce without these tech-
niques. So, using a methodology similar to the one outlined in this chapter will
reduce vulnerabilities and improve both the quality and the security of code.

26.9 Summary

This chapter discussed informal techniques for writing programs that enforce secu-
rity policies. The process began with a requirements analysis and continued with a
threat analysis to show that the requirements countered the threats. The design pro-
cess came next, and it fed back into the requirements to clarify an ambiguity. Once
the high-level design was accepted, we used a stepwise refinement process to break
the design down into modules and a caller. The categories of flaws in the program
analysis vulnerability helped find potential implementation problems. Finally, issues
of testing and distribution ensured that the program did what was required.

26.10 Further Reading

All too little has been written about robust programming—the art of writing pro-
grams that work correctly and handle errors gracefully. Kernighan and Plauger’s
book [505] describes the principles and ideas underlying good programming style.
Stavely’s book [870] combines formalisms with informal steps. Maguire’s book
[585] is much more informal, and is a collection of tips on how to write robust pro-
grams. Koenig [525] focuses on the C programming language.

Viega and McGraw’s book [914] is somewhat general, with many examples
focusing on UNIX and Linux systems. Its design principles give good advice.

Bishop.book Page 629 Tuesday, September 28, 2004 1:46 PM

630 Chapter 26 Program Security

Although they are dated, Wood and Kochan’s book [955] and Bishop’s paper [100]
cover principles and techniques that are still valid. Braun [132] also provides a good
overview, as do Garfinkel and Spafford [347]. The latter book has a wonderful sec-
tion on trust, which is must reading for anyone interested in security-related pro-
gramming. Wheeler [937] also provides valuable information and insight.

Several books discuss aspects of secure programming in a Windows envi-
ronment. Howard and LeBlanc’s book [443] illuminates many of the problems
that programmers must be aware of. It is good reading even for those who work in
non-Windows environments. Other books [162, 442] discuss security in relation
to various aspects of the Windows environment.

26.11 Exercises

1. Consider the two interpretations of a time field that specifies “1 AM” One
interpretation says that this means exactly 1:00 AM and no other time. The
other says that this means any time during the 1 AM hour.

a. How would you express the time of exactly 1 AM in the second
interpretation?

b. How would you express “any time during the 1 AM hour” in the first
interpretation?

c. Which is more powerful? If they are equally powerful, which do you
think is more psychologically acceptable? Why?

2. Verify that the modified version of Requirement 26.2.4 shown as
Requirement 26.3.1 on page 585 counters the appropriate threats.

3. Currently, the program described in this chapter is to have setuid-to-root
privileges. Someone observed that it could be equally well-implemented
as a server, in which case the program would authenticate the user, connect
to the server, send the command and role, and then let the server execute
the command.

a. What are the advantages of using the server approach rather than the
single program approach?

b. If the server responds only to clients on the local machine, using
interprocess communication mechanisms on the local system, which
approach would you use? Why?

c. If the server were listening for commands from the network, would
that change your answer to part (b)? Why or why not?

d. If the client sent the password to the server, and the server
authenticated, would your answers to any of the three previous parts
change? Why or why not?

Bishop.book Page 630 Tuesday, September 28, 2004 1:46 PM

26.11 Exercises 631

4. The little languages presented in Section 26.3.2.3 have ambiguous
semantics. For example, in the location language, does “not host1 or
host2” mean “not at host1 and not at host2” or “not at host1, or at host2”?

a. Rewrite the BNF of the location language to make the semantics
reflect the second meaning (that is, the precedence of “not” is higher
than that of “or”). Are the semantics unambiguous now? Why or
why not?

b. Rewrite the BNF of the time language to make the semantics reflect
the second meaning (that is, the precedence of “not” is higher than
that of “or”). Are the semantics unambiguous now? Why or why
not?

5. Suppose an access control record is malformed (for example, it has a
syntax error). Show that the access control module would deny access.

6. The canary for StackGuard simply detects overflow that might change the
return address. This exercise asks you to extend the notion of a canary to
detection of buffer overflow.

a. Assume that the canary is placed directly after the array, and that
after every array, access is checked to see if it has changed. Would
this detect a buffer overflow? If so, why do you think this is not
suitable for use in practice? If not, describe an attack that could
change a number beyond the buffer without affecting the canary.

b. Now suppose that the canary was placed directly after the buffer
but—like the canary for StackGuard—was only checked just before
a function return. How effective do you think this method would be?

Bishop.book Page 631 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 632 Tuesday, September 28, 2004 1:46 PM

633

Chapter 27
Lattices

A lattice is a mathematical construction built on the notion of a group. First, we
review some basic terms. Then we discuss lattices.

27.1 Basics

For a set S, a relation R is any subset of S × S. For convenience, if (a, b) ∈ R, we
write aRb.

EXAMPLE: Let S = { 1, 2, 3 }. Then the relation less than or equal to (written ≤) is
defined by the set R = { (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3) }. We write 1 ≤ 1 and
2 ≤ 3 for convenience, because (1, 2) ∈ R and (2, 3) ∈ R, but not 3 ≤ 2, because (3, 2)
∉ R.

The following definitions describe properties of relations.

Definition 27–1. A relation R defined over a set S is reflexive if aRa for all
a ∈ S.

Definition 27–2. A relation R defined over a set S is antisymmetric if aRb and
bRa imply a = b for all a, b ∈ S.

Definition 27–3. A relation R defined over a set S is transitive if aRb and bRc
imply aRc for all a, b, c ∈ S.

EXAMPLE: Consider the set of complex numbers C. For any a ∈ C, define aR as the
real component and aI as the imaginary component (that is, a = aR + aIi). Let a ≤ b
if and only if aR ≤ bR and aI ≤ bI. This relation is reflexive, antisymmetric, and
transitive.

A partial ordering occurs when a relation orders some, but not all, elements
of a set. Such a set and relation are often called a poset. If the relation imposes an
ordering among all elements, it is a total ordering.

Bishop.book Page 633 Tuesday, September 28, 2004 1:46 PM

634 Chapter 27 Lattices

EXAMPLE: The relation less than or equal to, as defined in the usual sense,
imposes a total ordering on the set of integers, because, given any two integers, one
will be less than or equal to the other. However, the relation in the preceding
example imposes a partial ordering on the set C. Specifically, the numbers 1 + 4i
and 2 + 3i are not related under that relation (because 1 ≤ 2 but 4 ≤ 3).

Under a partial ordering (and a total ordering), we define the “upper bound” of
two elements to be any element that follows both in the relation.

Definition 27–4. For two elements a, b ∈ S, if there exists a u ∈ S such that
aRu and bRu, then u is an upper bound of a and b.

A pair of elements may have many upper bounds. The one “closest” to the two
elements is the least upper bound.

Definition 27–5. Let U be the set of upper bounds of a and b. Let u ∈ U be an
element such that there is no t ∈ U for which tRu. Then u is the least upper
bound of a and b (written lub(a, b) or a ⊗ b).

Lower bounds, and greatest lower bounds, are defined similarly.

Definition 27–6. For two elements a, b ∈ S, if there exists an l ∈ S such that
lRa and lRb, then l is a lower bound of a and b.

Definition 27–7. Let L be the set of lower bounds of a and b. Let l ∈ L be an
element such that there is no m ∈ L for which lRm. Then l is the greatest
lower bound of a and b (written glb(a, b) or a ⊕ b).

EXAMPLE: Consider the subset of the set of complex numbers for which the real
and imaginary parts are integers from 0 to 10, inclusive, and the relation defined in
the second example in this chapter. The set of upper bounds for 1 + 9i and 9 + 3i is
{ 9 + 9i, 9 + 10i, 10 + 9i, 10 + 10i }. The least upper bound of 1 + 9i and 9 + 3i is
9 + 9i. The set of lower bounds is { 1 + 1i, 1 + 0i, 0 + 0i }. The greatest lower
bound is 1 + 1i.

Bishop.book Page 634 Tuesday, September 28, 2004 1:46 PM

27.3 Exercises 635

27.2 Lattices

A lattice is the combination of a set of elements S and a relation R meeting the fol-
lowing criteria.

1. R is reflexive, antisymmetric, and transitive on the elements of S.
2. For every s, t ∈ S, there exists a greatest lower bound.
3. For every s, t ∈ S, there exists a least upper bound.

EXAMPLE: The set {0, 1, 2} forms a lattice under the relation “less than or equal
to” (≤). By the laws of arithmetic, the relation is reflexive, antisymmetric, and tran-
sitive. The greatest lower bound of any two integers is the smaller, and the least
upper bound is the larger.

EXAMPLE: Consider the subset C´ of the set of complex numbers for which the
real and imaginary parts are integers from 0 to 10, inclusive. For any a ∈ C´, define
aR as the real component and aI as the imaginary component (that is, a = aR + aIi).
Let a ≤ b if and only if aR ≤ bR and aI ≤ bI. This set and relation define a lattice,
because the relation is reflexive, antisymmetric, and transitive (see the second
example of this chapter) and any pair of elements a, b have a least upper bound and
a greatest lower bound.

27.3 Exercises

1. Determine the least upper bound and greatest lower bound for the pair of
complex integers a and b in the subset C´ used in the examples.

2. Prove that the set of all subsets of a given set S (called the power set of S)
forms a lattice under the relation “subset” (⊆).

3. Consider a set with elements that are totally ordered by a relation. Does
the set form a lattice under that relation? If so, show that it does. If not,
give a counterexample.

Bishop.book Page 635 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 636 Tuesday, September 28, 2004 1:46 PM

637

Chapter 28
The Extended
Euclidean Algorithm

The Extended Euclidean Algorithm is a staple of number theory and is used to solve
equations of the form ax mod n = b. This chapter reviews this algorithm and its appli-
cations. We begin with the classical algorithm and then extend it to solve simple
equations.

28.1 The Euclidean Algorithm

Euclid’s algorithm determines the greatest common divisor of two integers. The
algorithm is based on the observation that, if x divides both a and b, then x divides
their difference a – b. The trick is to find the largest such x.

Assume (without loss of generality) that a > b. If x divides a – b, then it also
divides a – qb, where q is an integer. Let r = a – qb. If n ≠ 0, and x divides a – qb,
then x divides r. We have now reduced the problem of finding the largest x such that x
divides a and b to the problem of finding the largest x such that x divides b and r. (To
see this, realize that if x divides b and r, then x divides qb + r, or a.) We iterate until r
is 0. Then x is the greatest common divisor of a and b.

If we take q to be the integer portion of a/b, these operations can form a
simple table, as follows.

EXAMPLE: Find the greatest common divisor of 15 and 12.

Take a = 15 and b = 12. Then:

a b q r
15 12 1 3
12 3 4 0

The greatest common divisor of 15 and 12 is 3.

Bishop.book Page 637 Tuesday, September 28, 2004 1:46 PM

638 Chapter 28 The Extended Euclidean Algorithm

EXAMPLE: Find the greatest common divisor of 35,731 and 24,689.

Take a = 35,731 and b = 24,689. Then:

a b q r
35,731 24,689 1 11,042
24,689 11,042 2 2,605
11,042 2,605 4 622
2,605 622 4 117
622 117 5 37
117 37 3 6
37 6 6 1
6 1 6 0

The numbers 35,731 and 24,689 have 1 as the greatest (and only) common factor.

The algorithm (in pseudocode) is as follows.

function gcd(a : integer, b : integer) : integer;
var r : integer;

rprev: integer;
begin
rprev := r := 1;
while r <> 0 do begin

rprev := r;
r := a mod b;
write 'a = ', a, 'b =', b, 'quotient = ', a div b,

'remainder = ', r, endline;
a := b;
b := r;

end;
gcd := rprev;
end.

The “write” corresponds to the lines in the tables in the examples above.

28.2 The Extended Euclidean Algorithm

The Extended Euclidean Algorithm determines two integers x and y such that

xa + yb = 1

Bishop.book Page 638 Tuesday, September 28, 2004 1:46 PM

28.2 The Extended Euclidean Algorithm 639

In order for these integers to exist and be unique, the greatest common divisor of a
and b must be 1. The following algorithm (in pseudocode) returns x and y.

proc eeuclid(a : integer, b : integer,
var x : integer, var y : integer) : integer;

var q, u: integer;
xprev, yprev, uprev: integer;
xtmp, ytmp, utmp: integer;

begin
uprev := a; u := b;
xprev := 0; x := 1; yprev := 1; y := 0;
write 'u = ', uprev, 'x = ', xprev, 'y = ', yprev,

endline;
write 'u = ', u, 'x = ', x, 'y = ', y;
while u <> 0 do begin

q := uprev div u;
write 'q = ', q, endline;
utmp := uprev – u * q; uprev := u; u := utmp;
xtmp := xprev – x * q; xprev := x; x := xtmp;
ytmp := yprev – y * q; yprev := y; y := ytmp;
write 'u = ', u, 'x = ', x, 'y = ', y;

end;
write endline;
x := xprev; y := yprev;

end.

The “write” corresponds to the lines in the tables in the examples below. The variable
u contains xa + yb at each step.

EXAMPLE: Find x and y such that 51x + 100y = 1.

u x y q
100 0 1
51 1 0 100/51 = 1
49 –1 1 51/49 = 1

2 2 –1 49/2 = 24
1 –49 25 2/1 = 2
0 100 –51

So, 51 × (– 49) + 100 × 25 = 1.

Bishop.book Page 639 Tuesday, September 28, 2004 1:46 PM

640 Chapter 28 The Extended Euclidean Algorithm

EXAMPLE: Find x and y such that 24,689x + 35,731y = 1.

u r y q
35,731 0 1
24,689 1 0 35,731/24,689 = 1
11,042 –1 1 24,689/11,042 = 2

2,605 3 –2 11,042/2,605 = 4
622 –13 9 2,605/622 = 4
117 55 –38 622/117 = 5

37 –288 199 117/37 = 3
6 919 –635 37/6 = 6
1 –5,802 4,009
0 35,731 –24,689

So 24,689 × (–5,802) + 35,731 × 4,009 = 1.

28.3 Solving ax mod n = 1

Recall that if ax mod n = 1, then there exists an integer k such that ax = 1 + kn.
Rewriting this, ax – kn = 1. Define j = –k, to yield ax + jn = 1. So, to find x and j, use
the Extended Euclidean Algorithm. As before, a and n must be relatively prime.

EXAMPLE: Find x such that 51x mod 100 = 1.
Because 51 × (–49) + 100 × 25 = 1 from the first example in Section 31.2, x =

– 49 mod 100 = 51. Checking, 51 × 51 mod 100 = 2,601 mod 100 = 1.

EXAMPLE: Find x such that 24,689x mod 35,731 = 1.
Because 24,689 × (–5,802) + 35,731 × 4,009 = 1 from the last example in Sec-

tion 31.2, x = –5,802 mod 35,731 = 29,929. Checking, 24,689 × 29,929 mod 35,731 =
738,917,081 mod 35,731 = 1.

28.4 Solving ax mod n = b

From the fundamental laws of modular arithmetic,

xy mod n = (x mod n)(y mod n)

Thus, if x solves the equation ax mod n = 1, we can multiply both sides by b to get

b(ax mod n) = a(bx) mod n = b × 1 = b

Bishop.book Page 640 Tuesday, September 28, 2004 1:46 PM

28.5 Exercises 641

So, we first solve ax mod n = 1 for x and then compute bx mod n.

EXAMPLE: Find x such that 51x mod 100 = 10.
Solving 51y mod 100 = 1, y = –49 mod 100 = 51. Then, x = by mod n = 10 ×

51 mod 100 = 510 mod 100 = 10.

EXAMPLE: Find x such that 24,689x mod 35,731 = 1,753.
Solving 24,689y mod 35,731 = 1, y = –5,802 mod 35,731 = 29,929. Then,

x = by mod n = 1,753 × 29,929 mod 35,731 = 52,465,537 mod 35,731 = 12,429.

28.5 Exercises

1. Find the greatest common divisor of 234 and 124.
2. Find r and s such that 8,092r + 1,111s = 1.
3. Find a counterexample to the claim that if the greatest common divisor of

a and b is not 1, there exists a unique r and a unique s such that ra + sb = 1.
4. Solve for x: 324x mod 121 = 1.
5. Solve for x: 99,997x mod 8,888 = 1,234.

Bishop.book Page 641 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 642 Tuesday, September 28, 2004 1:46 PM

643

Chapter 29
Virtual Machines

Virtual memory provides the illusion of physical memory. The abstraction allows a
process to assume that its memory space both is contiguous and begins at location 0.
This simplifies the process’ view of memory and hides the underlying physical loca-
tions of the process’ memory. The physical memory corresponding to the virtual
memory need not be contiguous. Indeed, some of the locations in virtual memory
may have no corresponding physical addresses until the process references them.

Like virtual memory, a virtual machine provides the illusion of a physical
machine. The abstraction allows operating systems to assume that they are running
directly on the hardware. This allows one to run the operating system, and allows the
operating system to run processes, with no changes in either the operating system or
the programs. A second, lower “virtual machine monitor” runs directly on the hard-
ware and provides the illusion of hardware to the operating systems run above it. The
physical machine may support many virtual machines, each running its own operat-
ing system.

This chapter reviews the structure of a virtual machine.

29.1 Virtual Machine Structure

A virtual machine runs on a virtual machine monitor. That monitor virtualizes the
resources of the underlying system and presents to each virtual machine the illusion
that it and it alone is using the hardware.

EXAMPLE: IBM’s VM/370 and its successors provide each user with the illusion that
she has complete access to the resources of a single IBM mainframe system. Many
users will use the same physical machine, but each one is isolated from the others.
(See Figure 29–1.)

Bishop.book Page 643 Tuesday, September 28, 2004 1:46 PM

644 Chapter 29 Virtual Machines

29.2 Virtual Machine Monitor

The virtual machine monitor runs at the highest level of privilege. It keeps track of
the state of each virtual machine just as an ordinary operating system keeps track of
the states of its processes. When a privileged instruction is executed, the hardware
causes a trap to the virtual machine monitor. The monitor services the interrupt and
restores the state of the caller.

EXAMPLE: Suppose the virtual machine monitor VMM is running the operating sys-
tem OS. Process p running under OS makes a system call to read data from a disk.
The system call causes a trap. The VMM is invoked and detects that the trap occurred
from within OS. It updates the state of OS to make it appear that the hardware on
which OS is running (the virtual machine) invoked OS. OS then tries to read from the
disk to service the interrupt. This causes another trap, and the VMM is again
invoked. It services the trap by carrying out the read and placing the results in the
locations that OS indicates. It then returns control to OS, which updates the appropri-
ate parts of process p (such as the return value of the system call). OS then performs

System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Virtual
System/370

Real hardware

Virtual
hardware

DOS/VS MVS Virtual CP

Virtual
System/370

MVS

CMS CMS

CP

Figure 29–1 A virtual machine environment, with five virtual machines each
running a different operating system. The control program (CP) manages their
interactions with the physical resources. The middle virtual machine is running
a virtual system within a virtual system. (Adapted from [266], pages 606 and
607.)

User processesUser processes

User processes

User processes User processes

Bishop.book Page 644 Tuesday, September 28, 2004 1:46 PM

29.2 Virtual Machine Monitor 645

a context switch to return control to p. This is a privileged instruction, so VMM is
again invoked. It updates the virtual machine on which OS runs to make it appear
that OS performed the context switch, and then performs the context switch itself.
The process p now resumes execution.

29.2.1 Privilege and Virtual Machines

The Digital Equipment Corporation VAX/VMM project examined the issues of priv-
ilege in virtual machines [498]. Consider the requirements for a computer architec-
ture to be virtualizable [723].

Definition 29–1. A sensitive instruction is an instruction that discloses or
alters the state of privilege of the processor. A sensitive data structure is a data
structure that contains information about the state of privilege of the system.

EXAMPLE: The VAX architecture has four levels of privilege: user, supervisor, exec-
utive, and kernel. On the VAX architecture, the CHMK instruction is privileged
because it changes the privilege level (to kernel mode), and the MOVPSL instruction
copies the processor status longword (PSL) to a memory location. The former
instruction is a sensitive instruction because it alters the state of privilege (moving it
to kernel mode). The latter is also sensitive because it reveals information about the
current level of privilege (the level of privilege is encoded in two bits in the PSL).

Page table entries are sensitive data structures because they contain informa-
tion about the protection state of the processor (notably, they can contain a copy of
the PSL for the process).

A computer architecture is virtualizable if it meets the following require-
ments.

1. All sensitive instructions cause traps when executed by processes at lower
levels of privilege.

2. All references to sensitive data structures cause traps when executed by
processes at lower levels of privilege.

EXAMPLE: The CHMK instruction meets requirement 1, because it causes a trap
unless it is executed in kernel mode. The MOVPSL instruction meets neither require-
ment, because it does not cause a trap regardless of the level of privilege of the pro-
cess executing it. User level processes can alter page table entries, so references to
those data structures also fail to meet the second requirement (but see Exercise 1).

If the hardware supports n levels of privilege, each virtual machine must
appear to support n levels of privilege. However, only the virtual machine monitor
can run at the highest level of privilege. This makes n – 1 levels of privilege available

Bishop.book Page 645 Tuesday, September 28, 2004 1:46 PM

646 Chapter 29 Virtual Machines

to each virtual machine. The virtual machine monitor virtualizes the levels of privi-
lege. This technique is called ring compression.

EXAMPLE: Recall that the VAX system has four levels of privilege: user, supervisor,
executive, and kernel. The VMM monitor must emulate all of these levels for each
virtual machine that it runs. However, it cannot allow the operating system of any of
those virtual machines to enter kernel mode, because then that operating system
could access the physical resources directly, bypassing the virtual machine monitor.
Yet to run the VAX standard operating system, VAX/VMS, the virtual machine must
appear to provide all four levels.

The solution is to virtualize the executive and kernel privilege levels. The execu-
tive and kernel levels of the virtual machine (called VM executive and VM kernel levels,
respectively) are mapped into the physical executive mode. The architects of VAX/
VMM added three extensions to the VAX hardware to support this compression.

First, a virtual machine bit was added to the PSL. If this bit is set, the current
process is running on a virtual machine. Second, a special register, the VMPSL regis-
ter, records the PSL of the running virtual machine. Third, all sensitive instructions
that could reveal the level of privilege either obtain their information from the
VMPSL or cause a trap to the virtual machine monitor. In the latter case, the virtual
machine monitor emulates the instruction.

One interesting approach to privilege is to divide users into different classes
and control access to the system by limiting the access of each class.

EXAMPLE: The IBM VM/370 uses this approach to associate various CP commands
with users [266]. Each CP command is associated with one or more user privilege
classes. For example, class G is the “general user” class. Members of that class can
start a virtual machine. Class A is the “primary system operator” class. Members of
that class can control system accounting, the availability of virtual machines, and
other system resources. Members of class “Any” can gain access to, or surrender
access to, a virtual machine.

29.2.2 Physical Resources and Virtual Machines

The virtual machine monitor manages the physical resources by distributing them
among the virtual machines as appropriate. Each virtual machine therefore appears
to have a reduced amount of resources. For example, if the control program is to allo-
cate space on a single disk for ten virtual machines, it will divide the disk into ten
minidisks. Each virtual machine will have access to a different portion of the physical
disk.The size of each minidisk is less than the size of the actual disk (although the
sizes of the ten minidisks may differ). The virtual machine monitor handles the map-
ping from the minidisk address (presented to it by the virtual machine) and the phys-
ical disk.

Bishop.book Page 646 Tuesday, September 28, 2004 1:46 PM

29.2 Virtual Machine Monitor 647

EXAMPLE: When a virtual machine’s operating system tries to write to a disk, the
I/O instruction is privileged and causes a trap to the virtual machine monitor. The vir-
tual machine monitor translates the addresses to be accessed (read from or written
to), verifies that the I/O references disk space allocated to that virtual machine, and
services the request. It returns control to the virtual machine when the request is sat-
isfied (completed for synchronous I/O, begun for asynchronous I/O).

29.2.3 Paging and Virtual Machines

On an ordinary machine, paging occurs at the highest level of privilege. When a vir-
tual machine attempts to page, it does so from the virtual machine’s level of privi-
lege. The attempt to read from, or write to, the disk causes a trap to the virtual
machine monitor. At that point, the request is handled as any other request for I/O.
However, two problems unique to virtual machines arise.

First, because of the way some operating systems are designed, some pages
may be accessible only to processes running at the highest level of privilege, but the
virtual machine operating systems run at a lower level of privilege. The virtual
machine must change the protection level of these pages to the appropriate level of
privilege.

EXAMPLE: On the VAX/VMS system, only kernel level processes can read some
pages. Hence, the virtual machine monitor on the VAX/VMM system must ensure
that executive level processes on a virtual machine cannot read the pages for kernel
level processes on that virtual machine. This is necessary because the kernel level
processes on the virtual machine are actually running at the VM kernel level, which
is in the physical executive level of privilege.

In theory, reducing the level of protection for these pages poses a security
risk (because processes at the VM executive level could then access the pages).
In practice, the VMS system allows processes in executive mode to change to
kernel mode freely. Hence, there is no loss of security. But if the process running
at the VM executive level should attempt to access one of these pages, the access
would be allowed. Were the VAX/VMS system running directly on the hardware
and not under a virtual machine, the access would be denied. Hence, there is a
loss of reliability.

The second problem is performance. The virtual machine monitor paging its
own data or instructions is transparent to the virtual machines. If the virtual machines
attempt to page, the virtual machine monitor must handle the request as described
above. If the virtual machine operating system pages heavily, this indirection may
cause significant delays.

Bishop.book Page 647 Tuesday, September 28, 2004 1:46 PM

648 Chapter 29 Virtual Machines

EXAMPLE: IBM’s VM/370 provides support for several different operating systems.
OS/MFT and OS/MVT are designed to access storage on disk. If the jobs being run
under those systems depend on timings, the delays caused by the virtual machine
may affect the success of the jobs. With a system that supports virtual storage, such
as MVS, either MVS or CP (the virtual machine monitor) may cause paging. Again,
if timings are important, the delays could cause failure of a process that would not
fail were there no intermediate CP.

29.3 Exercises

1. The second example in Section 29.2.1 states that “user level processes can
alter page table entries, so references to those data structures also fail to
meet the second requirement.” How can an operating system prevent a user
level process from altering its page table entries?

2. Suppose a virtual machine monitor (call it VMM-1) is running another
virtual machine monitor (VMM-2), which in turn is running a version of
the Linux operating system. The user running the Linux system is editing a
file. The user requests that the editor write the file to disk.

a. Is the instruction RFT (Return From Trap) sensitive? Why or why
not?

b. Trace the flow of control among VMM-1, VMM-2, Linux, and the
editor.

c. How many RFT instructions will be executed? Justify your answer.

Bishop.book Page 648 Tuesday, September 28, 2004 1:46 PM

649

Bibliography

1. M. Abadi, “Explicit Communication Revisited: Two New Attacks on
Authentication Protocols,” IEEE Transactions on Software Engineering 23
(3), pp. 185–186 (Mar. 1997).

2. M. Abadi and R. Needham, “Prudent Engineering Practice for
Cryptographic Protocols,” Proceedings of the 1994 IEEE Symposium on
Research in Security and Privacy, pp. 122–136 (May 1994).

3. R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S. Tokubo, and D. Webb,
“Security Analysis and Enhancements of Computer Operating Systems,”
Technical Report NBSIR 76–1041, ICET, National Bureau of Standards,
Washington, DC 20234 (Apr. 1976).

4. M. Abrams and D. Bailey, “Abstraction and Refinement of Layered
Security Policy,” in Information Security: An Integrated Collection of
Essays [6], pp. 126–136.

5. M. Abrams and P. Brusil, “Application of the Common Criteria to a
System: A Real-World Example,” Computer Security Journal 16 (2),
pp. 11–21 (Spring 2000).

6. M. Abrams, S. Jajodia, and H. Podell (eds.), Information Security: An
Integrated Collection of Essays, IEEE Computer Society Press, Los
Alamitos, CA (1975).

7. C. Adams and S. Lloyd, Understanding the Public-Key Infrastructure,
Macmillan, New York, NY (1999).

8. E. Adams and S. Muchnick, “Dbxtool: A Window-Based Symbolic
Debugger for Sun Workstations,” Software—Practice and Experience 16
(7), pp. 653–669 (July 1986).

9. L. Adleman, “An Abstract Theory of Computer Viruses,” Advances in
Cryptology—Proceedings of CRYPTO ’88 (1988).

10. L. Adleman, C. Pomerance, and R. Rumley, “On Distinguishing Prime
Numbers from Composite Numbers,” Annals of Mathematics 117 (1),
pp. 173–206 (1983).

11. Adobe Systems, Inc., PostScript Language Reference, 3rd Edition,
Addison-Wesley, Reading, MA (1999).

Bishop.book Page 649 Tuesday, September 28, 2004 1:46 PM

650 Bibliography

12. G. Agnew, “Random Sources for Cryptographic Systems,” Advances in
Cryptology—Proceedings of EUROCRYPT ’87, pp. 77–81 (1988).

13. Aleph One, “Smashing the Stack,” PHRACK 7 (49), File 14 (1998).
14. S. Alexander and R. Droms, DHCP Options and BOOTP Vendor

Extensions, RFC 2132 (Mar. 1997).
15. J. Allen, The CERT® Guide to System and Network Security Practices,

Addison-Wesley, Boston, MA (2001).
16. J. Alves-Foss, D. Frincke, and G. Saghi, “Applying the TCSEC Guidelines

to a Real-Time Embedded System Environment,” Proceedings of the 19th
National Information Systems Security Conference, pp. 89–97 (Oct. 1996).

17. P. Ammann and P. Black, “A Specification-Based Coverage Metric to
Evaluate Test Sets,” Proceedings of the 4th IEEE International Symposium
on High-Assurance Systems Engineering, pp. 239–248 (Nov. 1999).

18. P. Ammann and R. Sandhu, “Expressive Power of the Schematic
Protection Model (Extended Abstract),” Proceedings of the Computer
Security Foundations Workshop, MITRE Technical Report M88-37,
MITRE Corporation, Bedford, MA, pp. 188–193 (June 1988).

19. P. Ammann and R. Sandhu, “The Extended Schematic Protection Model,”
Journal of Computer Security 1 (3, 4), pp. 335–385 (1992).

20. P. Ammann, R. Sandhu, and R. Lipton, “The Expressive Power of Multi-
Parent Creation in Monotonic Access Control Models,” Journal of
Computer Security 4 (2, 3), pp. 149–166 (Dec. 1996).

21. E. Amoroso, Intrusion Detection, Intrusion.net Books, Sparta, NJ (1999).
22. E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska, and T. Starr,

“Towards an Approach to Measuring Software Trust,” Proceedings of the
1991 IEEE Symposium on Research in Security and Privacy, pp. 198–218
(May 1991).

23. R. Anand, N. Islam, T. Jaeger, and J. Rao, “A Flexible Security Model for
Using Internet Content,” Proceedings of the 16th Symposium on Reliable
Distributed Systems, pp. 89–96 (Oct. 1997).

24. J. Anderson, “Information Security in a Multi-User Computer
Environment,” in Morris Rubinoff (ed.), Advances in Computers 12,
Academic Press, New York, NY (1972).

25. J. Anderson, “Computer Security Technology Planning Study,” Technical
Report ESD-TR-73–51, Electronic Systems Division, Hanscom Air Force
Base, Hanscom, MA (1974).

26. J. Anderson, “Computer Security Threat Monitoring and Surveillance,”
James P. Anderson Co., Fort Washington, PA (1980).

27. J. Anderson, “On the Feasibility of Connecting RECON to an External
Network,” James P. Anderson Co., Fort Washington, PA (1981).

Bishop.book Page 650 Tuesday, September 28, 2004 1:46 PM

Bibliography 651

28. R. Anderson, “UEPS—A Second Generation Electronic Wallet,”
Proceedings of the 2nd European Symposium on Research in Computer
Security, pp. 411–418 (Nov. 1992).

29. R. Anderson, “A Security Policy Model for Clinical Information Systems,”
Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pp. 34–48 (May 1996).

30. R. Anderson and A. Johnston, UNIX® Unleashed, 4th Edition, SAMS
Publishing, Indianapolis, IN (2002).

31. R. Anderson and R. Needham, “Robustness Principles for Public Key
Protocols,” Advances in Cryptology—Proceedings of CRYPTO ’95,
pp. 236–247 (1995).

32. N. Andrews, “A Standard for Assuring/Monitoring Telephony Switching
Real Time Performance,” Proceedings of the 1990 IEEE Global
Telecommunications Conference and Exhibition, pp. 237–240 (Dec. 1990).

33. G. Andrews and R. Reitman, “An Axiomatic Approach to Information
Flow in Parallel Programs,” ACM Transactions on Programming
Languages 2 (1), pp. 56–76 (Jan. 1980).

34. A. Appel and A. Felty, “A Semantic Model of Types and Machine
Instructions for Proof-Carrying Code,” Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 243–253 (Jan. 2000).

35. J. Arnold, “Analysis Requirements for Low Assurance Evaluations,”
Proceedings of the 18th National Information Systems Security
Conference, pp. 356–365 (Oct. 1995).

36. N. Arnold, UNIX Security: A Practical Tutorial, McGraw-Hill, New York,
NY (1993).

37. A. Arsenault and R. Housley, “Protection Profiles for Certificate Issuing
and Management Systems,” Proceedings of the 22nd National Information
Systems Security Conference, pp. 189–199 (Oct. 1999).

38. J. Ashworth, The Naming of Hosts, RFC 2100 (Apr. 1997).
39. T. Aslam, “A Taxonomy of Security Faults in the UNIX Operating

System,” Master’s Thesis, Department of Computer Sciences, Purdue
University, West Lafayette, IN (1995).

40. T. Aslam, I. Krsul, and E. H. Spafford, “Use of a Taxonomy of Security
Faults,” Proceedings of the 19th National Information Systems Security
Conference, pp. 551–560 (Oct. 1996).

41. C. Asmuth and J. Bloom, “A Modular Approach to Key Safeguarding,”
IEEE Transactions on Information Theory 29 (2), pp. 208–210 (Mar. 1983).

42. V. Atluri, E. Betino, and S. Jajodia, “Achieving Stricter Correctness
Requirements in Multilevel Secure Databases,” Proceedings of the 1993
Symposium on Research in Security and Privacy, pp. 135–147 (May 1993).

Bishop.book Page 651 Tuesday, September 28, 2004 1:46 PM

652 Bibliography

43. C. Augier, “Excel-lent Leaks,” Risks Digest 21 (39) (May 2001).
44. A. ˘Avizienis, “The N-Version Approach to Fault-Tolerant Software,” IEEE

Transactions on Software Engineering 11 (12), pp. 1491–1501 (Dec. 1985).
45. S. Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion

Detection,” ACM Transactions on Information and System Security 3 (3),
pp. 186–205 (Aug. 2000).

46. A. Bacard, The Computer Privacy Handbook, Peachpit Press, Berkeley,
CA (1995).

47. A. Bacard, “Anonymous Remailer FAQ” (Nov. 1999); available at
http://www.andrebacard.com/remail.html.

48. R. Bace, Intrusion Detection, Macmillan Technical Publishing,
Indianapolis, IN (2000).

49. L. Badger, “Information Security: From Reference Monitors to Wrappers,”
IEEE Aerospace and Electronic Systems Magazine 13 (3), pp. 32–34 (Mar.
1998).

50. L. Badger, D. Sterne, D. Sherman, and K. Walker, “A Domain and Type
Enforcement UNIX Prototype,” Computing Systems 9 (1), pp. 47–83
(Winter 1996).

51. D. Bailey, “A Philosophy of Security Management,” in Information
Security: An Integrated Collection of Essays [6], pp. 98–110.

52. J. Balasubramaniyan, J. Garcia-Fernandez, D. Isacoff, E. Spafford, and D.
Zamboni, “An Architecture for Intrusion Detection Using Autonomous
Agents,” Proceedings of the 14th Annual Computer Security Applications
Conference, pp. 13–24 (Dec. 1998).

53. D. Balenson and T. Markham, “ISAKMP Key Recovery Extensions,”
Computers and Security 19 (1), pp. 91–99 (Jan./Feb. 2000).

54. D. Balfanz and D. Simon, “WindowBox: A Simple Security Model for the
Connected Desktop,” Proceedings of the 4th USENIX Windows Systems
Symposium (Aug. 2000).

55. M. Banks, Web Psychos, Stalkers, and Pranksters: How to Protect Yourself
in Cyberspace, The Coriolis Group (1997).

56. D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, and D. Price,
“Auditing of Distributed Systems,” Proceedings of the 14th National
Computer Security Conference, pp. 59–68 (Oct. 1991).

57. D. Barrett, Bandits on the Information Superhighway (What You Need to
Know), O’Reilly and Associates (1996).

58. J. Bartlett, Familiar Quotations, Little, Brown and Co., Boston, MA (1901).
59. B. Bayh, “Unclassified Summary: Involvement of NSA in the Development

of the Data Encryption Standard (United States Senate Select Committee
on Intelligence),” IEEE Communications Society Magazine 16 (6), pp. 53–
55 (1978).

Bishop.book Page 652 Tuesday, September 28, 2004 1:46 PM

Bibliography 653

60. D. Bell, “Concerning ‘Modeling’ of Computer Security,” Proceedings of
the 1988 IEEE Symposium on Security and Privacy, pp. 8–13 (Apr. 1988).

61. P. Barker and S. Kille, The COSINE and Internet X.500 Schema, RFC
1274 (Nov. 1991).

62. H. Beker and F. Piper, Cipher Systems: The Protection of
Communications, Northwood Books, London, UK (1982).

63. D. Bell and L. LaPadula, “Secure Computer Systems: Mathematical
Foundations,” Technical Report MTR-2547, Vol. I, MITRE Corporation,
Bedford, MA (Mar. 1973).

64. D. Bell and L. LaPadula, “Secure Computer System: Unified Exposition
and Multics Interpretation,” Technical Report MTR-2997 Rev. 1, MITRE
Corporation, Bedford, MA (Mar. 1975).

65. M. Bellare, R. Canetti, and H. Krawczyk, “Keyed Hash Functions and
Message Authentication,” Advances in Cryptology—Proceedings of
CRYPTO ’96, pp. 1–15 (1996).

66. M. Bellare and S. Micali, “Non-Interactive Oblivious Transfer and
Applications,” Advances in Cryptology—Proceedings of CRYPTO ’89,
pp. 547–559 (1989).

67. M. Bellare and R. Rivest, “Translucent Cryptography—An Alternative to
Key Escrow, and Its Implementation via Fractional Oblivious Transfer,”
Journal of Cryptology 12 (2), pp. 117–139 (Spring 1999).

68. S. Bellovin, “Security Problems in the TCP/IP Protocol Suite,” Computer
Communication Review 19 (2), pp. 32–48 (Apr. 1989).

69. S. Bellovin, “Using the Domain Name System for System Break-Ins,”
Proceedings of the 5th USENIX UNIX Security Symposium, pp. 199–208
(June 1995).

70. S. Bellovin, “Probable Plaintext Cryptanalysis of the IP Security
Protocols,” Proceedings of the 1997 Symposium on Network and
Distributed System Security, pp. 52–59 (Feb. 1997).

71. S. Bellovin and W. Cheswick, Firewalls and Internet Security: Repelling
the Wily Hacker, Addison-Wesley, Reading, MA (1994).

72. S. Bellovin and M. Merritt, “Limitations of the Kerberos Protocol,”
Proceedings of the 1991 Winter USENIX Conference, pp. 253–267
(Jan. 1991).

73. S. Bellovin and M. Merritt, “Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks,” Proceedings of the 1992 IEEE
Symposium on Research in Security and Privacy, pp. 74–82 (May 1992).

74. F. Belvin, D. Bodeau, and S. Razvi, “Design Analysis in Evaluations
Against the TCSEC C2 Criteria,” Proceedings of the 19th National
Information Systems Security Conference, pp. 67–75 (Oct. 1996).

Bishop.book Page 653 Tuesday, September 28, 2004 1:46 PM

654 Bibliography

75. J. Bennett, “Analysis of the Encryption in Word Perfect,” Cryptologia 11
(4), pp. 206–210 (Oct. 1987).

76. F. Bergadano, B. Crispo, and G. Ruffo, “Proactive Password Checking
with Decision Trees,” Proceedings of the 4th ACM Conference on
Computer and Communications Security, pp. 67–77 (Nov. 1998).

77. F. Bergadano, B. Crispo, and G. Ruffo, “High Dictionary Compression for
Proactive Password Checking,” ACM Transactions on Information and
System Security 1 (1), pp. 3–25 (Apr. 1997).

78. H. Bergen and W. Caelli, “File Security in WordPerfect 5.0,” Cryptologia
15 (1), pp. 57–66 (Jan. 1991).

79. A. Bernstein, “Analysis of Programs for Parallel Processing,” IEEE
Transactions on Computers 15 (5), pp. 757–762 (Oct. 1966).

80. C. Bernstein and B. Woodward, All the President’s Men, Simon and
Schuster, New York, NY (1974).

81. C. Bernstein and B. Woodward, The Final Days, Simon and Schuster, New
York, NY (1976).

82. D. Bernstein and E. Schenk, “Syncookies Mailing List Archive” (Oct.
1996); available at http://cr.yp.to/syncookies.html.

83. B. Bershad and C. Pinkerton, “Watchdogs: Extending the UNIX File
System,” Proceedings of the 1988 Winter USENIX Conference,
pp. 267–276 (Feb. 1988).

84. B. Bershad, S. Savage, P. Pardyak, E. Sirer, D. Becker, M. Fiuczynski,
C. Chambers, and S. Eggers, “Extensibility, Safety, and Performance in
the SPIN Operating System,” Proceedings of the 15th Symposium on
Operating Systems Principles, pp. 267–284 (Dec. 1995).

85. V. Berzins, Software Engineering with Abstractions, Addison-Wesley,
Reading, MA (1991).

86. T. Beth, H.-J. Knobloch, M. Otten, G. Simmons, and P. Wichmann, “Towards
Acceptable Key Escrow Systems,” Proceedings of the 2nd ACM Conference
on Computer and Communications Security, pp. 51–58 (Nov. 1994).

87. R. Bharadwaj and C. Heitmeyer, “Developing High Assurance Avionics
Systems with the SCR Requirements Method,” Proceedings of the 19th
Digital Avionics Systems Conference, pp. 1D1/1–8 (Oct. 2000).

88. K. Biba, “Integrity Considerations for Secure Computer Systems,” Technical
Report MTR-3153, MITRE Corporation, Bedford, MA (Apr. 1977).

89. E. Biham and A. Shamir, “Differential Cryptanalysis of Snefru, Khafre,
REDOC-II, LOKI, and Lucifer,” Advances in Cryptology—Proceedings of
CRYPTO ’91, pp. 156–171 (Aug. 1991).

90. E. Biham and A. Shamir, “Differential Cryptanalysis of DES-Like
Cryptosystems,” Journal of Cryptology 4 (1), pp. 3–72 (1991).

Bishop.book Page 654 Tuesday, September 28, 2004 1:46 PM

Bibliography 655

91. E. Biham and A. Shamir, “Differential Cryptanalysis of the Full 16-Round
DES,” Advances in Cryptology—Proceedings of CRYPTO ’92,
pp. 487–496 (1992).

92. E. Biham and A. Shamir, Differential Cryptanalysis of the Data
Encryption Standard, Springer-Verlag, New York, NY (1993).

93. E. Bina, R. McCool, V. Jones, and M. Winslett, “Secure Access to Data
Over the Internet,” Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems, pp. 99–102 (Sep. 1984).

94. R. Biro, F. van Kempen, M. Evans, C. Minyard, F. La Roche, C. Hedrick,
L. Torvalds, A. Cox, M. Dillon, A. Gulbrandsen, and J. Cwik, Linux Kernel
2.4.9 Networking Source Code, directory linux/net/ipv4 (Aug. 2001).

95. R. Bisbey II and D. Hollingworth, “Protection Analysis: Final Report,”
Technical Report ISI/SR-78–13, University of Southern California
Information Sciences Institute, Marina Del Rey, CA (May 1978).

96. M. Bishop, “Security Problems with the UNIX Operating System”
(unpublished) (Jan. 1981).

97. M. Bishop, “Sendmail Wizardry,” Research Memo 86.3, Research Institute
for Advanced Computer Science, NASA Ames Research Center, Moffett
Field, CA (Jan. 1986).

98. M. Bishop, “The RIACS Intelligent Auditing and Checking System,”
Technical Report 86.3, Research Institute for Advanced Computer
Science, NASA Ames Research Center, Moffett Field, CA
(June 1986).

99. M. Bishop, “Analyzing the Security of an Existing Computer System,”
Proceedings of the 1986 Fall Joint Computer Conference, pp. 1115–1119
(Nov. 1986).

100. M. Bishop, “How to Write a Setuid Program,” ;login: 12 (1), pp. 5–11
(Jan. 1987).

101. M. Bishop, “Profiling Under UNIX by Patching,” Software—Practice and
Experience 17 (10), pp. 729–739 (Oct. 1987).

102. M. Bishop, “An Application of a Fast Data Encryption Standard
Implementation,” Computing Systems 1 (3), pp. 221–254 (Summer 1988).

103. M. Bishop, “Auditing Files on a Network of UNIX Machines,”
Proceedings of the USENIX UNIX Security Workshop, pp. 51–52
(Aug. 1988).

104. M. Bishop, “Collaboration Using Roles,” Software—Practice and
Experience 20 (5), pp. 485–497 (May 1990).

105. M. Bishop, “A Security Analysis of the NTP Protocol Version 2,”
Proceedings of the 6th Annual Computer Security Applications
Conference, pp. 20–29 (Dec. 1990).

Bishop.book Page 655 Tuesday, September 28, 2004 1:46 PM

656 Bibliography

106. M. Bishop, “Password Management,” Proceedings of COMPCON ’91,
pp. 167–169 (Feb. 1991).

107. M. Bishop, “A Proactive Password Checker,” in Information Security, D.
T. Lindsay and W. L. Price (eds.), North-Holland, New York, NY,
pp. 169–180 (May 1991).

108. M. Bishop, “Anatomy of a Proactive Password Changer,” Proceedings of
the 3rd USENIX Security Symposium, pp. 171–184 (Sep. 1992).

109. M. Bishop and D. Bailey, “A Critical Analysis of Vulnerability
Taxonomies,” Technical Report CSE-96–11, Department of Computer
Science, University of California, Davis, CA (Sep. 1996).

110. M. Bishop and M. Dilger, “Checking for Race Conditions in File
Accesses,” Computing Systems 9 (2), pp. 131–152 (Spring 1996).

111. M. Bishop and D. Klein, “Improving System Security via Proactive
Password Checking,” Computers and Security 14 (3), pp. 233–249
(Apr. 1995).

112. J. Biskup, “Some Variants of the Take-Grant Protection Model,”
Information Processing Letters 19 (3), pp. 151–156 (Mar. 1984).

113. J. Biskup and U. Flegel, “Transaction-Based Pseudonyms in Audit Data
for Privacy Respecting Intrusion Detection,” Proceedings of the 3rd
International Workshop on Recent Advances in Intrusion Detection,
pp. 28–48 (Oct. 2000).

114. G. Blakley, “Safeguarding Cryptographic Keys,” 1979 National Computer
Conference, AFIPS Conference Proceedings 48, pp. 313–317 (Nov. 1979).

115. G. Blakley, “One-Time Pads are Key Safeguarding Schemes, Not
Cryptosystems: Fast Key Safeguarding Schemes (Threshold Schemes)
Exist,” Proceedings of the 1980 IEEE Symposium on Security and Privacy,
pp. 108–113 (Apr. 1980).

116. M. Blaze, “Protocol Failure in the Escrowed Encryption Standard,”
Proceedings of the 2nd ACM Conference on Computer and
Communications Security, pp. 59–67 (Nov. 1994).

117. W. Boebert, “On the Inability of an Unmodified Capability Machine to
Enforce the *-Property,” Proceedings of the 7th DOD/NBS Computer
Security Conference, pp. 291–293 (Sep. 1984).

118. W. Boebert and C. Ferguson, “A Partial Solution to the Discretionary
Trojan Horse Problem,” Proceedings of the 8th National Computer
Security Conference, pp. 245–253 (Sep. 1985).

119. W. Boebert and R. Kain, “A Practical Alternative to Hierarchical Integrity
Policies,” Proceedings of the 8th National Computer Security Conference,
p. 18 (Oct. 1985).

Bishop.book Page 656 Tuesday, September 28, 2004 1:46 PM

Bibliography 657

120. W. Boebert, W. Young, R. Kain, and S. Hansohn, “Secure Ada Target:
Issues, System Design, and Verification,” Proceedings of the 1985 IEEE
Symposium on Security and Privacy, pp. 176–183 (Apr. 1985).

121. D. Bolignano, D. Le Metayer, and C. Loiseaux, “Formal Methods in
Context: Security and Java Card,” Proceedings of the 1st International
Workshop on Java on Smart Cards: Programming and Security, pp. 1–5
(Sep. 2000).

122. J.-P. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Mjølsnes, F. Muller,
T. Pedersen, B. Pfitzmann, P. De Rooji, B. Schoenmakers, M. Schunter,
L. Vallee, and M. Waidner, “The ESPRIT Project CAFE—High Security
Digital Payment Systems,” Proceedings of the 3rd European Symposium
on Research in Computer Security, pp. 217–229 (Nov. 1994).

123. A. Bomberger, A. Frantz, W. Frantz, A. Hardy, N. Hardy, C. Landau, and J.
Shapiro, “The KeyKOS Nanokernel Architecture,” Proceedings of the
USENIX Workshop on Micro-Kernels and Other Kernel Architectures,
pp. 95–112 (Apr. 1992).

124. D. Bonyun, “The Role of a Well-Defined Auditing Process in the
Enforcement of Privacy Policy and Data Security,” Proceedings of the
1981 IEEE Symposium on Security and Privacy, pp. 19–26 (1981).

125. D. Bonyun, “The Use of Architectural Principles in the Design of
Certifiably Secure Systems,” Computers and Security 2 (2), pp. 153–162
(June 1983).

126. A. Borrett, “A Perspective of Evaluation in the UK Versus the US,”
Proceedings of the 18th National Information Systems Security
Conference, pp. 322–334 (Oct. 1995).

127. R. Bowen, K. Coar, and M. Marlowe, Apache Server Unleashed, SAMS
Publishing, Indianapolis, IN (2000).

128. J. Boyer, “Inferring Sequences Produced by Pseudo-Random Number
Generators,” Journal of the ACM 36 (1), pp. 129–141 (Jan. 1989).

129. J. Boyer, “Inferring Sequences Produced by a Linear Congruential
Generator Missing Low-Order Bits,” Journal of Cryptology 1 (3),
pp. 177–184 (1989).

130. K. Brady, “Integrating B2 Security into a UNIX System,” Proceedings of
the 14th National Computer Security Conference, pp. 338–346 (Oct. 1991).

131. S. Brands, “Electronic Cash on the Internet,” Proceedings of the 1995
Symposium on Network and Distributed System Security, pp. 64–84
(Feb. 1995).

132. C. Braun, UNIX™ System Security Essentials, Addison-Wesley, Reading,
MA (1995).

Bishop.book Page 657 Tuesday, September 28, 2004 1:46 PM

658 Bibliography

133. D. Brewer and M. Nash, “The Chinese Wall Security Policy,” Proceedings
of the 1989 IEEE Symposium on Security and Privacy, pp. 206–214
(May 1989).

134. E. Brickell and D. Stinson, “The Detection of Cheaters in Threshold
Schemes,” Advances in Cryptology—Proceedings of CRYPTO ’88
pp. 564–577 (Aug. 1988).

135. P. Brinch Hansen, Operating System Principles, Prentice-Hall, Englewood
Cliffs, NJ (1973).

136. F. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, Addison-Wesley, Reading, MA (1995).

137. L. Brown, J. Pieprzyk, and J. Seberry, “LOKI: A Cryptographic Primitive
for Authentication and Secrecy Applications,” Advances in Cryptology—
Proceedings of AUSCRYPT ’90, pp. 229–236 (Jan. 1990).

138. L. Brown, M. Kwan, J. Pieprzyk, and J. Seberry, “Improving Resistance to
Differential Cryptanalysis and the Redesign of LOKI,” Advances in
Cryptology—Proceedings of ASIACRYPT ’91, pp. 36–50 (1991).

139. M. Brown and S. Rodgers, “User Identification via Keystroke
Characteristics of Typed Names Using Neural Networks,” International
Journal of Man-Machine Studies 39 (6), pp. 999–1014 (1993).

140. R. Browne, “Mode Security: An Infrastructure for Covert Channel
Suppression,” Proceedings of the 1994 Symposium on Research In Privacy
and Security, pp. 39–45 (May 1994).

141. T. Budd, “Safety in Grammatical Protection Systems,” International Journal
of Computer and Information Sciences 12 (6), pp. 413–431 (1983).

142. M. Burgess, “A Site Configuration Engine,” Computing Systems 8 (1),
pp. 309–324 (Winter 1995).

143. M. Burgess, “Automated System Administration with Feedback Regulation,”
Software—Practice and Experience 28 (14), pp. 1519–1530 (Dec. 1998).

144. M. Burgess, “Theoretical System Administration,” Proceedings of the 14th
Systems Administration Conference (LISA 2000), pp. 1–13 (Dec. 2000).

145. M. Burmester, Y. Desmedt, and J. Seberry, “Equitable Key Escrow
with Limited Time Span (Or, How to Enforce Time Expiration
Cryptographically),” Advances in Cryptology—Proceedings of
ASIACRYPT ’98, pp. 380–391 (Oct. 1998).

146. M. Burrows, M. Abadi, and R. Needham, “A Logic of Authentication,”
ACM Transactions on Computer Systems 8 (1), pp. 18–36 (Feb. 1990).

147. J. Burton, The Pentagon Wars: Reformers Challenge the Old Guard, Naval
Institute Press, Annapolis, MD (1993).

148. W. Caelli and A. Rhodes, “An Evaluation of HP-UX (UNIX) for Database
Protection Using the European ITSEC,” Computers and Security 11 (5),
pp. 463–479 (Sep. 1992).

Bishop.book Page 658 Tuesday, September 28, 2004 1:46 PM

Bibliography 659

149. B. Callaghan, B. Pawlowski, and P. Staubach, NFS Version 3 Protocol
Specification, RFC 1813 (June 1995).

150. J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, OpenPGP Message
Format, RFC 2440 (Nov. 1998).

151. J. Campbell, Jr., “Speaker Recognition: A Tutorial,” Proceedings of the
IEEE 85 (9), pp. 1437–1462 (Sep. 1997).

152. M. Campione, K. Walrath, A. Huml, and the Tutorial Team, The Java™
Tutorial Continued: The Rest of the JDK ™, Addison-Wesley, Reading,
MA (1999).

153. Canadian System Security Centre, The Canadian Trusted Computer
Product Evaluation Criteria, Version 3.0e (Jan. 1993).

154. J. Canoles, “Quality Assurance in the ATC System,” Proceedings of the
44th Annual Air Traffic Control Association Conference, pp. 151–153
(Sep. 1999).

155. G. Caronni, S. Kumar, C. Schuba, and G. Scott, “Virtual Enterprise
Networks: the Next Generation of Secure Enterprise Networking,”
Proceedings of the 16th Annual Computer Security Applications
Conference, pp. 42–51 (Dec. 2000).

156. L. Carroll, The Annotated Alice, New American Library, New York, NY
(1960).

157. L. Chalmers, “An Analysis of the Differences Between the Computer
Security Practices in the Military and Private Sector,” Proceedings of the
1986 IEEE Symposium on Privacy and Security, pp. 71–74 (Apr. 1986).

158. R. Chandramouli, “Implementation of Multiple Access Control Policies
Within a CORBASEC Framework,” Proceedings of the 22nd National
Information Systems Security Conference, pp. 112–130 (Oct. 1999).

159. K. Chandy and L. Lamport, “Distributed Snapshots: Determining Global
States of Distributed Systems,” ACM Transactions on Computer Systems 3
(1), pp. 63–75 (Feb. 1985).

160. F. Chang, A. Itzkovitz, and V. Karamcheti, “User-Level Resource-
Constrained Sandboxing,” Proceedings of the 4th USENIX Windows
Systems Symposium, pp. 25–35 (Aug. 2000).

161. D. Chapman, “Network (In)security Through IP Packet Filtering,”
Proceedings of the 3rd USENIX UNIX Security Symposium, pp. 63–76
(Sep. 1992).

162. D. Chapman, Developing Secure Applications with Visual Basic,
Microsoft Press, Redmond, WA (2000).

163. E. Charles, D. Diodati, and W. Mozdzierz, “Trusted Systems: Applying the
Theory in a Commercial Firm,” Proceedings of the 13th National
Computer Security Conference, pp. 283–291 (Sep. 1993).

Bishop.book Page 659 Tuesday, September 28, 2004 1:46 PM

660 Bibliography

164. D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms,” Communications of the ACM 24 (2), pp. 84–88 (Feb. 1981).

165. D. Chaum, “Security Without Identification: Transaction Systems to Make
Big Brother Obsolete,” Communications of the ACM 28 (10), pp. 1030–
1044 (Oct. 1985).

166. D. Chaum, “The Dining Cryptographers Problem: Unconditional Sender
and Receiver Untraceability,” Journal of Cryptology 1 (1), pp. 65–75 (1988).

167. D. Chaum, “Online Cash Checks,” Advances in Cryptology—Proceedings
of EUROCRYPT ’89, pp. 288–293 (Aug. 1989).

168. D. Chaum, “Numbers Can Be a Better Form of Cash than Paper,”
Selected Papers from the 2nd International Smart Card 2000 Conference,
pp. 151–156 (Oct. 1989).

169. D. Chaum, B. den Boer, E. van Heyst, S. Mjølsnes, and A. Steenbeek,
“Efficient Offline Electronic Checks,” Advances in Cryptology—
Proceedings of EUROCRYPT ’89, pp. 294–301 (Aug. 1989).

170. D. Chaum and T. Pedersen, “Wallet Databases with Observers,” Advances
in Cryptology—Proceedings of CRYPTO ’92, pp. 89–105 (Aug. 1992).

171. W. Cheswick, “An Evening with Berferd, in Which a Cracker Is Lured,
Endured, and Studied,” Proceedings of the 1992 Winter USENIX
Conference, pp. 163–173 (Jan. 1992).

172. S. Chokhani, “Trusted Products Evaluation,” Communications of the ACM
35 (7), pp. 64–76 (July 1992).

173. L. Cholvy and F. Cuppens, “Analyzing Consistency of Security Policies,”
Proceedings of the 1997 IEEE Symposium on Security and Privacy, pp.
103–112 (May 1997).

174. S. Christey, D. Baker, W. Hill, and D. Mann, “The Development of a
Common Vulnerabilities and Exposures List,” Proceedings of the 2nd Inter-
national Workshop on Recent Advances in Intrusion Detection (Sep. 1999).

175. A. Cinelli, “Using PortSentry and LogCheck,” SysAdmin 10 (3), pp. 29–31
(Mar. 2001).

176. A. Clark, “Key Recovery—Why, How, Who?” Computers and Security 16
(8), pp. 669–674 (Dec. 1997).

177. D. Clark and D. Wilson, “A Comparison of Commercial and Military
Security Policies,” Proceedings of the 1987 IEEE Symposium on Security
and Privacy, pp. 184–194 (Apr. 1987).

178. T. Coe and T. Peter, “It Takes Six Ones to Reach a Flaw (Pentium
Processor),” Proceedings of the 12th Symposium on Computer Arithmetic,
pp. 140–146 (July 1995).

179. E. Cohen and D. Jefferson, “Protection in the HYDRA Operating System,”
Proceedings of the 5th Symposium on Operating System Principles,
pp. 141–160 (Nov. 1975).

Bishop.book Page 660 Tuesday, September 28, 2004 1:46 PM

Bibliography 661

180. F. Cohen, “Computer Viruses: Theory and Experiments,” Proceedings of the
7th DOD/NBS Computer Security Conference, pp. 240–263 (Sep. 1984).

181. F. Cohen, “Computer Viruses: Theory and Experiments,” Computers and
Security 6 (1), pp. 22–35 (Feb. 1987).

182. F. Cohen, “Practical Defenses Against Computer Viruses,” Computers and
Security 8 (2), pp. 149–160 (Apr. 1989).

183. F. Cohen, “Computational Aspects of Computer Viruses,” Computers and
Security 8 (4), pp. 325–344 (Nov. 1989).

184. F. Cohen, A Short Course on Computer Viruses, 2nd Edition, John Wiley
and Sons, New York, NY (1994).

185. F. Cohen, “A Note on the Role of Deception in Information Protection,”
Computers and Security 17 (6), pp. 483–506 (Nov. 1998).

186. Commission of the European Communities, Information Technology
Security Evaluation Criteria, Version 1.2 (1991).

187. “Common Criteria Web Site,” http://www.commoncriteria.org.
188. Computer Emergency Response Team, SunOS SPARC Integer4 Division

Vulnerability, CERT Advisory CA-91.16 (Sep. 1991).
189. Computer Emergency Response Team, Writable /etc/utmp Vulnerability,

CERT Advisory CA-94.06 (Mar. 1994).
190. Computer Emergency Response Team, Sendmail v5 Vulnerability, CERT

Advisory CA-95.08 (Aug. 1995).
191. Computer Emergency Response Team, Ghostscript Vulnerability, CERT

Advisory CA-95.10 (Aug. 1995).
192. Computer Emergency Response Team, Sun 4.1.X Loadmodule

Vulnerability, CERT Advisory CA-95.12 (Oct. 1995).
193. Computer Emergency Response Team, rpc.ypupdated Vulnerability, CERT

Advisory CA-95.17 (Dec. 1995).
194. Computer Emergency Response Team, Sendmail Vulnerabilities, CERT

Advisory CA-96.20 (Sep. 1996).
195. Computer Emergency Response Team, Sendmail Daemon Mode

Vulnerability, CERT Advisory CA-96.24 (Nov. 1996).
196. Computer Emergency Response Team, Sendmail Group Permissions

Vulnerability, CERT Advisory CA-96.25 (Dec. 1996).
197. Computer Emergency Response Team, MIME Conversion Buffer Overflow in

Sendmail Versions 8.8.3 and 8.8.4, CERT Advisory CA-97.05 (Jan. 1997).
198. Computer Emergency Response Team, IP Denial-of-Service Attacks,

CERT Advisory CA-97.28 (Dec. 1997; revised May 1998).
199. Computer Emergency Response Team, Trojan Horse Version of TCP

Wrappers, CERT Advisory CA-99.01 (Jan. 1999).

Bishop.book Page 661 Tuesday, September 28, 2004 1:46 PM

662 Bibliography

200. Computer Emergency Response Team, Buffer Overflows in SSH Daemon
and RSAREF2 Library, CERT Advisory CA-99.15 (Dec. 1999).

201. Computer Emergency Response Team, Multiple Buffer Overflows in
Kerberos Authenticated Services, CERT Advisory CA-2000.06 (May
2000).

202. Computer Emergency Response Team, Input Validation Problem in
rpc.statd, CERT Advisory CA-2000.17 (Aug. 2000).

203. Computer Emergency Response Team, Unauthentic “Microsoft
Corporation” Certificates, CERT Advisory CA-2001.04 (Mar. 2001).

204. Computer Emergency Response Team, Nimda Worm, CERT Advisory
CA-2001.17 (Sep. 2001).

205. R. Conway, W. Maxwell, and H. Morgan, “On the Implementation of
Security Measures in Information Systems,” Communications of the ACM
15 (4), pp. 211–220 (Apr. 1972).

206. C. Coombs, R. Dawes, and A. Tversky, Mathematical Psychology: An
Elementary Introduction, Mathesis Press, Ann Arbor, MI (1981).

207. D. Cooper, “A Model of Certificate Revocation,” Proceedings of the 15th
Annual Computer Security Applications Conference, pp. 256–264
(Dec. 1999).

208. M. Cooper, S. Northcutt, M. Fearnow, and K. Frederick, Intrusion Signatures
and Analysis, New Riders Publishing, Indianapolis, IN 46290 (2001).

209. D. Coppersmith, “The Data Encryption Standard (DES) and Its Strength
Against Attacks,” IBM Journal of Research and Development 38 (3),
pp. 243–250 (May 1994)

210. F. Corbató and V. Vyssotsky, “Introduction and Overview of the Multics
System,” Proceedings of the 1965 Fall Joint Computer Conference,
pp. 185–196 (Fall 1965).

211. O. Costich and I. Moskowitz, “Analysis of a Storage Channel in the Two
Phase Commit Protocol,” Proceedings of the Foundations of Computer
Security Workshop IV, pp. 201–208 (June 1991).

212. L. Cottrell, “Frequently Asked Questions About Mixmaster Remailers,”
Obscura Information Security, La Mesa, CA (July 1996); available at
http://www.obscura.com/~loki/remailer/mixmaster-faq.html.

213. L. Cottrell, “Mixmaster and Remailer Attacks,” Obscura Information
Security, La Mesa, CA (1996); available at http://www.obscura.com/~loki/
remailer/remailer-essay.html.

214. A. Couch and M. Gilfix, “It’s Elementary, Dear Watson: Applying Logic
Programming to Convergent System Management Processes,”
Proceedings of the 13th Systems Administration Conference (LISA 1999),
pp. 123–137 (1999).

Bishop.book Page 662 Tuesday, September 28, 2004 1:46 PM

Bibliography 663

215. S. Coutinho, The Mathematics of Ciphers: Number Theory and RSA
Cryptography, A. K. Peters Publishing Co., Natick, MA (1999).

216. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,” Proceedings of the
7th USENIX Security Symposium, pp. 63–77 (Jan. 1998).

217. C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor,
“SubDomain: Parsimonious Server Security,” Proceedings of the 14th
LISA Conference, pp. 355–367 (Dec. 2000).

218. M. Crabb, “Password Security in a Large Distributed Environment,”
Proceedings of the 2nd USENIX UNIX Security Workshop, pp. 17–30
(Aug. 1990).

219. S. Crawford, Windows 2000 Pro: The Missing Manual, O’Reilly and
Associates, Sebastopol, CA (2000).

220. Cray Research, Inc., UNICOS® Security Administration Reference
Manual, Document Number SR-2062A, Cray Research, Inc., Mendota
Heights, MN (1989).

221. D. Crocker, Standard for the Format of ARPA Internet Text Messages, RFC
822 (Aug. 1982).

222. S. Crocker and M. Pozzo, “A Proposal for a Verification-Based Virus
Filter,” Proceedings of the 1989 IEEE Symposium on Security and Privacy,
pp. 319–324 (May 1989).

223. M. Crosbie and E. Spafford, “Defending a Computer System Using
Autonomous Agents,” Proceedings of the 18th National Information
Systems Security Conference, pp. 549–558 (Oct. 1995).

224. J. Cugini, R. Dobry, V. Gligor, and T. Mayfield, “Functional Security
Criteria for Distributed Systems,” Proceedings of the 18th National
Information Systems Security Conference, pp. 310–321 (Oct. 1995).

225. P. Cummings, D. Fullam, M. Goldstein, M. Gosselin, J. Picciotto, J.
Woodward, and J. Wynn, “Compartmented Mode Workstation: Results
Through Prototyping,” Proceedings of the 1987 IEEE Symposium on
Security and Privacy, pp. 2–12 (Apr. 1987).

226. T. Cusdick and M. Wood, “The REDOC-II Cryptosystem,” Advances in
Cryptology—Proceedings of CRYPTO ’90, pp. 1–16 (Aug. 1990).

227. K. Cutler and F. Jones, Commercial International Security Requirements,
draft (Jan. 1991).

228. J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag, New
York, NY (2002).

229. T. Daniels and E. Spafford, “Identification of Host Audit Data to Detect
Attacks on Low-Level IP Vulnerabilities,” Journal of Computer Security 7
(1), pp. 3–35 (1999).

Bishop.book Page 663 Tuesday, September 28, 2004 1:46 PM

664 Bibliography

230. Data General Corporation, Managing Security on the DG/UX® System,
Manual 093-701138-04, Westboro, MA (Nov. 1996).

231. J. Daughman, “High Confidence Visual Recognition of Persons by a Test
of Statistical Independence,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15 (11), pp. 1148–1161 (Nov. 1993).

232. G. Davida and B. Matt, “UNIX Guardians: Delegating Security to the User,”
Proceedings of the UNIX Security Workshop, pp. 14–23 (Aug. 1988).

233. G. Davida, Y. Desmedt, and B. Matt, “Defending Systems Against Viruses
Through Cryptographic Authentication,” Proceedings of the 1989
Symposium on Security and Privacy, pp. 312–318 (May 1989).

234. D. Davis, R. Ihaka, and P. Fenstermacher, “Cryptographic Randomness
from Air Turbulence in Disk Drives,” Advances in Cryptology—
Proceedings of CRYPTO ’94, pp. 114–120 (Aug. 1994).

235. D. Dean, E. Felten, and D. Wallach, “Java Security: From HotJava to
Netscape and Beyond,” Proceedings of the 1996 IEEE Symposium on
Security and Privacy, pp. 190–200 (May 1996).

236. D. Dean, M. Franklin, and A. Stubblefield, “An Algebraic Approach to IP
Traceback,” Proceedings of the 2000 Symposium on Network and
Distributed System Security (Feb. 2001).

237. H. Debar, M. Becker, and D. Siboni, “A Neural Network Component for
an Intrusion Detection System,” Proceedings of the 1992 IEEE Symposium
on Research in Security and Privacy, pp. 240–250 (May 1992).

238. R. Demillo, D. Dobkin, A. Jones, and R.Lipton (eds.), Foundations of
Secure Computing, Academic Press, New York, NY (1978).

239. D. Denning, “Secure Information Flow in Computer Systems,” Ph.D.
thesis, Dept. of Computer Sciences, Purdue University, West Lafayette, IN
(May 1975); cited in Cryptography and Data Security [242].

240. D. Denning, “A Lattice Model of Secure Information Flow,”
Communications of the ACM 19 (5), pp. 236–243 (May 1976).

241. D. Denning, “Secure Personal Computing in an Insecure Network,”
Communications of the ACM 22 (8), pp. 476–482 (Aug. 1979).

242. D. Denning, Cryptography and Data Security, Addison-Wesley, Reading,
MA (1982).

243. D. Denning, “An Intrusion-Detection Model,” IEEE Transactions on
Software Engineering 13 (2), pp. 222–232 (Feb. 1987).

244. D. Denning, Information Warfare and Security, Addison-Wesley, Reading,
MA (1999).

245. D. Denning, S. Akl, M. Heckman, T. Lunt, M. Morgenstern, P. Neumann,
and R. Schell, “Views for Multilevel Database Security,” IEEE
Transactions on Software Engineering 13 (2), pp. 129–140 (Feb. 1987).

Bishop.book Page 664 Tuesday, September 28, 2004 1:46 PM

Bibliography 665

246. D. Denning and D. Branstad, “A Taxonomy for Key Escrow Encryption
Systems,” Communications of the ACM 39 (3), pp. 34–40 (Mar. 1996).

247. D. Denning and P. Denning, “Certification of Programs for Secure
Information Flow,” Communications of the ACM 20 (7), pp. 504–513 (July
1977).

248. D. Denning, T. Lunt, R. Schell, W. Shockley, and M. Heckman,“The Sea
View Security Model,” Proceedings of the 1988 Symposium on Security
and Privacy, pp. 218–233 (May 1988).

249. D. Denning and P. MacDoran, “Location-Based Authentication:
Grounding Cyberspace for Better Security,” Computer Fraud and Security,
pp. 12–16 (Feb. 1996).

250. D. Denning and G. Sacco, “Timestamps in Key Distribution Protocols,”
Communications of the CACM 24 (8), pp. 533–536 (Aug. 1981).

251. D. Denning and M. Smid, “Key Escrowing Today,” IEEE Communications
Magazine 32 (9), pp. 58–68 (Sep. 1994).

252. P. Denning, “Third Generation Computer Systems,” Computing Surveys 3
(4), pp. 175–216 (Dec. 1971).

253. P. Denning, “The Science of Computing: Computer Viruses,” American
Scientist 76 (3), pp. 236–238 (May 1988).

254. P. Denning, Computers Under Attack: Intruders, Worms, and Viruses,
Addison-Wesley, Reading, MA (1990).

255. J. Dennis and E. Van Horn, “Programming Semantics for
Multiprogrammed Computations,” Communications of the ACM 9 (3),
pp. 143–155 (Mar. 1966).

256. Department of Defense, Password Management Guideline, CSC-STD-
002-85 (Apr. 1985).

257. Department of Defense, Trusted Computer System Evaluation Criteria,
DOD 5200.28-STD (Dec. 1985).

258. Department of Defense, Trusted Network Interpretation of the Trusted
System Evaluation Criteria, NCSC-TG-005 (July 1987).

259. Department of Defense, A Guide to Understanding Audit in Trusted
Systems, NCSC-TG-001 Version 2 (June 1988).

260. Department of Defense, Trusted Database Management System
Interpretation of the Trusted Computer System Evaluation Criteria,
NCSC-TG-021 Version 1 (Apr. 1991).

261. Department of Defense, A Guide to Understanding Covert Channel
Analysis of Trusted Systems, NCSC-TG-030 (Nov. 1993).

262. A. Dewdeny, “Computer Recreations: A Core War Bestiary of Viruses,
Worms, and Other Threats to Computer Memories,” Scientific American
252 (3), pp. 14–23 (Mar. 1985).

Bishop.book Page 665 Tuesday, September 28, 2004 1:46 PM

666 Bibliography

263. P. D’Haeseleer, S. Forrest, and P. Helman, “An Immunological Approach
to Change Detection: Algorithms, Analysis, and Implications,”
Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pp. 110–119 (May 1996).

264. U. Dieckmann, P. Plankensteiner, and T. Wagner, “SESAM: a Biometric
Person Identification System Using Sensor Fusion,” Pattern Recognition
Letters 18 (9), pp. 827–833 (Sep. 1997).

265. T. Dierks and C. Allen, The TLS Protocol Version 1.0, RFC 2246 (Jan. 1999).
266. H. Dietel, An Introduction to Operating Systems (Revised 1st Edition),

Addison-Wesley, Reading, MA (1984).
267. W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE

Transactions on Information Theory 22 (6), pp. 644–654 (Nov. 1976).
268. W. Diffie and M. Hellman, “Exhaustive Cryptanalysis of the NBS Data

Encryption Standard,” IEEE Computer 10 (6), pp. 74–84 (June 1977).
269. Digital Equipment Corporation, PDP-11 Architecture Handbook,

Maynard, MA (1983).
270. E. Dijkstra, “The Structure of the ‘THE’-Multiprogramming System,”

Communications of the ACM 11 (5), pp. 341–346 (May 1968).
271. L. Dion, “A Complete Protection Model,” Proceedings of the 1981 IEEE

Symposium on Security and Privacy, pp. 49–55 (Apr. 1981).
272. B. Di Vito, P. Palmquist, E. Anderson, and M. Johnston, “Specification and

Verification of the ASOS Kernel,” Proceedings of the 1990 Symposium on
Research in Security and Privacy, pp. 61–74 (May 1990).

273. H. Dobbertin, “The Status of MD5 After a Recent Attack,” CryptoBytes 2
(2), pp. 1ff. (Summer 1996).

274. H. Dobbertin, “Cryptanalysis of MD4,” Journal of Cryptology 11 (4),
pp. 253–271 (1998).

275. D. Dobkin, A. Jones, and R. Lipton, “Secure Databases: Protection
Against User Inference,” ACM Transactions on Database Systems 4 (1),
pp. 97–106 (Mar. 1979).

276. T. Doeppner, P. Klein, and A. Koyfman, “Using Router Stamping to
Identify the Source of IP Packets,” Proceedings of the 7th ACM
Conference on Computer and Communications Security, pp. 184–189
(Nov. 2000).

277. B. Dole, S. Lodin, and E. Spafford, “Misplaced Trust: Kerberos 4 Session
Keys,” Proceedings of the 1997 Symposium on Network and Distributed
System Security, pp. 60–70 (Mar. 1997).

278. F. Donner, The Un-Americans, Ballantine Books, New York, NY (1961).
279. N. Doraswamy and D. Harkins, IPSEC: The New Security Standard for the

Internet, Intranets, and Virtual Private Networks, Prentice Hall, Upper
Saddle River, NJ (1999).

Bishop.book Page 666 Tuesday, September 28, 2004 1:46 PM

Bibliography 667

280. D. Downs, J. Rub, K. Kung, and C. Jordan, “Issues in Discretionary
Access Control,” Proceedings of the 1984 IEEE Symposium on Security
and Privacy, pp. 208–218 (Apr. 1984).

281. B. Duc, E. Bigun, J. Bigun, G. Maire, and S. Fischer, “Fusion of Audio
and Video Information for Multi-Model Person Authentication,” Pattern
Recognition Letters 18 (9), pp. 835–843 (Sep. 1997).

282. T. Duff, “Experiences with Viruses on UNIX Systems,” Computing
Systems 2 (2), pp. 155–172 (Spring 1989).

283. R. Durst, T. Champion, B. Witten, E. Miller, and L. Spagnuolo, “Testing
and Evaluating Computer Intrusion Detection Systems,” Communications
of the ACM 42 (7), pp. 53–61 (July 1999).

284. D. Eastlake, Domain Name System Security Extensions, RFC 2535 (Mar. 1999).
285. D. Eastlake, DSA KEYs and SIGs in the Domain Name System (DNS),

RFC 2536 (Mar. 1999).
286. D. Eastlake, RSA/MD5 KEYs and SIGs in the Domain Name System

(DNS), RFC 2537 (Mar. 1999).
287. D. Eastlake, Storage of Diffie-Hellman Keys in the Domain Name System

(DNS), RFC 2539 (Mar. 1999).
288. D. Eastlake and O. Gudmundsson, Storing Certificates in the Domain

Name System (DNS), RFC 2538 (Mar. 1999).
289. D. Eastlake, S. Crocker, and J. Schiller, Randomness Recommendations

for Security, RFC 1750 (Dec. 1994).
290. S. Eckmann, “Eliminating Formal Flows in Automated Information Flow

Analysis,” Proceedings of the 1994 IEEE Symposium on Research in
Security and Privacy, pp. 30–38 (May 1994).

291. W. Ehrsam, S. Matyas, C. Meyer, and W. Tuchman, “A Cryptographic Key
Management Scheme for Implementing the Data Encryption Standard,”
IBM Systems Journal 17 (2), pp. 106–125 (1978).

292. M. Eichin and J. Rochlis, “With Microscope and Tweezers: An Analysis of
the Internet Virus of November 1988,” Proceedings of the 1989 IEEE
Symposium on Security and Privacy, pp. 326–343 (May 1989).

293. T. Eisenberg, D. Gries, J. Hartmanis, D. Holcomb, M. Lynn, and T.
Santoro, The Computer Worm: A Report to the Provost of Cornell
University on an Investigation Conducted by the Commission of
Preliminary Enquiry, Cornell University, Ithaca, NY (Feb. 1989).

294. T. El Gamal, “A Public Key Cryptosystem and Signature Scheme Based
on Discrete Logarithms,” IEEE Transactions in Information Theory 31 (4),
pp. 469–472 (July 1985).

295. J. Eller, M. Mastrorocco, and B. Stauffer, “The Department of Defense
Information Technology Security Certification and Accreditation Process

Bishop.book Page 667 Tuesday, September 28, 2004 1:46 PM

668 Bibliography

(DITSCAP),” Proceedings of the 19th National Information Systems
Security Conference, pp. 46–53 (Oct. 1996).

296. B. Elliott, “A High-Level Debugger for PL/1, FORTRAN and BASIC,”
Software—Practice and Experience 12 (4), pp. 331–340 (April 1982).

297. C. Ellison, “Establishing Identity Without Certification Authorities,”
Proceedings of the 6th USENIX Security Symposium, pp. 67–76 (July 1996).

298. C. Ellison, “Naming and Certificates,” CFP ’00, Proceedings of the 10th
Conference on Computers, Freedom and Privacy: Challenging the
Assumptions, pp. 213–217 (Apr. 2000).

299. E. Engeler, Introduction to the Theory of Computation, Academic Press,
New York, NY (1973).

300. A. Engelfriet, “Anonymity and Privacy on the Internet” (Jan. 1997);
available at http://www.stack.nl/~galactus/remailers/index.html.

301. J. Epstein, J. McHugh, H. Orman, R. Pascale, A. Marmor-Squires, B.
Danner, C. Martin, M. Branstad, G. Benson, and D. Rothnie, “A High
Assurance Window System Prototype,” Journal of Computer Security 2
(2, 3), pp. 159–190 (1993).

302. J. Epstein, L. Thomas, and E. Monteith, “Using Operating System
Wrappers to Increase the Resiliency of Commercial Firewalls,”
Proceedings of the 16th Annual Computer Security Applications
Conference, pp. 236–245 (Dec. 2000).

303. Ernst & Whinney, Audit, Control, and Security Issues in RACF
Environments, Technical Reference Series No. 37052, The EDP Auditors
Foundation, Inc., Carol Stream, IL (1992).

304. K. Eswaran and D. Chamberlin, “Functional Specifications of Subsystem
for Database Integrity,” Proceedings of the International Conference on
Very Large Data Bases, pp. 48–68 (Sep. 1975).

305. S. Evans, S. Bush, and J. Hershey, “Information Assurance Through
Kolmogorov Complexity,” Proceedings of the DARPA Information
Survivability Conference and Exposition II, pp. 322–331 (June 2001).

306. R. Fabry, “Capability-Based Addressing,” Communications of the ACM 17
(7), pp. 403–412 (July 1974).

307. R. Fairfield, R. Mortenson, and K. Joulthart, “An LSI Random Number
Generator (RNG),” Advances in Cryptology—Proceedings of CRYPTO
’84, pp. 115–143 (Aug. 1984).

308. D. Farmer and B. Powell, “TITAN,” Proceedings of the 12th Systems
Administration Conference (LISA ’98), pp. 1–10 (Dec. 1998).

309. D. Farmer and E. Spafford, “The Cops Security Checker System,”
Proceedings of the 1990 Summer USENIX Conference, pp. 165–170
(June 1990).

Bishop.book Page 668 Tuesday, September 28, 2004 1:46 PM

Bibliography 669

310. R. Feiertag, K. Levitt, and L. Robinson, “Proving Multilevel Security of a
System Design,” Proceedings of the 6th Symposium on Operating System
Principles, pp. 57–65 (Dec. 1977).

311. H. Feistel, “Cryptography and Computer Privacy,” Scientific American 228
(5), pp. 15–23 (May 1973).

312. D. Feldmeier and P. Karn, “UNIX Password Security—Ten Years Later,”
Advances in Cryptology—Proceedings of CRYPTO ’89, pp. 44–63 (Aug.
1989).

313. J. Fenton, “Memoryless Subsystems,” Computer Journal 17 (2),
pp. 143–147 (Feb. 1974).

314. D. Ferbrache, A Pathology of Computer Viruses, Springer-Verlag, New
York, NY (1991).

315. K. Ferraiolo, L. Gallagher, and V. Thompson, “Building a Case for
Assurance from Process,” Proceedings of the 21st National Information
Systems Security Conference, pp. 49–61 (Oct. 1998).

316. K. Ferraiolo, “Tutorial: The Systems Security Engineering Capability
Maturity Model,” Proceedings of the 21st National Information Systems
Security Conference, pp. 719–729 (Oct. 1998).

317. R. Finkel and B. Sturgill, “Tools for System Administration in a
Heterogeneous Environment,” Proceedings of the 3rd Large Installation
Systems Administration Workshop (LISA 1989), pp. 15–30 (1989).

318. R. Finlayson and D. Cheriton, “Log Files: An Extended File Service
Exploiting Write-Once Storage,” Proceedings of the 11th Symposium on
Operating Systems Principles, pp. 139–148 (Nov. 1987).

319. E. Fisch, G. White, and U. Pooch, “The Design of an Audit Trail Analysis
Tool,” Proceedings of the 10th Annual Computer Security Applications
Conference, pp. 126–132 (Dec. 1994).

320. J. Fisch and L. Hoffman, “The Cascade Problem: Graph Theory Can
Help,” Proceedings of the 14th National Computer Security Conference,
pp. 88–100 (Oct. 1991).

321. P. Fites, P. Johnston, and M. Kratz, The Computer Virus Crisis, Van
Nostrand Reinhold, New York, NY (1988).

322. K. Fithen and B. Fraser, “CERT Incident Response and the Internet,”
Communications of the ACM 37 (8), pp. 108–113 (Aug. 1994).

323. C. Flack and M. Atallah, “Better Logging Through Formality: Applying
Formal Specification Techniques to Improve Audit Logs and Log
Consumers,” Proceedings of the 3rd International Workshop on Recent
Advances in Intrusion Detection, pp. 1–16 (Oct. 2000).

324. E. Flahavin and R. Snouffer, “The Certification of the Interim Key Escrow
System,” Proceedings of the 19th National Information Systems Security
Conference, pp. 26–33 (Oct. 1996).

Bishop.book Page 669 Tuesday, September 28, 2004 1:46 PM

670 Bibliography

325. C. Flink II and J. Weiss, “System V/MLS Labeling and Mandatory Policy
Alternatives,” Proceedings of the 1989 Winter USENIX Conference, pp.
413–427 (Jan. 1989).

326. S. Fluhrer and D. McGrew, “Statistical Analysis of the Alleged RC4
Keystream Generator,” Proceedings of the 7th International Workshop on
Fast Software Encryption, pp. 19–39 (Apr. 2000).

327. S. Foley, “A Model for Secure Information Flow,” Proceedings of the 1989
IEEE Symposium on Research in Security and Privacy, pp. 248–258
(May 1989).

328. S. Foley, “Separation of Duty Using High Water Marks,” Proceedings of
the Computer Security Foundations Workshop IV, pp. 79–88 (June 1991).

329. S. Foley and J. Jacob, “Specifying Security for CSCW Systems,”
Proceedings of the 8th IEEE Computer Security Foundations Workshop,
pp. 136–145 (June 1995).

330. W. Ford and M. Baum, Secure Electronic Commerce: Building the
Infrastructure for Digital Signatures and Encryption, Prentice-Hall, Upper
Saddle River, NJ (1997).

331. S. Forrest, S. Hofmeyr, and A. Somayaji, “Computer Immunology,”
Communications of the ACM 40 (10), pp. 88–96 (Oct. 1997).

332. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A Sense of Self for
UNIX Processes,” Proceedings of the 1996 IEEE Symposium on Security
and Privacy, pp. 120–128 (May 1996).

333. S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, “Self-Nonself
Discrimination,” Proceedings of the 1994 IEEE Symposium on Security
and Privacy, pp. 202–212 (May 1994).

334. J. Frank, “Artificial Intelligence and Intrusion Detection: Current and
Future Directions,” Proceedings of the 17th National Computer Security
Conference, pp. 21–33 (Oct. 1994).

335. M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy, “A Framework for
Understanding Vulnerabilities in Firewalls Using a Dataflow Model of
Firewall Internals,” Computers and Security 20 (3), pp. 263–270 (May 2001).

336. T. Fraser and L. Badger, “Ensuring Continuity During Dynamic Security
Policy Reconfiguration in DTE,” Proceedings of the 1998 IEEE
Symposium on Security and Privacy, pp. 15–26 (May 1998).

337. T. Fraser, L. Badger, and M. Feldman, “Hardening COTS Software with
Generic Software Wrappers,” Proceedings of the 1999 IEEE Symposium
on Security and Privacy, pp. 2–16 (May 1999).

338. A. Freedman, “How to Make BSD (SunOS) Kernels SYN-Attack Resistant”
(Sep. 1996); available at http://www.netaxs.com/~freedman/syn/.

339. D. Freedman and C. Mann, At Large: The Strange Case of the World’s
Biggest Internet Invasion, Simon and Schuster, New York, NY (1997).

Bishop.book Page 670 Tuesday, September 28, 2004 1:46 PM

Bibliography 671

340. A. Freier, P. Kariton, and P. Kocher, The SSL Protocol: Version 3.0,
Netscape Communications, Inc., Mountain View, CA (Mar. 1996).

341. A.E. Frisch, Essential System Administration, O’Reilly and Associates,
Sebastopol, CA (1991).

342. J. Gaffney and J. Ulvila, “Evaluation of Intrusion Detectors: A Decision
Theory Approach,” Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pp. 50–61 (May 2001).

343. H. Gaines, Cryptanalysis: A Study of Ciphers and Their Solution, Dover,
New York, NY (1956).

344. D. Gambel, “Security Modeling for Public Safety Communication
Specifications,” Proceedings of the 20th National Information Systems
Security Conference, pp. 514–521 (Oct. 1997).

345. R. Ganesan and C. Davies, “A New Attack on Pronounceable Password
Generators,” Proceedings of the 17th National Computer Security
Conference, pp. 184–197 (Oct. 1994).

346. R. Ganesan, “The Yaksha Security System,” Communications of the ACM
39 (3), pp. 55–60 (Mar. 1996).

347. S. Garfinkel and E. Spafford, Practical UNIX and Internet Security, 2nd
Edition, O’Reilly and Associates, Sebastopol, CA (1996).

348. S. Garfinkel and E. Spafford, Web Security & Commerce, O’Reilly and
Associates, Sebastopol, CA (1996).

349. P. Garnett, “Selective Disassembly: A First Step Towards Developing a
Virus Filter,” Proceedings of the 4th Aerospace Computer Security
Conference, pp. 2–6 (Dec. 1988).

350. M. Gasser, “A Random Word Generator for Pronounceable Passwords,”
Technical Report ESD-TR-75-97, Electronic Systems Division, Hanscom
Air Force Base, Bedford, MA (Nov. 1975).

351. M. Gendler-Fishman and E. Gudes, “Compile-Time Flow Analysis of
Transactions and Methods in Object-Oriented Databases,” Proceedings of
the IFIP TC11 WG11.3 11th International Conference on Database
Security, pp. 110–133 (Aug. 1997).

352. T. George, “A Touch of Magex,” Banking Technology 16 (6), p. 54 (July-
Aug. 1999).

353. A. Ghosh, E-Commerce Security: Weak Links, Best Defenses, John Wiley
and Sons, New York, NY (1998).

354. A. Ghosh, T. O’Connor, and G. McGraw, “An Automated Approach for
Identifying Potential Vulnerabilities in Software,” Proceedings of the 1998
IEEE Symposium on Security and Privacy, pp. 104–114 (May 1998).

355. A. Ghosh, V. Rana, B. Johnson, and J. Profeta III, “A Distributed Safety-
Critical System for Real-Time Train Control,” Proceedings of the 21st
IEEE International Conference on Industrial Electronics, Control, and
Instrumentation, pp. 760–767 (Nov. 1995).

Bishop.book Page 671 Tuesday, September 28, 2004 1:46 PM

672 Bibliography

356. D. Gifford, “Cryptographic Sealing for Information Secrecy and
Authentication,” Communications of the ACM 25 (4), pp. 274–286
(Apr. 1982).

357. H. Gilbert and G. Chase, “A Statistical Attack on the Feal-8
Cryptosystem,” Advances in Cryptology—Proceedings of CRYPTO ’90,
pp. 22–33 (Aug. 1990).

358. J. Gilmore, Cracking the DES, O’Reilly and Associates, Sebastopol, CA (1998).
359. G. Glass, UNIX® for Programmers and Users, Prentice-Hall, Englewood

Cliffs, NJ (1993).
360. V. Gligor, “Guidelines for Trusted Facility Management and Audit,”

University of Maryland, College Park, MD (1985); cited in A Guide to
Understanding Audit in Trusted Systems [259].

361. V. Gligor, C. Chandersekaran, R. Chapman, L. Dotterer, M. Hecht,
W.-D. Jiang, A. Johri, G. Luckenbaugh, and N. Vasudevan, “Design and
Implementation of Secure Xenix,” IEEE Transactions on Software
Engineering 13 (2), pp. 208–221 (Feb. 1987).

362. B. Gold, R. Linde, and P. Cudney, “KVM/370 in Retrospect,” Proceedings
of the 1984 Symposium on Security and Privacy, pp. 13–24 (Apr. 1984).

363. B. Gold, R. Linde, R. Peeler, M. Schaefer, J. Scheid, and P. Ward, “A
Security Retrofit of VM/370,” Proceedings of the National Computer
Conference 48, pp. 335–344 (June 1979).

364. I. Goldberg, D. Wagner, R. Thomas, and E. Brewer, “A Secure
Environment for Untrusted Helper Applications: Confining the Wily
Hacker,” Proceedings of the 6th USENIX Security Symposium, pp. 1–13
(July 1996).

365. O. Goldreich, Modern Cryptography, Probabilistic Proofs, and
Pseudorandomness, Springer-Verlag, New York, NY (1999).

366. J. Golic, “Linear Statistical Weakness of Alleged RC4 Keystream
Generator,” Advances in Cryptology—Proceedings of EUROCRYPT ’97,
pp. 226–238 (May 1997).

367. L. Gong, “A Secure Identity-Based Capability System,” Proceedings of the
1989 IEEE Symposium on Security and Privacy, pp. 56–63 (May 1989).

368. L. Gong, “A Security Risk of Depending on Synchronized Clocks,”
Operating Systems Review 26 (1), pp. 49–53 (Jan. 1992).

369. L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going Beyond
the Sandbox: An Overview of the New Security Architecture in the Java™
Development Kit 1.2,” Proceedings of the USENIX Symposium on Internet
Technologies and Systems, pp. 103–112 (Dec. 1997).

370. G. Graham and P. Denning, “Protection—Principles and Practice,”
Spring Joint Computer Conference, AFIPS Conference Proceedings 40,
pp. 417–429 (1972).

Bishop.book Page 672 Tuesday, September 28, 2004 1:46 PM

Bibliography 673

371. F. Grampp and R. Morris, “UNIX Operating System Security,” AT&T Bell
Laboratories Technical Journal 63 (8), pp. 1649–1672 (Oct. 1984).

372. G. Grant, Understanding Digital Signatures, McGraw-Hill, New York, NY
(1998).

373. L. Grant, “DES Key Crunching for Safer Cipher Keys,” ACM Special
Interest Group Security Audit and Control Review 5 (3), pp. 9–16
(Summer 1987).

374. R. Graubart, “The Integrity-Lock Approach to Secure Database
Management,” Proceedings of the 1990 Symposium on Security and
Privacy, pp. 62–74 (Apr. 1990).

375. R. Graubert, “On the Need for a Third Form of Access Control,”
Proceedings of the 12th National Computer Security Conference,
pp. 296–304 (Oct. 1989).

376. J. Gray III, “On Introducing Noise into the Bus-Contention Channel,”
Proceedings of the 1993 IEEE Symposium on Research in Security and
Privacy, pp. 90–98 (May 1993).

377. J. Green and P. Sisson, “The ‘Father Christmas’ Worm,” Proceedings of the
12th National Computer Security Conference, pp. 359–368 (Oct. 1989).

378. M. Greenberg, L. Byington, and D. Harper, “Mobile Agents and Security,”
IEEE Communications Magazine 36 (7), pp. 76–85 (July 1998).

379. M. Greenwald, S. Singh, J. Stone, and D. Cheriton, “Designing an
Academic Firewall: Policy, Practice, and Experience,” Proceedings of the
1996 Symposium on Network and Distributed Systems Security, pp. 79–92
(Feb. 1996).

380. P. Gregory, Solaris™ Security, Prentice-Hall, Upper Saddle River, NJ (2000).
381. P. Griffiths and B. Wade, “An Authorization Mechanism for a Relational

Database System,” ACM Transactions on Database Systems 1 (3),
pp. 242–255 (Sep. 1976).

382. C. Gülcü and G. Tsudik, “Mixing Email with BABEL,” Proceedings of the
1996 Symposium on Network and Distributed System Security, pp. 1–15
(Feb. 1996).

383. S. Gupta and V. Gligor, “Towards a Theory of Penetration-Resistant
Systems and Its Applications,” Proceedings of the Computer Security
Foundations Workshop IV, pp. 62–78 (June 1991).

384. S. Gupta and V. Gligor, “Experience with a Penetration Analysis Method
and Tool,” Proceedings of the 15th National Computer Security
Conference, pp. 165–183 (Oct. 1992).

385. J. Guttman, “Information Flow and Invariance,” Proceedings of the 1987
IEEE Symposium on Security and Privacy, pp. 67–73 (Apr. 1987).

386. K. Hafner and J. Markoff, Cyberpunk: Outlaws and Hackers on the
Computer Frontier, Simon and Schuster, New York, NY (1991).

Bishop.book Page 673 Tuesday, September 28, 2004 1:46 PM

674 Bibliography

387. B. Hagemark and K. Zadeck, “Site: A Language and System for
Configuring Many Computers as One Computer Site,” Proceedings of the
3rd Large Installation Systems Administration Workshop (LISA 1989),
pp. 1–15 (1989).

388. J. Haigh and W. Young, “Extending the Non-Interference Version of MLS
for SAT,” Proceedings of the 1986 IEEE Symposium on Security and
Privacy, pp. 232–239 (Apr. 1986).

389. J. Haigh, R. Kemmerer, J. McHugh, and W. Young, “An Experience Using
Two Covert Channel Analysis Techniques on a Real System Design,”
IEEE Transactions on Software Engineering 13 (2), (Feb. 1987).

390. N. Haller, “The S/Key™ One-Time Password System,” Proceedings of
the 1994 Symposium on Network and Distributed System Security,
pp. 151–157 (Feb. 1994).

391. S. Hambridge and J. Sedayao, “Horses and Barn Doors: Evolution of
Corporate Guidelines for Internet Usage,” Proceedings of the 7th Systems
Administration Conference (LISA 1993), pp. 9–16 (Nov. 1993).

392. A. Hamilton, J. Madison, and J. Jay, The Federalist Papers (C. Rossiter,
ed.), New American Library, New York, NY (1961).

393. D. Hanson, “A Machine-Independent Debugger—Revisited,” Software—
Practice and Experience 29 (10), pp. 849–862 (Oct. 1999).

394. S. Hansen and E. Atkins, “Centralized System Monitoring with Swatch,”
Proceedings of the 3rd USENIX UNIX Security Symposium, pp. 105–117
(Sep. 1992).

395. S. Hansen and E. Atkins, “Automated System Monitoring and Notification
with Swatch,” Proceedings of the 7th Systems Administration Conference
(LISA 1993), pp. 145–155 (Nov. 1993).

396. S. Hardcastle-Kille, Encoding Network Addresses to Support Operation
over Non-OSI Lower Layers, RFC 1277 (Nov. 1991).

397. S. Hardcastle-Kille, A String Encoding of Presentation Address, RFC 1278
(Nov. 1991).

398. N. Hardy, “KeyKOS Architecture,” Operating Systems Review 19 (4),
pp. 8–25 (Oct. 1985).

399. A. Harmon, “Hackers May ‘Net’ Good PR for Studio,” Los Angeles Times,
p. D1 (Aug. 12, 1995).

400. B. Harris and R. Hunt, “Firewall Certification,” Computers and Security
18 (2), pp. 165–177 (Mar./Apr. 1999).

401. M. Harrison, W. Ruzzo, and J. Ullman, “Protection in Operating Systems,”
Communications of the ACM 19 (8), pp. 461–471 (Aug. 1976).

402. M. Harrison and W. Ruzzo, “Monotonic Protection Systems,” in
Foundations of Secure Computing [238], pp. 337–363 (Oct. 1977).

Bishop.book Page 674 Tuesday, September 28, 2004 1:46 PM

Bibliography 675

403. H. Härtig, O. Kowalski, and W. Kühnhauser, “The BirliX Security
Architecture,” Journal of Computer Security 2 (1), pp. 5–21 (1993).

404. H. Hartson and D. Hsiao, “Full Protection Specifications in the Semantic
Model for Database Protection Languages,” Proceedings of the 1976 ACM
Annual Conference, pp. 90–95 (Oct. 1976).

405. J. Haskett, “Pass-Algorithms: A User Validation Scheme Based on
Knowledge of Secret Algorithms,” Communications of the ACM 27 (8),
pp. 777–781 (Aug. 1984).

406. J. Haugh II, “Shadow Password Suite,” Proceedings of the 3rd USENIX
UNIX Security Symposium, pp. 133–144 (Sep. 1992).

407. S. Heatley and J. Otto, “Data Mining Computer Audit Logs to Detect
Computer Misuse,” International Journal of Intelligent Systems in
Accounting, Finance and Management 7 (3), pp. 125–134 (Sep. 1998).

408. B. Hebbard, P. Grosso, T. Baldridge, C. Chan, D. Fishman, P. Goshgarian,
T. Hilton, J. Hoshen, K. Hoult, G. Huntley, M. Stolarchuk, and L. Warner,
“A Penetration Analysis of the Michigan Terminal System,” Operating
Systems Review 14 (1), pp. 7–20 (Jan. 1980).

409. L. Heberlein and M. Bishop, “Attack Class: Address Spoofing,”
Proceedings of the 19th National Information Systems Security
Conference, pp. 371–377 (Oct. 1996).

410. L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber,
“A Network Security Monitor,” Proceedings of the 1990 IEEE Symposium
on Research in Security and Privacy, pp. 296–304 (May 1990).

411. L. Heberlein, K. Levitt, and B. Mukherjee, “Internetwork Security
Monitor: An Intrusion-Detection System for Large-Scale Networks,”
Proceedings of the 15th National Information Systems Security
Conference, pp. 262–271 (Oct. 1992).

412. R. Hefner, “Lessons Learned with the Systems Security Engineering
Capability Maturity Model,” Proceedings of the 1997 International
Conference on Software Engineering, pp. 566–567 (May 1997).

413. R. Hefner, “A Process Standard for System Security Engineering:
Development Experiences and Pilot Results,” Proceedings of the IEEE
International Symposium on Software Engineering Standards,
pp. 217–221 (June 1997).

414. G. Held and K. Hundley, Cisco® Access Lists Field Guide, McGraw-Hill,
New York, NY (1999).

415. H. Hellman, Great Feuds in Science: Ten of the Liveliest Disputes Ever,
John Wiley and Sons, New York, NY (1998).

416. M. Hellman, “A Cryptanalytic Time-Memory Tradeoff,” IEEE
Transactions on Information Theory 26 (4), pp. 401–406 (July 1980).

Bishop.book Page 675 Tuesday, September 28, 2004 1:46 PM

676 Bibliography

417. P. Helman and G. Liepins, “Statistical Foundations of Audit Trail Analysis
for the Detection of Computer Misuse,” IEEE Transactions on Software
Engineering 19 (9), pp. 886–901 (Sep. 1993).

418. J. Helsingius, Press Release: Johan Helsingius Closes His Internet
Remailer, Oy Penetic Ab (Aug. 1996).

419. Hewlett-Packard Co., Sendmail Release 8.8.6 Causes Denial of Service
Failures, Security Bulletin #00097 (Apr. 1999).

420. F. Hickman, “An ‘Intelligent’ Approach to Audit Trail Analysis,”
Proceedings of the 2nd International Meeting on Expert Systems
Applications, pp. 51–63 (1992).

421. H. Highland, “Random Bits and Bytes: Case History of a Virus Attack,”
Computers and Security 7 (1), pp. 3–5 (Feb. 1988).

422. H. Highland, Computer Virus Handbook, Elsevier Advanced Technology,
Oxford, UK (1990).

423. H. Highland, “Random Bits and Bytes: Testing a Password System,”
Computers and Security 11 (2), pp. 110–113 (Apr. 1992).

424. J. Hoagland, C. Wee, and K. Levitt, “Audit Log Analysis Using the Visual
Audit Browser Toolkit,” Technical Report CSE-95-11, Department of
Computer Science, University of California, Davis, CA (Sep. 1995).

425. L. Hoffman, “The Formulary Model for Flexible Privacy and Access
Control,” Proceedings of the 1971 Fall Joint Computer Conference,
pp. 587–601 (1971).

426. L. Hoffman, Modern Methods for Computer Security and Privacy,
Prentice-Hall, Englewood Cliffs, NJ 07632 (1977).

427. L. Hoffman, Rogue Programs: Viruses, Worms, and Trojan Horses, Van
Nostrand Reinhold, New York, NY (1990).

428. L. Hoffman and R. Davis, “Security Pipeline Interface (SPI),” Proceedings
of the 6th Annual Computer Security Applications Conference,
pp. 349–355 (Dec. 1990).

429. S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using
Sequences of System Calls,” Journal of Computer Security 6 (3),
pp. 151–180 (1988).

430. C. Hogan, A. Cox, and T. Hunter, “Decentralizing Distributed System
Administration,” Proceedings of the 9th Systems Administration
Conference (LISA 1995), pp. 139–147 (Sep. 1995).

431. C. Holley and F. Millar, “Auditing the On-Line, Real-Time Computer
System,” Journal of Systems Management 34 (1), pp. 14–19 (Jan. 1983).

432. Homer, The Odyssey (translated by E. V. Rieu), Penguin Books, New York,
NY (1946).

433. The Honeypot Project, “Know Your Enemy: III” (March 2000); available
at http://project.honeynet.org/papers/enemy3.

Bishop.book Page 676 Tuesday, September 28, 2004 1:46 PM

Bibliography 677

434. The Honeypot Project, “Know Your Enemy: Passive Fingerprinting” (May
2000); available at http://project.honeynet.org/papers/finger.

435. The Honeypot Project, “Know Your Enemy: A Forensic Analysis” (May
2000); available at http://project.honeynet.org/papers/forensics.

436. The Honeypot Project, “Know Your Enemy” (July 2000); available at
http://project.honeynet.org/papers/enemy.

437. The Honeypot Project, “Know Your Enemy: Honeynets” (Apr. 2001);
available at http://project.honeynet.org/papers/honeynet.

438. The Honeypot Project, “Know Your Enemy: II” (June 2001); available at
http://project.honeynet.org/papers/enemy2.

439. The Honeypot Project, “Know Your Enemy: Statistics” (July 2001);
available at http://project.honeynet.org/papers/stats.

440. J. Horton, R. Cooper, W. Hyslop, B. Nickerson, O. Ward, R. Harland, E.
Ashby, and W. Stewart, “The Cascade Vulnerability Problem,” Journal of
Computer Security 2 (4), pp. 279–290 (1993).

441. J. Horton, R. Harland, E. Ashby, R. Cooper, W. Hyslop, B. Nickerson, W.
Stewart, and O. Ward, “The Cascade Vulnerability Problem,” Proceedings
of the 1993 IEEE Symposium on Research in Security and Privacy, pp.
110–116 (May 1993).

442. M. Howard, Designing Secure Web-Based Applications for Microsoft®
Windows® 2000, Microsoft Press, Redmond, WA (2000).

443. M. Howard and D. LeBlanc, Writing Secure Code, Microsoft Press,
Redmond, WA (2001).

444. B. Howell and B. Satdeva, “We Have Met the Enemy, an Informal Survey
of Policy Practices in the Internetworked Community,” Proceedings of the
5th Large Installation Systems Administration Conference (LISA 1991),
pp. 159–170 (Sep./Oct. 1991).

445. J. Hruska, Computer Viruses and Anti-Virus Warfare, Ellis Horwood, New
York, NY (1992).

446. W. Hsieh, M. Fiuczynski, C. Garrett, S. Savage, D. Becker, and B.
Bershad, “Language Support for Extensible Operating Systems,”
Proceedings of the Inaugural Workshop on Compiler Support for Systems
Software, pp. 127–133 (Feb. 1996).

447. N. Htoo-Mosher, R. Nasser, N. Zunic, and J. Straw, “E4 ITSEC Evaluation
of PR/SM on ES/9000 Processors,” Proceedings of the 19th National
Information Systems Security Conference, pp. 1–11 (Oct. 1996).

448. W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” Proceedings of
the 1991 IEEE Symposium on Research in Security and Privacy, pp. 52–61
(May 1991).

Bishop.book Page 677 Tuesday, September 28, 2004 1:46 PM

678 Bibliography

449. W.-M. Hu, “Lattice Scheduling and Covert Channels,” Proceedings of the
1992 IEEE Symposium on Research in Security and Privacy, pp. 8–20
(May 1992).

450. R. Hudson, Windows NT Administration and Security, Prentice-Hall,
Upper Saddle River, NJ (2001)

451. J. Hughes, “Certificate Inter-Operability White Paper,” Computers and
Security 18 (3), pp. 221–250 (May 1999).

452. J. Hughes, “The Realities of PKI Inter-Operability,” Proceedings of Secure
Networking—CQRE [Secure] ’99 International Exhibition and Congress,
pp. 127–132 (Nov. 1999).

453. G. Iachello and K. Rannenberg, “Protection Profiles for Remailer Mixes,”
Proceedings of the International Workshop on Design Issues in Anonymity
and Unobservability, pp. 181–225 (July 2000).

454. C. I’Anson and C. Mitchell, “Security Defects in CCITT
Recommendation X.509—the Directory Authentication Framework,”
Computer Communication Review 20 (2), pp. 30–34 (Apr. 1990).

455. D. Icove, “Collaring the Cybercrook: An Investigator’s View,” IEEE
Spectrum 34 (6), pp. 31–36 (June 1997).

456. K. Ilgun, R. Kemmerer, and P. Porras, “State Transition Analysis: A Rule-
Based Intrusion Detection Approach,” IEEE Transactions on Software
Engineering 21 (3), pp. 181–199 (Mar. 1995).

457. J. Iliffe and J. Jodeit, “A Dynamic Storage Allocation System,” Computer
Journal 5, pp. 200–209 (1962); cited in Cryptography and Data Security
[242].

458. J. Iliffe, Basic Machine Principles, 2nd Edition, Elsevier MacDonald
Publishing Co., New York, NY (1972); cited in Cryptography and Data
Security [242].

459. Information Sciences Institute, Transmission Control Protocol DARPA
Internet Program Protocol Specification, RFC 793 (Sep. 1981).

460. International Telecommunications Union, Recommendation X.509—the
Directory Authentication Framework (1993).

461. C. Irvine and D. Volpano, “A Practical Tool for Developing Trusted
Applications,” Proceedings of the 11th Annual Computer Security
Applications Conference, pp. 190–195 (Dec. 1995).

462. H. Isa, W. Shockley, and C. Irvine, “A Multi-threading Architecture for
Multilevel Secure Transaction Processing,” Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pp. 166–180 (May 1999).

463. D. Isenor and S. Zaky, “Fingerprint Identification Using Graph Matching,”
Pattern Recognition 19 (2), pp. 113–122 (1986).

464. H. Israel, “Computer Viruses: Myth or Reality?” Proceedings of the 10th
National Computer Security Conference, pp. 226–230 (Sep. 1987).

Bishop.book Page 678 Tuesday, September 28, 2004 1:46 PM

Bibliography 679

465. N. Itoi and P. Honeyman, “Pluggable Authentication Modules for
Windows NT,” Proceedings of the 2nd USENIX Windows NT Symposium,
pp. 97–108 (Aug. 1998).

466. S. Jajodia, S. Gadia, G. Bhargava, and E. Sibley, “Audit Trail Organization
in Relational Databases,” Results of the IFIP WG 11.3 Workshop on
Database Security, III: Status and Prospects, pp. 269–281 (Sep. 1989).

467. S. Jajodia, P. Samarati, and V. Subrahamanian, “A Logical Language for
Expressing Authorizations,” Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pp. 31–42 (May 1997).

468. S. Jajodia and R. Sandhu, “Towards a Multilevel Secure Relational Data
Model,” Proceedings of the ACM-SIGMOD Conference, pp. 50–59 (May 1991).

469. K. Jensen and N. Wirth, PASCAL: User Manual and Report, 2nd Edition,
Springer-Verlag, New York, NY (1974).

470. I. Jermyn, A. Mayer, F. Monrose, M. Reiter, and A. Rubin, “The Design
and Analysis of Graphical Passwords,” Proceedings of the 8th USENIX
Security Symposium, pp. 1–14 (Aug. 1999).

471. H. Johnson and M. De Vilbiss, “Use of the Trusted Computer System
Evaluation Criteria (TCSEC) for Complex, Evolving, Multipolicy
Systems,” Proceedings of the 16th National Computer Security
Conference, pp. 137–145 (Sep. 1993).

472. A. Jones and R. Lipton, “The Enforcement of Security Policies for
Computation,” Proceedings of the 5th Symposium on Operating System
Principles, pp. 197–206 (Nov. 1975).

473. A. Jones, R. Lipton, and L. Snyder, “A Linear-Time Algorithm for
Deciding Security,” Proceedings of the 17th Symposium on the
Foundations of Computer Science, pp. 33–41 (Oct. 1976).

474. V. Jones and D. Schrodel, “Balancing Security and Convenience,”
Proceedings of the Large Installation Systems Administration Workshop,
pp. 5–6 (Apr. 1987).

475. M. Joseph, “Towards the Elimination of the Effects of Malicious Logic:
Fault Tolerance Approaches,” Proceedings of the 10th National Computer
Security Conference, pp. 238–244 (Sep. 1987).

476. M. Joseph and A . ˇAvizienis, “A Fault Tolerant Approach to Computer
Viruses,” Proceedings of the 1988 IEEE Symposium on Security and
Privacy, pp. 52–58 (Apr. 1988).

477. R. Joyce and G. Gupta, “Identity Authentication Based on Keystroke
Latencies,” Communications of the ACM 33 (2), pp. 168–176 (Feb. 1990).

478. J. Juni and R. Ponto, “Computer-Virus Infection of a Medical Diagnostic
Computer,” New England Journal of Medicine 320 (12), pp. 811–812
(Mar. 12, 1989).

479. J. Jumes, N. Cooper, P. Chamoun, and T. Feinman, Microsoft® Windows NT®
4.0 Security, Audit, and Control, Microsoft Press, Redmond, WA (1999).

Bishop.book Page 679 Tuesday, September 28, 2004 1:46 PM

680 Bibliography

480. F. Kafka, The Trial, Alfred Knopf, New York, NY (1992).
481. C. Kahn and M. Zurko, “Incentives to Help Stop Floods,” Proceedings of

the 2000 New Security Paradigms Workshop, pp. 127–132 (Sep. 2000).
482. D. Kahn, The Codebreakers: The Story of Secret Writing (revised edition),

Macmillan Publishing Co., New York, NY (1967).
483. D. Kahn, Seizing the Enigma: The Race to Break the German U-Boat

Codes, 1939–1943, Houghton Mifflin Co., Boston, MA (1991).
484. D. Kahn, Codebreaking and the Battle of the Atlantic, US Air Force

Academy, Colorado Springs, CO (1994).
485. D. Kahn, The Codebreakers; The Story of Secret Writing (revised edition),

Scribner, New York, NY (1996).
486. R. Kahn, W. Corwin, T. Dennis, H. D’Hooge, D. Hubka, L. Hutcchins, J.

Montague, F. Pollack, and M. Gifkins, “iMAX: A Multiprocessor
Operating System for an Object-Based Computer,” Proceedings of the 8th
Symposium on Operating Systems Principles, pp. 117–121 (Dec. 1979).

487. R. Kain, Advanced Computer Architecture: A Systems Design Approach,
Prentice-Hall, Englewood Cliffs, NJ 07632 (1996).

488. R. Kain and C. Landwehr, “On Access Checking in Capability-Based
Systems,” Proceedings of the 1986 IEEE Symposium on Security and
Privacy, pp. 95–100 (May 1986).

489. B. Kaliski, The MD2 Message Digest Algorithm, RFC 1319 (Apr. 1992).
490. M. Kang and I. Moskowitz, “A Pump for Rapid, Reliable, Secure

Communication,” Proceedings of the 1st ACM Conference on Computer
and Communication Security, pp. 119–129 (Nov. 1993).

491. M. Kang, I. Moskowitz, and D. Lee, “A Network Version of the Pump,”
Proceedings of the 1995 IEEE Symposium on Security and Privacy,
pp.144–154 (May 1995).

492. M. Kang, I. Moskowitz, and D. Lee, “A Network Pump,” IEEE
Transactions on Software Engineering 22 (5), pp. 329–338 (May 1996).

493. B. Kantor, BSD Rlogin, RFC 1282 (Dec. 1991).
494. P. Karger, “Limiting the Damage Potential of Discretionary Trojan

Horses,” Proceedings of the 1987 IEEE Symposium on Security and
Privacy, pp. 32–37 (Apr. 1987).

495. P. Karger and A. Herbert, “An Augmented Capability Architecture to
Support Lattice Security and Traceability of Access,” Proceedings of the
1984 IEEE Symposium on Security and Privacy, pp. 2–12 (Apr. 1984).

496. P. Karger and R. Schell, “MULTICS Security Evaluation, Volume II:
Vulnerability Analysis,” ESD-TR-74-193, Vol. II, Electronic Systems
Division, Air Force Systems Command, Hanscom Field, Bedford, MA
(June 1974).

Bishop.book Page 680 Tuesday, September 28, 2004 1:46 PM

Bibliography 681

497. P. Karger and J. Wray, “Covert Storage Channels in Disk Arm
Optimization,” Proceedings of the 1991 Symposium on Research in
Security and Privacy, pp. 52–61 (May 1991).

498. P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn, “A VMM Security
Kernel for the VAX Architecture,” Proceedings of the 1990 Symposium on
Research in Security and Privacy, pp. 2–19 (May 1990).

499. G. Kedem and Y. Ishihara, “Brute Force Attack on UNIX Passwords with
SIMD Computer,” Proceedings of the 8th USENIX Security Symposium,
pp. 93–98 (Aug. 1999).

500. R. Kemmerer, “A Practical Approach to Identifying Storage and Timing
Channels,” Proceedings of the 1982 IEEE Symposium on Security and
Privacy, pp. 66–73 (Apr. 1982).

501. R. Kemmerer, “Shared Resource Matrix Methodology: An Approach to
Identifying Storage and Timing Channels,” ACM Transactions on
Computer Systems, 1 (3), pp. 256–277 (Aug. 1983).

502. S. Kent, “Encryption-Based Protection Protocols for Interactive User-
Computer Communication,” Technical Report MIT/LCS/TR-162, Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA (May 1976); cited in Cryptography and Data Security [242].

503. S. Kent, “Comments on ‘Security Problems in the TCP/IP Protocol
Suite’,” Computer Communications Review 19 (3), pp. 10–19 (July 1989).

504. S. Kent, Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management, RFC 1422 (Feb. 1993).

505. B. Kernighan and P. Plauger, The Elements of Programming Style,
McGraw-Hill Book Co., Reading, MA (1974).

506. B. Kernighan and P. Plauger, Software Tools, Addison-Wesley, Reading,
MA (1976).

507. K. Keus, W. Kirth, and D. Loevenich, “Quality Assurance in the ITSEC-
Evaluation Environment in Germany,” Proceedings of the 16th National
Information Systems Security Conference, pp. 324–333 (Sep. 1993).

508. K. Keus and K.-W. Schröder, “Measuring Correctness and Effectiveness: A
New Approach Using Process Evaluation,” Proceedings of the 18th National
Information Systems Security Conference, pp. 366–373 (Oct. 1995).

509. G. Kim and E. Spafford, “Experiences with Tripwire: Using Integrity
Checkers for Intrusion Detection,” Proceedings of SANS III, pp. 89–102
(Apr. 1994).

510. G. Kim and E. Spafford, “The Design and Implementation of Tripwire: A
File System Integrity Checker,” Proceedings of the 2nd ACM Conference
on Computer and Communications Security (Nov. 1994).

511. D. Klein, “A Capability Based Protection Mechanism Under Unix,”
Proceedings of the 1985 Winter USENIX Conference, pp. 152–159
(Jan. 1995).

Bishop.book Page 681 Tuesday, September 28, 2004 1:46 PM

682 Bibliography

512. D. Klein, “Foiling the Cracker: A Survey of, and Improvements to,
Password Security,” Proceedings of the 2nd USENIX UNIX Security
Workshop, pp. 5–14 (Aug. 1990).

513. J. Knight and N. Leveson, “An Experimental Evaluation of the
Assumption of Independence in Multi-Version Programming,” IEEE
Transactions on Software Engineering 12 (1), pp. 96–109 (Jan. 1986).

514. J. Knight and N. Leveson, “On N-version Programming,” Software
Engineering Notes 15(1), pp. 24–35 (Jan. 1990).

515. Knightmare, Secrets of a Super Hacker, Loompanics Unlimited (1994).
516. L. Knudsen, “Cryptanalysis of LOKI91,” Advances in Cryptology—

AUSCRYPT ’92 Proceedings, pp. 196–208 (1992).
517. L. Kohnfelder, “A Method for Certification,” Laboratory for Computer

Science, Massachusetts Institute of Technology, Cambridge, MA (May
1978); cited in Cryptography and Data Security [242].

518. C. Ko, T. Fraser, L. Badger, and D. Kilpatrick, “Detecting and Countering
System Intrusions Using Software Wrappers,” Proceedings of the 9th
USENIX Security Symposium, pp. 145–156 (Aug. 2000).

519. C. Ko, M. Ruschitzka, and K. Levitt, “Execution Monitoring of Security-
Critical Programs in Distributed Systems: A Specification-Based
Approach,” Proceedings of the 1997 IEEE Symposium on Security and
Privacy, pp. 175–187 (May 1997).

520. H.-P. Ko, “Security Properties of Ring Brackets,” Proceedings of the
Computer Security Foundations Workshop II, pp. 41–46 (June 1989).

521. N. Koblitz, A Course in Number Theory and Cryptography, Springer-
Verlag, New York, NY (1994).

522. C. Kocher, “Connecting Classified Nets to the Outside World: Costs and
Benefits,” Proceedings of the 20th National Information Systems Security
Conference, pp. 534–542 (Oct. 1997).

523. P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” Advances in Cryptology—Proceedings of
CRYPTO ’96, pp. 104–113 (Aug. 1996).

524. P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances in
Cryptology—Proceedings of CRYPTO ’99, pp. 388–397 (Aug. 1999).

525. A. Koenig, C Traps and Pitfalls, Addison-Wesley, Reading, MA (1989).
526. J. Kohl and C. Neuman, The Kerberos Network Authentication Service

(V5), RFC 1510 (Sep. 1993).
527. A. Konheim, Cryptography: A Primer, John Wiley and Sons, New York,

NY (1981).
528. C. Kormos, L. Gallagher, N. Givans, and N. Bartol, “Using Security Metrics

to Assess Risk Management Capabilities,” Proceedings of the 22nd
National Information Systems Security Conference, pp. 370–388 (Oct. 1999).

Bishop.book Page 682 Tuesday, September 28, 2004 1:46 PM

Bibliography 683

529. D. Kosiur, Building and Managing Virtual Private Networks, John Wiley
and Sons, New York, NY (1998).

530. S. Kramer, “On Incorporating Access Control Lists into the UNIX
Operating System,” Proceedings of the USENIX UNIX Security Workshop,
pp. 38–48 (Aug. 1988).

531. H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for
Message Authentication, RFC 2104 (Feb. 1997).

532. H. Krawczyk, “How to Predict Congruential Generators,” Journal of
Algorithms 13 (4), pp. 527–545 (Dec. 1992).

533. W. Kremer, H. Saraidaridis, and A. Sripad, “The D5 Digital Terminal
System: A Case Study of a Comprehensive Quality and Reliability
Program,” IEEE Journal on Selected Areas in Communications 4 (7),
pp. 1099–1103 (Oct. 1986).

534. D. Kristol and L. Montulli, HTTP State Management Mechanism, RFC
2109 (Feb. 1997).

535. I. Krsul and E. Spafford, “Authorship Analysis: Identifying the Author of a
Program,” Proceedings of the 18th National Information Systems Security
Conference, pp. 514–524 (Oct. 1995).

536. C. Kubicki, “The System Administration Maturity Model—SAMM,”
Proceedings of the 7th Systems Administration Conference (LISA 1993),
pp. 213–225 (Nov. 1993).

537. R. Kuhn, “Mutual Exclusion of Roles as a Means of Implementing Separation
of Duty in Role-Based Access Control Systems,” Proceedings of the 2nd ACM
Workshop on Role-Based Access Control, pp. 23–30 (Nov. 1997).

538. S. Kumar and E. Spafford, “A Pattern Matching Model for Misuse
Intrusion Detection,” Proceedings of the 17th National Computer Security
Conference, pp. 11–21 (Oct. 1994).

539. J. Lacy, D. Mitchell, and W. Schell, “CrptoLib: Cryptography in
Software,” Proceedings of the 4th USENIX UNIX Security Symposium, pp.
1–17 (June 1993).

540. N. Lai and T. Gray, “Strengthening Discretionary Access Controls to
Inhibit Trojan Horses and Computer Viruses,” Proceedings of the 1988
Summer USENIX Conference, pp. 275–286 (June 1988).

541. X. Lai, J. Massey, and S. Murphy, “Markov Ciphers and Differential
Cryptanalysis,” Advances in Cryptology—Proceedings of EUROCRYPT
’91, pp. 17–38 (1991).

542. L. Lamport, “Password Authentication with Insecure Communication,”
Communications of the ACM 24 (11), pp. 770–771 (Nov. 1981).

543. B. Lampson, “Protection,” Proceedings of the Fifth Princeton Symposium
of Information Science and Systems, pp. 437–443 (Mar. 1971); reprinted in
Operating Systems Review 8 (1), pp. 18–24 (Jan. 1974).

Bishop.book Page 683 Tuesday, September 28, 2004 1:46 PM

684 Bibliography

544. B. Lampson, “A Note on the Confinement Problem,” Communications of
the ACM 16 (10), pp. 613–615 (Oct. 1973).

545. C. Landwehr, “Formal Models for Computer Security,” Computing
Surveys 13 (3), pp. 247–278 (Sep. 1981).

546. C. Landwehr, A. Bull, J. McDermott, and W. Choi, “A Taxonomy of
Computer Program Security Flaws,” Computing Surveys 26 (3),
pp. 211–254 (Sep. 1994).

547. C. Landwehr and D. Goldschlag, “Security Issues in Networks with Internet
Access,” Proceedings of the IEEE 85 (12), pp. 2034–2051 (Dec. 1997).

548. C. Landwehr, C. Heitmeyer, and J. McLean, “A Security Model for
Military Message Systems,” ACM Transactions on Computer Systems 2
(2), pp. 198–222 (Aug. 1984).

549. T. Lane and C. Brodley, “Temporal Sequence Learning and Data
Reduction for Anomaly Detection,” ACM Transactions on Information and
System Security 2 (3), pp. 295–332 (Aug. 1999).

550. L. Lankewicz and M. Benard, “Real-Time Anomaly Detection Using a
Nonparametric Pattern Recognition Approach,” Proceedings of the 7th
Annual Computer Security Applications Conference, pp. 80–89 (Dec. 1991).

551. L. LaPadula, “The ‘Basic Security Theorem’ of Bell and LaPadula
Revisited,” handout from Computer Security Foundations Workshop (April
18, 1988).

552. L. Laudan, The Book of Risks: Fascinating Facts About the Chances We
Take Every Day, John Wiley and Sons, New York, NY 10158 (1994).

553. G. Lawton, “Biometrics: A New Era in Security,” IEEE Computer 31 (8),
pp. 16–18 (Aug. 1998).

554. T. Lee, “Using Mandatory Integrity to Enforce ‘Commercial’ Security,”
Proceedings of the 1988 IEEE Symposium on Security and Privacy,
pp. 140–146 (Apr. 1988).

555. W. Lee, “A Data Mining Framework for Building Intrusion Detection
Models,” Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 120–132 (May 1999).

556. P. Leong and C. Tham, “UNIX Password Encryption Considered
Insecure,” Proceedings of the 1991 Winter USENIX Technical Conference,
pp. 269–280 (Jan. 1991).

557. N. Leveson, Safeware: System Safety and Computers, Addison-Wesley,
Reading, MA (1995).

558. A. Levi and M. Caglayan, “An Efficient, Dynamic, and Trust Preserving
Public Key Infrastructure,” Proceedings of the 2000 IEEE Symposium on
Security and Privacy, pp. 203–214 (May 2000).

559. R. Levin, The Computer Virus Handbook, Osborne McGraw-Hill,
Berkeley, CA (1990).

Bishop.book Page 684 Tuesday, September 28, 2004 1:46 PM

Bibliography 685

560. W. Ley, Watchers of the Skies: An Informal History of Astronomy from
Babylon to the Space Age, Viking Press, New York, NY (1966).

561. Q. Li and B.-H. Juang, “Speaker Verification Using Verbal Information
Verification for Automatic Enrollment,” Proceedings of the 1998 IEEE
International Conference on Acoustics, Speech, and Signal Processing,
pp. 133–136 (May 1998).

562. Q. Li, B.-H. Juang, and C.-H. Lee, “Automatic Verbal Information
Verification for User Authentication,” IEEE Transactions on Speech and
Audio Processing 8 (5), pp. 585–596 (Sep. 2000).

563. Q. Li, B.-H. Juang, C.-H. Lee, Q. Zhou, and F. K. Soong, “Recent
Advancements in Automatic Speaker Authentication,” IEEE Robotics and
Automation Magazine 6 (1), pp. 24–34 (Mar. 1999).

564. A. Liebenberg and J. Eloff, “MASS—Model for an Auditing Security
System,” Proceedings of SEC 2000: Information Security, pp. 141–150
(Aug. 2000).

565. H.-Y. Lin and L. Harn, “A Generalized Secret Sharing Scheme with
Cheater Detection,” Advances in Cryptology—Proceedings of ASIACRYPT
’91, pp. 149–158 (1991).

566. T. Lin, “Chinese Wall Security Policy—An Aggressive Model,”
Proceedings of the 5th Annual Computer Security Conference,
pp. 282–289 (Dec. 1989).

567. R. Linde, “Operating Systems Penetration,” 1978 National Computer
Conference, AFIPS Conference Proceedings 44, pp. 361–368 (Nov. 1975).

568. R. Linde, C. Weissman, and C. Fox, “The ADEPT-50 Time-Sharing
System,” Proceedings of the 1969 Fall Joint Computer Conference,
pp. 39–50 (Nov. 1969).

569. J. Linn, Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures, RFC 1421
(Feb. 1993).

570. S. Lipner, “A Comment on the Confinement Problem,” Proceedings of the
5th Symposium on Operating Systems Principles, pp. 192–196 (Nov. 1975).

571. S. Lipner, “Non-Discretionary Controls for Commercial Applications,”
Proceedings of the 1982 Symposium on Privacy and Security, pp. 2–10
(Apr. 1982).

572. S. Lipner, “Twenty Years of Evaluation Criteria and Commercial
Technology,” Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 111–112 (May 1999).

573. R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D.
Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman,
“Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line
Intrusion Detection Evaluation,” Proceedings of the DARPA Information
Survivability Conference and Exposition, 2, pp. 12–26 (Jan. 2000).

Bishop.book Page 685 Tuesday, September 28, 2004 1:46 PM

686 Bibliography

574. R. Lippmann, J. Haines, D. Fired, J. Korba, and K. Das, “Analysis and
Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation,”
Proceedings of the 3rd International Workshop on Recent Advances in
Intrusion Detection, pp. 162–182 (Oct. 2000).

575. R. Lipton and T. Budd, “On Classes of Protection Systems,” in
Foundations of Secure Computing [238], pp. 281–291.

576. R. Lipton and L. Snyder, “A Linear Time Algorithm for Deciding Subject
Security,” Journal of the ACM 24 (3), pp. 455–464 (July 1977).

577. J. Littman, The Watchman: The Twisted Life and Crimes of Serial Hacker
Kevin Poulsen, Little, Brown, & Co., Boston, MA (1997).

578. S. Lodin and C. Schuba, “Firewalls Fend Off Invasions from the Net,”
IEEE Spectrum 35 (2), pp. 26–34 (Feb. 1998).

579. L. Lopez and J. Carracedo, “Hierarchical Organization of Certification
Authorities for Secure Environments,” Proceedings of the 1997
Symposium on Network and Distributed System Security, pp. 112–121
(Feb. 1997).

580. M. Ludwig, The Giant Black Book of Computer Viruses, American Eagle
Publishers, Phoenix, AZ (1998).

581. E. Lundin and E. Jonsson, “Anomaly-Based Intrusion Detection: Privacy
Concerns and Other Problems,” Computer Networks 34 (4), pp. 623–640
(Oct. 2000).

582. T. Lunt and R. Jagannathan, “A Prototype Real-Time Intrusion-Detection
Expert System,” Proceedings of the 1988 IEEE Symposium on Security
and Privacy, pp. 2–10 (Apr. 1988).

583. T. Lunt, R. Schell, W. Shockley, M. Heckman, and D. Warren, “ A Near-
Term Design for the SeaView Multilevel Database System,” Proceedings
of the 1988 IEEE Symposium on Security and Privacy, pp. 234–244
(Apr. 1988).

584. E. Lupu and M. Sloman, “Towards a Role-Based Framework for
Distributed Systems Management,” Journal of Network and Systems
Management 5 (1), pp. 5–30 (Mar. 1997).

585. S. Maguire, Writing Solid Code: Microsoft’s Techniques for Developing
Bug-Free C Programs, Microsoft Press, Redmond, WA (1993).

586. Her Majesty’s Stationery Office, Securities and Investment Board
Rules, Chapter III, Part 5:08, London, UK; cited in “The Chinese Wall
Policy” [133].

587. Her Majesty’s Stationery Office, Financial Services Act 1986, §48(2)(h),
London, UK (1986); cited in “The Chinese Wall Policy” [133].

588. D. Malkhi, M. Reiter, and A. Rubin, “Secure Execution of Java Applets
Using a Remote Playground,” Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pp. 40–51 (May 1998).

Bishop.book Page 686 Tuesday, September 28, 2004 1:46 PM

Bibliography 687

589. U. Manber, “A Simple Scheme to Make Passwords Based on One-Way
Functions Much Harder to Crack,” Computers and Security 15 (2),
pp. 171–176 (Mar. 1996).

590. D. Mann and S. Christey, “Towards a Common Enumeration of
Vulnerabilities,” Proceedings of the 2nd Workshop on Research with
Security Vulnerability Databases (Jan. 1999).

591. C. Markantonakis, “Secure Log File Download Mechanisms for Smart
Cards,” Proceedings of the 3rd International Conference on Smart Card
Research and Applications, pp. 285–304 (Sep. 1998).

592. C. Markantonakis and S. Xenitellis, “Implementing a Secure Log File
Download Manager for the Java Card,” Proceedings of the Conference on
Communications and Multi-Media Security, pp. 143–159 (Sep. 1999).

593. T. Markham and C. Williams, “Key Recovery Header for IPSEC,”
Computers and Security 19 (1), pp. 86–90 (Jan./Feb. 2000).

594. M. Marrinan, “In the Chips (Smart Card Applications),” Bank Systems and
Technology 32 (5), pp. 46–48 (May 1995).

595. D. Martin, S. Rajagopalan, and A. Rubin, “Blocking Java Applets at the
Firewall,” Proceedings of the 1997 Symposium on Network and
Distributed System Security, pp. 16–26 (Feb. 1997).

596. M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in
Cryptology—Proceedings of EUROCRYPT ’93, pp. 386–397 (May 1993).

597. M. Matsumoto, S. Shimagaki, D. Watanabe, and K. Mori, “Assurance
Technologies for Autonomous Train On-Board Computer System,”
Proceedings of the 8th IEEE Workshop on Future Trends of Distributed
Computing Systems, pp. 170–175 (Oct. 2001).

598. S. Matyas and C. Meyer, “Generation, Distribution, and Installation of
Cryptographic Keys,” IBM Systems Journal 17 (2), pp. 126–137 (1978).

599. D. Maughan, M. Schertler, M. Schneider, and J. Turner, Internet Security
Association and Key Management Protocol (ISAKMP), RFC 2408
(Nov. 1998).

600. A. Mayer, A. Wool, and E. Ziskind, “Fang: a Firewall Analysis Engine,”
Proceedings of the 2000 IEEE Symposium on Security and Privacy,
pp. 177–187 (May 2000).

601. D. Mazières and M. Kaashoek, “The Design, Implementation, and
Operation of an Email Pseudonym Server,” Proceedings of the 5th ACM
Conference on Computer and Communications Security, pp. 27–36
(Nov. 1998).

602. S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-Level Packet Capture,” Proceedings of the 1993
Winter USENIX Conference, pp. 259–269 (Jan. 1993).

Bishop.book Page 687 Tuesday, September 28, 2004 1:46 PM

688 Bibliography

603. C. McCollum, J. Messing, and L. Notargiacomo, “Beyond the Pale of
MAC and DAC—Defining New Forms of Access Control,” Proceedings of
the 1990 IEEE Computer Society Symposium on Research in Security and
Privacy, pp. 190–200 (May 1990).

604. D. McCullagh, “DVD Lawyers Make Secret Public,” Wired News (Jan. 26,
2000); available at http://www.wired.com/news/politics/
0,1283,33922,00.html.

605. J. McHugh, “The 1998 Lincoln Laboratory IDS Evaluation: A Critique,”
Proceedings of the 3rd International Workshop on Recent Advances in
Intrusion Detection, pp. 145–161 (Oct. 2000).

606. J. McHugh and D. Good, “An Information Flow Tool for Gypsy,”
Proceedings of the 1985 IEEE Symposium on Security and Privacy,
pp. 46–48 (Apr. 1985).

607. M. McIlroy, “Virology 101,” Computing Systems 2 (2), pp. 173–181
(Spring 1989).

608. M. McKusick, K. Bostic, M. Karels, and J. Quarterman, The Design and
Implementation of the 4.4BSD Operating System, Addison-Wesley
Publishing Co., Reading, MA (1996).

609. I. McLean, Windows 2000 Security, The Coriolis Group, LLC, Scottsdale,
AZ (2000).

610. J. McLean, “A Comment on the ‘Basic Security Theorem’ of Bell and
LaPadula,” Information Processing Letters 20 (2), pp. 67–70 (Feb. 1985).

611. J. McLean, “Reasoning About Security Models,” Proceedings of the 1987
IEEE Symposium on Security and Privacy, pp. 123–131 (Apr. 1987).

612. J. McLean, “Proving Noninterference and Functional Correctness Using
Traces,” Journal of Computer Security 1 (1), pp. 37–57 (1992).

613. J. McLean, “Is the Trusted Computing Base Concept Fundamentally
Flawed?” Proceedings of the 1997 IEEE Symposium on Security and
Privacy, p. 2 (May 1997).

614. D. McNutt, “Role-Based System Administration or Who, What, Where,
and How,” Proceedings of the 7th System Administration Conference
(LISA ’93), pp. 107–112 (Nov. 1993).

615. C. Meadows, “The Integrity Lock Architecture and Its Application to
Message Systems: Reducing Covert Channels,” Proceedings of the 1987
IEEE Symposium on Security and Privacy, pp. 212–218 (Apr. 1987).

616. C. Meadows, “Extending the Brewer-Nash Model to a Multilevel
Context,” Proceedings of the 1990 IEEE Symposium on Research in
Security and Privacy, pp. 95–102 (May 1990).

617. G. Medvinsky and B. Neuman, “NetCash: A Design for Practical Electronic
Currency on the Internet,” Proceedings of the 1st ACM Conference on
Computer and Communications Security, pp. 102–106 (Oct. 1993).

Bishop.book Page 688 Tuesday, September 28, 2004 1:46 PM

Bibliography 689

618. N. Mehta and K. Sollins, “Expanding and Extending the Security Features
of Java,” Proceedings of the 7th USENIX Security Symposium, pp. 159–
172 (Jan. 1998).

619. A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, FL (1997).

620. C. Menk III, “System Security Engineering Capability Maturity Model
and Evaluations: Partners Within the Assurance Framework,” Proceedings
of the 19th National Information Systems Security Conference, pp. 76–88
(Oct. 1996).

621. R. Merkle, “Protocols for Public Key Cryptosystems,” Proceedings of the
1980 Symposium on Privacy and Security, pp. 122–133 (Apr. 1980).

622. R. Merkle, “A Fast Software One-Way Hash Function,” Journal of
Cryptology 3 (1), pp. 43–58 (1990).

623. R. Merkle, “Fast Software Encryption Functions,” Advances in
Cryptology—Proceedings of CRYPTO ’90, pp. 476–501 (Aug. 1990).

624. R. Merkle and M. Hellman, “On the Security of Multiple Encryption,”
Communications of the ACM 24 (7), pp. 465–467 (July 1981).

625. C. Meyer, “Ciphertext/Plaintext and Ciphertext/Key Dependence vs.
Number of Rounds for the Data Encryption Standard,” 1978 National
Computer Conference, AFIPS Conference Proceedings 47, pp. 1119–1126
(June 1978).

626. C. Meyer and S. Matyas, Cryptography: A New Dimension in Computer
Data Security: A Guide for the Design and Implementation of Secure
Systems, John Wiley and Sons, New York, NY (1982).

627. G. Meyer, The PPP Encryption Control Protocol (ECP), RFC 1968 (June
1996).

628. S. Mhlaba, “The Efficacy of International Regulation of Transborder Data
Flows: The Case for the Clipper Chip,” Government Information
Quarterly 12 (4), pp. 353–366 (1995).

629. C. Michael and A. Ghosh, “Two State-Based Approaches to Program-
Based Anomaly Detection,” Proceedings of the 16th Annual Computer
Security Applications Conference, pp. 21–30 (Dec. 2000).

630. G. Michaelson and M. Prior, Naming Guidelines for the AARNet X.500
Directory Service, RFC 1562 (Dec. 1993).

631. J. Millen, “The Cascading Problem for Interconnected Networks,”
Proceedings of the 4th Aerospace Computer Security Applications
Conference, pp. 269–274 (Dec. 1988).

632. J. Millen, “Covert Channel Capacity,” Proceedings of the 1993 IEEE
Symposium on Research in Security and Privacy, pp. 60–65 (May 1993).

633. J. Millen, “Unwinding Forward Correctability,” Journal of Computer
Security 3 (1), pp. 35–54 (1994/1995).

Bishop.book Page 689 Tuesday, September 28, 2004 1:46 PM

690 Bibliography

634. J. Millen, “20 Years of Covert Channel Modeling and Analysis,”
Proceedings of the 1999 IEEE Symposium on Security and Privacy,
pp. 113–114 (May 1999).

635. B. Miller, “Vital Signs of Identity,” IEEE Spectrum 31 (2), pp. 22–30
(Jan. 1994).

636. B. Miller, L. Fredriksen, and B. So, “An Empirical Study of the Reliability
of UNIX Utilities,” Communications of the ACM 33 (12), pp. 32–44
(Dec. 1990).

637. D. Miller and R. Baldwin, “Access Control by Boolean Expression
Evaluation,” Proceedings of the 5th Annual Computer Security
Applications Conference, pp. 131–139 (Dec. 1990).

638. T. Miller and T. De Raadt, “strlcpy and strlcat—Consistent, Safe, String
Copy and Concatenation,” Proceedings of the FREENIX Track of the 1999
USENIX Conference, pp. 175–178 (June 1999).

639. N. Minsky, “Selective and Locally Controlled Transport of Privileges,”
ACM Transactions on Programming Languages and Systems 6 (4),
pp. 573–602 (Oct. 1984).

640. S. Mister and S. Tavares, “Cryptanalysis of RC4-Like Ciphers,”
Proceedings of the 5th Annual International Workshop on Selected Areas
in Cryptography, pp. 131–143 (Aug. 1998).

641. J. Mitchell, V. Shmatikov, and U. Stern, “Finite-State Analysis of SSL 3.0,”
Proceedings of the 7th USENIX Security Symposium, pp. 201–215 (Jan. 1998).

642. S. Miyaguchi, “The FEAL Cipher Family,” Advances in Cryptology—
Proceedings of EUROCRYPT ’90, pp. 627–638 (1991).

643. P. Mockapetris, Domain Names Concepts and Facilities, RFC 1034
(Nov. 1987).

644. P. Mockapetris, Domain Names Implementation and Specification, RFC
1035 (Nov. 1987).

645. J. Mogul, R. Rashid, and M. Accetta, “The Packet Filter: An Efficient
Mechanism for User-Level Network Code,” Proceedings of the 11th
Symposium on Operating Systems Principles, pp. 39–51 (Nov. 1987).

646. V. Molak (ed.), Fundamentals of Risk Analysis and Risk Management,
CRC Press, Boca Raton, FL (1996).

647. F. Monrose, “Biometrics for Automatic Identity Verification,” Technical
Report 722, Department of Computer Science, New York University, New
York, NY (1998).

648. F. Monrose and A. Rubin, “Authentication via Keystroke Dynamics,”
Proceedings of the 4th ACM Conference on Computer and
Communications Security, pp. 48–56 (Nov. 1997).

649. J. Moore, “Protocol Failures in Cryptosystems,” Proceedings of the IEEE
76 (5), pp. 594–602 (May 1988).

Bishop.book Page 690 Tuesday, September 28, 2004 1:46 PM

Bibliography 691

650. M. Moriconi, X. Qian, R. Riemenschneider, and L. Gong, “Secure
Software Architectures,” Proceedings of the 1997 IEEE Symposium on
Security and Privacy, pp. 84–93 (May 1997).

651. R. Morris and K. Thompson, “Password Security: A Case History,”
Communications of the ACM 22 (11), pp. 594–597 (Nov. 1979).

652. I. Moskowitz, “Variable Noise Effects upon a Simple Timing Channel,”
Proceedings of the 1991 IEEE Symposium on Research in Security and
Privacy, pp. 362–372 (May 1991).

653. I. Moskowitz and A. Miller, “The Influence of Delay upon an Idealized
Channel’s Bandwidth,” Proceedings of the 1992 IEEE Symposium on
Security and Privacy, pp. 62–67 (May 1992).

654. I. Moskowitz, S. Greenwald, and M. Kang, “An Analysis of the Timed
Z-Channel,” Proceedings of the 1996 IEEE Symposium on Security and
Privacy, pp. 2–9 (May 1996).

655. G. Mourani, Securing and Optimizing Linux: Red Hat Edition—A Hands-
On Guide, OpenDocs, LLC, Salem, OR (Aug. 2000).

656. A. Muffett, “crack” (unpublished) (1992).
657. A. Muffett, “WAN-Hacking with AutoHack: Auditing Security Behind the

Firewall,” Proceedings of the 5th USENIX UNIX Security Symposium,
pp. 21–34 (June 1995).

658. S. Murphy, “The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts,”
Journal of Cryptology 2 (3), pp. 145–154 (1990).

659. W. Murray, “The Application of Epidemiology to Computer Viruses,”
Computers and Security 7 (1), pp. 139–150 (Feb. 1988).

660. A. Myers and B. Liskov, “Complete, Safe Information Flow with
Decentralized Labels,” Proceedings of the 1998 IEEE Computer Society
Symposium on Security and Privacy, pp. 186–197 (May 1998).

661. M. Nash and K. Poland, “Some Conundrums Concerning Separation of
Duty,” Proceedings of the 1990 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 201–207 (May 1990).

662. National Bureau of Standards, Data Encryption Standard, FIPS PUB 46
(Jan. 1977).

663. National Bureau of Standards, DES Modes of Operation, FIPS PUB 81
(Dec. 1980).

664. National Institute of Standards and Technology, Secure Hash Standard,
FIPS PUB 180 (May 1993).

665. National Institute of Standards and Technology, Escrowed Encryption
Standard (EES), FIPS PUB 185 (Feb. 1994).

666. National Institute of Standards and Technology, Digital Signature
Standard, FIPS PUB 187 (May 1994).

Bishop.book Page 691 Tuesday, September 28, 2004 1:46 PM

692 Bibliography

667. National Institute of Standards and Technology, “SKIPJACK and KEA
Algorithm Specifications,” Version 2.0 (May 1998); available at
http://csrc.nist.gov/encryption/skipjack.pdf.

668. National Institute of Standards and Technology, Common Criteria for
Information Technology Security Evaluation, Part 1: Introduction and
General Model, Version 2.1, CCIMB-99-031 (Aug. 1999).

669. National Institute of Standards and Technology, Common Criteria for
Information Technology Security Evaluation, Part 2: Security Function
Requirements, Version 2.1, CCIMB-99-031 (Aug. 1999).

670. National Institute of Standards and Technology, Common Criteria for
Information Technology Security Evaluation, Part 3: Security Assurance
Requirements, Version 2.1, CCIMB-99-031 (Aug. 1999).

671. National Institute of Standards and Technology, Security Requirements for
Cryptographic Modules, FIPS PUB 140-2 (May 2001).

672. National Institute of Standards and Technology, Advanced Encryption
Standard (AES), FIPS PUB 197 (Nov. 2001).

673. National Institute of Standards and Technology, “National Information
Assurance Partnership: Common Criteria Evaluation and Validation
Scheme Web Site,” http://niap.nist.gov/cc-scheme (Apr. 2002).

674. National Institute of Standards and Technology, “Cryptographic Module
Validation (CMV) Program Web Site,” http://csrc.nist.gov/cryptval (May
2002).

675. National Institute of Standards and Technology and National Security
Agency, Federal Criteria for Information Technology Security, Version 1.0
(1992).

676. National Security Agency, Cryptolog Interface Programmers Guide for
the Fortezza Crypto Card, Revision 1.52, Ft. George Meade, MD
(Nov. 1995).

677. National Security Agency, Fortezza Message Security Protocol Software
Interface Control Document, Version 3.01, Ft. George Meade, MD
(Nov. 1995).

678. National Security Agency, Press Release: NSA Releases Fortezza
Algorithms, Ft. George Meade, MD (June 1998).

679. National Security Telecommunications and Information Systems Security
Committee, National Information Systems Security (INFOSEC) Glossary,
NSTISSI No. 4009 (Sep. 2000).

680. G. Necula, “Proof-Carrying Code,” Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 106–119 (Jan. 1997).

Bishop.book Page 692 Tuesday, September 28, 2004 1:46 PM

Bibliography 693

681. G. Necula and P. Lee, “Safe Kernel Extensions Without Run-Time
Checking,” Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, pp. 229–243 (Oct. 1996).

682. R. Needham and M. Schroeder, “Using Encryption for Authentication in
Large Networks of Computers,” Communications of the ACM 21 (12),
pp. 993–999 (Dec. 1978).

683. R. Needham and M. Schroeder, “Authentication Revisited,” Operating
Systems Review 21 (1), p. 7 (Jan. 1987).

684. R. Needham and R. Walker, “The Cambridge CAP Computer and Its
Protection System,” Proceedings of the 5th Symposium on Operating
System Principles, pp. 1–10 (Nov. 1975).

685. E. Nemeth, G. Snyder, S. Seebass, and T. Hein, UNIX System
Administration Handbook, Prentice-Hall, Upper Saddle River, NJ (2000).

686. B. Neuman and S. Stubblebine, “A Note on the Use of Timestamps as
Nonces,” Operating Systems Review 27 (2), pp. 10–14 (Apr. 1993).

687. P. Neumann, “Rainbows and Arrows: How the Security Criteria Address
Computer Misuse,” Proceedings of the 13th National Computer Security
Conference, pp. 414–422 (Oct. 1990).

688. P. Neumann, Computer-Related Risks, Addison-Wesley, Reading, MA (1995).
689. P. Neumann, L. Robinson, K. Levitt, R. Boyer, and A. Saxena, “A Provably

Secure Operating System: The System, Its Applications, and Proofs,”
Technical Report, SRI International, Menlo Park, CA (June 1975).

690. J. Newman, The World of Mathematics: A Small Library of the Literature
of Mathematics from A'h-mosé the Scribe to Albert Einstein, Simon and
Schuster, New York, NY (1956).

691. J. Newman and S. Wander, “The Knowledge Path to Mission Success:
Overview of the NASA PBMA-KMS,” Proceedings of the 2002 Annual
Reliability and Maintainability Symposium, pp. 601–606 (Jan. 2002).

692. J. Nieh and O. Leonard, “Examining VMware,” Dr. Dobb's Journal 25 (8),
pp. 70–76 (Aug. 2000).

693. L. Nizer, The Jury Returns, Doubleday, Garden City, NY (1966).
694. S. Northcutt, Computer Security Incident Handling: Step by Step, Version

1.5, The SANS Institute, Bethesda, MD (May 1998).
695. S. Northcutt, Network Intrusion Detection: An Analyst’s Handbook, 2nd

Edition, New Riders Publishing, Indianapolis, IN (2000).
696. L. Notargiacomo, B. Blaustein, and C. McCollum, “Merging Models:

Integrity, Dynamic Separation of Duty, and Trusted Data Management,”
Journal of Computer Security 3 (2, 3), pp. 207–230 (1994/1995).

697. M. Nyanchama and S. Osborn, “Role-Based Security, Object Oriented
Databases and Separation of Duty,” SIGMOD Record 22 (4), pp. 45–51
(Dec. 1993).

Bishop.book Page 693 Tuesday, September 28, 2004 1:46 PM

694 Bibliography

698. C. Oakes, “DVD Hackers Hit with Lawsuit,” Wired News (Dec. 28, 1999);
available at http://www.wired.com/news/business/0,1367,33303,00.html.

699. D. O’Brien, “Recognizing and Recovering from Rootkit Attacks,”
SysAdmin 5 (11), pp. 8–20 (Nov. 1996).

700. R. O’Brien and C. Rogers, “Developing Applications on LOCK,”
Proceedings of the 14th National Computer Security Conference,
pp. 147–156 (Oct. 1991).

701. T. Okamoto and K. Ohta, “Universal Electronic Cash,” Advances in
Cryptology—Proceedings of CRYPTO ’91, pp. 324–337 (Aug. 1992).

702. R. Oppliger, “Security at the Internet Layer,” IEEE Computer 31 (9),
pp. 43–47 (Sep. 1998).

703. E. Organick, The MULTICS System: An Examination of Its Structure, The
MIT Press, Cambridge, MA (1972).

704. E. Organick, Computer System Organization: The B5700/6700 Series,
Academic Press, New York, NY (1973).

705. H. Orman, The OAKLEY Key Determination Protocol, RFC 2412
(Nov. 1998).

706. D. Otway and O. Rees, “Efficient and Timely Mutual Authentication,”
Operating Systems Review 21 (1), pp. 8–10 (Jan. 1987).

707. J. Page, “An Assured Pipeline Integrity Scheme for Virus Protection,”
Proceedings of the 12th National Computer Security Conference,
pp. 369–377 (Oct. 1989).

708. R. Pandey and B. Hashii, “Providing Fine-Grained Access Control for Java
Programs,” Proceedings of the 13th European Conference on Object-
Oriented Programming, pp. 449–473 (June 1999).

709. J. Park, B. Montrose, and J. Froscher, “Tools for Information Security
Assurance Arguments,” Proceedings of the DARPA Information
Survivability Conference and Exposition II, pp. 287–296 (June 2001).

710. J. Park and R. Sandhu, “Smart Certificates: Extending X.509 for Secure
Attribute Services on the Web,” Proceedings of the 22nd National
Information Systems Security Conference, pp. 337–348 (Oct. 1999).

711. S. Park and K. Miller, “Random Number Generators: Good Ones Are
Hard to Find,” Communications of the ACM 31 (10), pp. 1192–1201
(Oct. 1988).

712. D. Parker, “Cease and DeCSS: DVD’s Encryption Code Cracked,” eMedia
Industry News (Nov. 4, 1999); available at http://www.emediapro.net/
news99/news111.html.

713. D. Parker, Crime by Computer, Macmillan Publishing Co., New York, NY
(1978).

714. R. Perlman, “An Overview of PKI Trust Models,” IEEE Network 13 (6),
pp. 38–43 (Nov. 1999).

Bishop.book Page 694 Tuesday, September 28, 2004 1:46 PM

Bibliography 695

715. B. Perlmutter and J. Zarkower, Virtual Private Networking, Prentice-Hall,
Upper Saddle River, NJ (2000).

716. J. Perry and J. Carney, “Human Face Recognition Using a Multilayer
Perceptron,” International Conference on Neural Networks 2, p. 413
(1990); cited in “Biometrics for Automated Identity Verification” [647].

717. I. Peterson, Fatal Defects: Chasing Killer Computer Bugs, Vintage Books,
New York, NY 10022 (1996).

718. J. Peterson and A. Silberschatz, Operating Systems Concepts (6th Edition),
John Wiley and Sons, New York, NY (2002).

719. C. Pfleeger, “Comparison of Trusted Systems Evaluation Criteria,”
Proceedings of the 5th Annual Conference on Computer Assurance, Systems
Integrity, Software Safety and Process Security, pp. 135–143 (June 1990).

720. S. Pfleeger, Software Engineering: The Production of Quality Software,
2nd Edition, Macmillan Publishing Co., New York, NY (1991).

721. J. Picciotto, “The Design of an Effective Auditing Subsystem,”
Proceedings of the 1987 IEEE Symposium on Security and Privacy, pp.
13–22 (1987).

722. W. Polk, “Approximating Clark-Wilson ‘Access Triples’ with Basic UNIX
Controls,” Proceedings of the 4th USENIX UNIX Security Symposium,
pp. 145–154 (Oct. 1993).

723. G. Popek and R. Goldberg, “Formal Requirements for Virtualizable
Third Generation Architectures,” Communications of the ACM 17 (7),
pp. 412–421 (July 1974).

724. G. Popek and B. Walker, The LOCUS Distributed System Architecture,
The MIT Press, Cambridge, MA (1985).

725. P. Porras and R. Kemmerer, “Covert Flow Trees: A Technique for
Identifying and Analyzing Covert Storage Channels,” Proceedings of the
1991 IEEE Symposium on Security and Privacy, pp. 36–51 (May 1991).

726. POSIX, Standard for Information Technology Portable Operating System
Interface (POSIX) Part I: System Application Program Interface (API),
Report 1003.1e (Apr. 1994).

727. J. Postel, Simple Mail Transfer Protocol, RFC 821 (Aug. 1982).
728. J. Postel and J. Reynolds, File Transfer Protocol, RFC 959 (Oct. 1985).
729. E. Powanda and J. Genovese, “Configuring a Trusted System Using the

TNI,” Proceedings of the 4th Aerospace Computer Security Applications
Conference, pp. 256–261 (Dec. 1988).

730. M. Pozzo and T. Gray, “A Model for the Containment of Computer
Viruses,” Proceedings of the AIAA/ASIS/DODCI 2nd Aerospace Computer
Security Conference, pp. 11–18 (Dec. 1986).

731. M. Pozzo and T. Gray, “An Approach to Containing Computer Viruses,”
Computers and Security 6 (4), pp. 321–331 (Aug. 1987).

Bishop.book Page 695 Tuesday, September 28, 2004 1:46 PM

696 Bibliography

732. D. Price, “Pentium FDIV Flaw—Lessons Learned,” IEEE Micro 15 (2),
pp. 86–88 (Apr. 1995).

733. N. Proctor, “The Restricted Access Processor: An Example of Formal
Verification,” Proceedings of the 1985 IEEE Symposium on Security and
Privacy, pp. 49–53 (Apr. 1985).

734. P. Proctor, The Practical Intrusion Detection Handbook, Prentice-Hall,
Upper Saddle River, NJ (2001).

735. T. Ptacek and T. Newsham, Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection, Technical Report, Secure Networks,
Inc., Calgary, Alberta, Canada (Jan. 1998).

736. N. Puketza, M. Chung, R. Olsson, and B. Mukherjee, “A Software
Platform for Testing Intrusion Detection Systems,” IEEE Software 14 (5),
pp. 43–51 (Sep. 1997).

737. L. Quarantiello, Cyber Crime: How to Protect Yourself from Computer
Criminals, Tiare Publications, Lake George, WI (1996).

738. M. Rabin, “Probabilistic Algorithms for Primality Testing,” Journal of
Number Theory 12 (1), pp. 128–138 (Feb. 1980).

739. S. Rajunas, N. Hardy, A. Bomberger, W. Frantz, and C. Landau, “Security
in KeyKOS,” Proceedings of the 1986 IEEE Symposium on Security and
Privacy, pp. 78–85 (Apr. 1986).

740. The RAND Corporation, A Million Random Digits with 100,000 Normal
Deviates, Free Press Publishers, Glencoe, IL (1955).

741. M. Ranum and F. Avolio, “A Toolkit and Methods for Internet Firewalls,”
Proceedings of the Summer 1994 USENIX Conference, pp. 37–44
(June 1994).

742. M. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, and
E. Wall, “Implementing a Generalized Tool for Network Monitoring,”
Proceedings of the 11th Systems Administration Conference (LISA 1997),
pp. 26–31 (Dec. 1997).

743. K. Rao, “Security Audit for Embedded Avionics Systems,” Proceedings of
the 5th Annual Computer Security Applications Conference, pp. 78–84
(Dec. 1989).

744. J. Ray and W. Ray, Mac OS X Unleashed, SAMS Publishing, Indianapolis,
IN (2001).

745. D. Redell and R. Fabry, “Selective Revocation and Capabilities,”
Proceedings of the International Workshop on Protection in Operating
Systems, pp. 197–209 (Aug. 1974).

746. J. Reeds, “Cracking a Random Number Generator,” Cryptologia 1 (1), pp.
20–26 (Jan. 1977); cited in Applied Cryptography [796].

747. B. Reid, “Reflections on Some Recent Widespread Computer Break-Ins,”
Communications of the ACM 30 (2), pp. 103–105 (Feb. 1987).

Bishop.book Page 696 Tuesday, September 28, 2004 1:46 PM

Bibliography 697

748. R. Reitman, “A Mechanism for Information Control in Parallel Programs,”
Proceedings of the 7th Symposium on Operating Systems Principles,
pp. 55–62 (Dec. 1979).

749. Y. Rekhter, B. Moscowitz, D. Karrenberg, G. de Groot, and E. Lear,
Address Allocation for Private Internets, RFC 1918 (Feb. 1996).

750. T. Riechmann and F. Hauck, “Meta Objects for Access Control: Extending
Capability-Based Security,” Proceedings of the 1997 New Security
Paradigms Workshop, pp. 17–22 (Sep. 1997).

751. D. Ritchie, “Joy of Reproduction,” net.lang.c (Nov. 4, 1982).
752. D. Ritchie, “On the Security of UNIX,” UNIX System Manager’s Manual,

pp. SM17: 1–3 (1979).
753. R. Rivest, The MD4 Message Digest Algorithm, RFC 1320 (Apr. 1992).
754. R. Rivest, The MD5 Message Digest Algorithm, RFC 1321 (Apr. 1992).
755. R. Rivest, M. Hellman, J. Anderson, and J. Lyons, “Responses to NIST’s

Proposal,” Communications of the ACM 35 (7), pp. 41–54 (July 1992).
756. R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” Communications of the ACM
21 (2), pp. 120–126 (Feb. 1978).

757. J. Rochlis and M. Eichin, “The Internet Worm, with Microscope and
Tweezers: the Worm from MIT’s Perspective,” Communications of the
ACM 32 (6), pp. 689–698 (June 1989).

758. G. Rodney, “Assuring Safety and Mission Success for Space Station
Freedom,” Proceedings of the 1990 International Symposium on
Reliability and Maintainability, pp. 7–12 (June 1990).

759. E. Rodríguez and J. Piquer, “The Persistent Hacker: An Intruder Attacks a
New Internet Host,” Proceedings of the 4th USENIX UNIX Security
Symposium, pp. 131–138 (Oct. 1993).

760. W. Royce, “Managing the Development of Large Software Systems,” 1970
WESTCON Technical Papers 14, p. 8 (Aug. 1970).

761. M. Rubia, J. Cruellas, and M. Medina, “The DEDICA Project: The
Solution to the Interoperability Problems Between the X.509 and
EDIFACT Public Key Infrastructures,” Proceedings of Secure
Networking—CQRE [Secure] ’99 International Exhibition and Congress,
pp. 242–250 (Nov. 1999).

762. L. Romano, A. Mazzeo, and N. Mazzocca, “SECURE: A Simulation Tool
for PKI Design,” Proceedings of Secure Networking—CQRE [Secure] ’99
International Exhibition and Congress, pp. 17–29 (Nov. 1999).

763. A. Rubin, “Independent One-Time Passwords,” Computing Systems 9 (1),
pp. 15–27 (Winter 1996).

764. A. Rubin and M. Ranum, Web Security Sourcebook, John Wiley and Sons,
New York, NY (1997).

Bishop.book Page 697 Tuesday, September 28, 2004 1:46 PM

698 Bibliography

765. C. Rubin, “UNIX System V with B2 Security,” Proceedings of the 13th
National Computer Security Conference, pp. 1–9 (Oct. 1990).

766. R. Rueppel, “Stream Ciphers,” in Contemporary Cryptology: The Science
of Information Integrity [834], pp. 65–134.

767. C. Rutstein, Windows NT Security: A Practical Guide to Securing
Windows NT Servers and Workstations, McGraw-Hill, New York, NY
(1997).

768. D. Safford, D. Schales, and D. Hess, “The TAMU Security Package: An
Ongoing Response to Internet Intruders in an Academic Environment,”
Proceedings of the 4th USENIX UNIX Security Symposium, pp. 91–118
(Oct. 1993).

769. M. St. Johns, Identification Protocol, RFC 1413 (Feb. 1993).
770. J. Sajaniemi, “Modeling Spreadsheet Audit: A Rigorous Approach to

Automatic Visualization,” Journal of Visual Languages and Computing 11
(1), pp. 49–82 (Feb. 2000).

771. R. Saltman, “Accuracy, Integrity and Security in Computerized Vote-
Tallying,” Communications of the ACM 31 (10), pp. 1184–1191
(Oct. 1988).

772. J. Saltzer, “Protection and the Control of Information Sharing in Multics,”
Communications of the ACM 17 (7), pp. 388–402 (July 1974).

773. J. Saltzer and M. Schroeder, “The Protection of Information in Computer
Systems,” Proceedings of the IEEE 63 (9), pp. 1278–1308 (Sep. 1975).

774. J. Saltzer, On the Naming and Binding of Network Destinations, RFC 1498
(Aug. 1993).

775. A. Samal and P. Iyengar, “Automatic Recognition and Analysis of Human
Faces and Facial Expressions: A Survey,” Pattern Recognition 25, pp. 65–77
(1992); cited in “Biometrics for Automatic Identity Verification” [647].

776. V. Samar, “Unified Login with Pluggable Authentication Modules
(PAM),” Proceedings of the 3rd ACM Conference on Computer and
Communications Security, pp. 1–10 (Mar. 1996).

777. R. Sandhu, “Analysis of Acyclic Attenuating Systems for the SSR
Protection Model,” Proceedings of the 1985 IEEE Symposium on Security
and Privacy, pp. 197–206 (Apr. 1985).

778. R. Sandhu, “The Schematic Protection Model: Its Definition and Analysis
for Acyclic Attenuating Schemes,” Journal of the ACM 35 (2),
pp. 404–432 (Apr. 1988).

779. R. Sandhu, “The Demand Operation in the Schematic Protection Model,”
Information Processing Letters 32 (4), pp. 213–219 (Apr. 1989).

780. R. Sandhu, “Expressive Power of the Schematic Protection Model,”
Journal of Computer Security 1 (1), pp. 59–98 (1992).

Bishop.book Page 698 Tuesday, September 28, 2004 1:46 PM

Bibliography 699

781. R. Sandhu, “Transformation of Access Rights,” Proceedings of the 1989
IEEE Symposium on Security and Privacy, pp. 259–268 (May 1989).

782. R. Sandhu, “Non-Monotonic Transformation of Access Rights,”
Proceedings of the 1992 IEEE Symposium on Research in Security and
Privacy, pp. 148–161 (Apr. 1992).

783. R. Sandhu, “The Typed Access Matrix Model,” Proceedings of the 1992
IEEE Symposium on Security and Privacy, pp. 122–136 (Apr. 1992).

784. R. Sandhu and G.-J. Ahn, “Decentralized Group Hierarchies in UNIX: An
Experiment and Lessons Learned,” Proceedings of the 21st National
Information Systems Security Conference, pp. 486–502 (Oct. 1998).

785. R. Sandhu and S. Ganta, “On Testing for the Absence of Rights in Access
Control Models,” Proceedings of the Computer Security Foundations
Workshop IV, pp. 109–118 (June 1993).

786. R. Sandhu and S. Ganta, “On the Minimality of Testing for Rights in
Transformation Models,” Proceedings of the 1994 IEEE Symposium on
Research in Security and Privacy, pp. 230–241 (Apr. 1994).

787. P. Sands, “Building an FTP Guard,” Proceedings of the 21st National
Information Systems Security Conference, pp. 432–442 (Oct. 1998).

788. S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical Network
Support for IP Traceback,” Computer Communication Review 30 (4)
pp. 295–306 (Aug. 2000).

789. O. Saydjari, J. Beckman, and J. Leaman, “Locking Computers Securely,”
Proceedings of the 10th National Computer Security Conference,
pp. 129–141 (Sep. 1987).

790. O. Saydjari, J. Beckman, and J. Leaman, “LOCK Trek: Navigating
Uncharted Space,” Proceedings of the 1989 Symposium on Security and
Privacy, pp. 167–175 (May 1989).

791. M. Schaefer, B. Gold, R. Linde, and J. Scheid, “Program Confinement
in KVM/370,” Proceedings of the 1977 ACM Annual Conference,
pp. 404–410 (Oct. 1977).

792. P. Schafer, “Is Centralized System Administration the Answer?”
Proceedings of the 6th Systems Administration Conference (LISA 1992),
pp. 55–61 (Oct. 1992).

793. R. Shell, T. Tao, and M. Heckman, “Designing the GEMSOS Security
Kernel for Security and Performance,” Proceedings of the 8th National
Computer Security Conference, pp. 108–119 (Oct. 1985).

794. K. Scheurer, “The Clipper Chip: Cryptography, Technology and the
Constitution—the Government’s Answer to Encryption ‘Chips’ Away at
Constitutional Rights,” Rutgers Computer and Technology Law Journal 21
(1), pp. 263–292 (1995).

Bishop.book Page 699 Tuesday, September 28, 2004 1:46 PM

700 Bibliography

795. D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for
Intrusion Detection and Response,” Proceedings of the DARPA
Information Survivability Conference and Exposition 2, pp. 3–11
(Jan. 2000).

796. B. Schneier, Applied Cryptography, 2nd Edition, John Wiley and Sons,
New York, NY (1996).

797. J. Schoch and J. Hupp, “The ‘Worm’ Programs—Early Experiences with a
Distributed Computation,” Communications of the ACM 25 (3),
pp. 172–180 (Mar. 1982).

798. T. Schoriak, “SSL/TLS Protocol Enablement for Key Recovery,”
Computers and Security 19 (1), pp. 100–104 (Jan./Feb. 2000).

799. K. Schroeder and J. Ledger, Life and Death on the Internet, Supple
Publishing, Menosha, WI (1998).

800. C. Schuba, “Addressing Weaknesses in the Domain Name System
Protocol,” Master’s thesis, Department of Computer Sciences, Purdue
University, West Lafayette, IN (Aug. 1993).

801. C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and D. Zamboni,
“Analysis of a Denial of Service Attack on TCP,” Proceedings of the 1997
IEEE Symposium on Security and Privacy, pp. 208–223 (May 1997).

802. C. Schuba and E. Spafford, “A Reference Model for Firewall Technology,”
Proceedings of the 13th Annual Computer Security Applications
Conference, pp. 133–145 (Dec. 1997).

803. R. Scott, “Wide Open Encryption Design Offers Flexible
Implementations,” Cryptologia 9 (1), pp. 75–90 (Jan. 1985).

804. C. Scott, P. Wolfe, and M. Erwin, Virtual Private Networks, O’Reilly &
Associates, Sebastopol, CA (1998).

805. J. Seberry and J. Pieprzyk, Cryptography: An Introduction to Computer
Security, Prentice-Hall, Englewood Cliffs, NJ (1989).

806. SSE-CMM Support Organization, “Secure Software Engineering
Capability Maturity Model Web Page,” http://www.sse-cmm.org (2001).

807. K. Seiden and J. Melanson, “The Auditing Facility for a VMM Security
Kernel,” Proceedings of the 1990 IEEE Symposium on Research in
Security and Privacy, pp. 262–277 (1990).

808. D. Seeley, “Password Cracking: A Game of Wits,” Communications of the
ACM 32 (6), pp. 700–703 (June 1989).

809. D. Seeley, “A Tour of the Worm,” Proceedings of the 1989 Winter USENIX
Conference, pp. 287–304 (Jan. 1989).

810. R. Sekar, T. Bowen, and M. Segal, “On Preventing Intrusions by Process
Behavior Monitoring,” Proceedings of the Workshop on Intrusion
Detection and Network Monitoring, pp. 29–40 (Apr. 1999).

Bishop.book Page 700 Tuesday, September 28, 2004 1:46 PM

Bibliography 701

811. G. Serrao, “Rating Network Components,” Proceedings of the 18th
National Information Systems Security Conference, pp. 344–355
(Oct. 1995).

812. SET Secure Electronic Transaction LLC, SET Secure Electronic
Transaction Specification, Book 1: Business Description, Version 1.0
(May 1997).

813. SET Secure Electronic Transaction LLC, SET Secure Electronic
Transaction Specification, Book 2: Programmers’ Guide, Version 1.0
(May 1997).

814. SET Secure Electronic Transaction LLC, SET Secure Electronic
Transaction Specification, Book 3: Formal Protocol Definition, Version 1.0
(May 1997).

815. A. Shamir, “How to Share a Secret,” Communication of the ACM 22 (11),
pp. 612–613 (Nov. 1979).

816. J. Shapiro and N. Hardy, “EROS: A Principle-Driven Operating System
from the Ground Up,” IEEE Software 19 (1), pp. 26–33 (Jan./Feb. 2002).

817. J. Shapiro, J. Smith, and D. Farber, “EROS: A Fast Capability System,”
Proceedings of the 17th ACM Symposium on Operating Systems
Principles, pp. 170–185 (Dec. 1999).

818. J. Shapiro and S. Weber, “Verifying the EROS Confinement Mechanism,”
Proceedings of the 2000 IEEE Symposium on Security and Privacy,
pp. 166–176 (May 2000).

819. R. Shell, T. Tao, and M. Heckman, “Designing the GEMSOS Security
Kernel for Security and Performance,” Proceedings of the 8th National
Computer Security Conference, pp. 108–119 (Oct. 1985).

820. S.-P. Shieh and V. Gligor, “Detecting Illicit Leakage of Information in
Operating Systems,” Journal of Computer Security 4 (2, 3), pp. 123–148
(Dec. 1996).

821. T. Shimomura and J. Markoff, Takedown: The Pursuit and Capture of
Kevin Mitnick, America’s Most Wanted Computer Outlaw—By the Man
Who Did It, Hyperion Books, New York, NY (1996).

822. A. Shimizu and S. Miyaguchi, “Fast Data Encipherment Algorithm
FEAL,” Advances in Cryptology—Proceedings of EUROCRYPT ’87,
pp. 267–278 (1987).

823. R. Shirey, Security Architecture for Internet Protocols: A Guide for
Protocol Designs and Standards, Internet Draft: draft-irtf-psrg-secarch-
sect1-00.txt (Nov. 1994).

824. B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer-Interaction, 3rd Edition, Addison Wesley Longman,
Reading, MA (1998).

Bishop.book Page 701 Tuesday, September 28, 2004 1:46 PM

702 Bibliography

825. J. Shoch, “Inter-Network Naming, Addressing, and Routing,” Proceedings
of COMPCON ’78, pp. 72–79 (1978).

826. R. Shore, “IGOR: The Intelligence Guard for ONI Replication,”
Proceedings of the 19th National Computer Security Conference,
pp. 607–619 (Oct. 1996).

827. W. Sibert, “Auditing in a Distributed System: Secure SunOS Audit Trails,”
Proceedings of the 11th National Computer Security Conference,
pp. 81–91 (Oct. 1988).

828. D. Sidhu and M. Gasser, “A Multilevel Secure Local Area Network,”
Proceedings of the 1982 IEEE Symposium on Privacy and Security,
pp. 137–143 (Apr. 1982).

829. Silicon Graphics, Inc., sendmail 8.9.3 for IRIX 6.5.7, SGI Security
Advisory 20000302-01-P3865 (Mar. 2000).

830. G. Simmons, “Forward Search as a Cryptanalytic Tool Against a Public
Key Privacy Channel,” Proceedings of the 1982 IEEE Symposium on
Security and Privacy, pp. 117–128 (Apr. 1982).

831. G. Simmons, “How to (Really) Share a Secret,” Advances in Cryptology—
Proceedings of CRYPTO ’88, pp. 390–448 (Aug. 1988).

832. G. Simmons, “Prepositioned Secret Sharing Schemes and/or Shared
Control Schemes,” Advances in Cryptology—Proceedings of
EUROCRYPT ’89, pp. 436–467 (Apr. 1989).

833. G. Simmons, “Geometric Shared Secret and/or Shared Control Schemes,”
Advances in Cryptology—Proceedings of CRYPTO ’90, pp. 216–241 (1990).

834. G. Simmons, Contemporary Cryptology: The Science of Information
Integrity, IEEE Press, Piscataway, NJ (1992).

835. R. Simon and M. Zurko, “Separation of Duty in Role-Based
Environments,” Proceedings of the Computer Security Foundations
Workshop, MITRE Technical Report M88-37, MITRE Corporation,
Bedford, MA, pp. 183–194 (June 1997).

836. A. Sinkov, Elementary Cryptanalysis: A Mathematical Approach, Random
House, New York, NY (1968).

837. B. Skingle, S. Valentine, M. Grisoni, A. McLachlan, and J. Fenn,
“Trailer—an Inspection and Audit Tool for System-Usage Logs,”
Proceedings of the 2nd European Conference, pp. 151–161 (June 1988).

838. M. Slatalla and J. Quittner, Masters of Deception: The Gang That Ruled
Cyberspace, Harperperennial Library, New York, NY (1996).

839. M. Sloman, “Policy Driven Management for Distributed Systems,” Journal
of Network and Systems Management 2 (4), pp. 333–360 (Dec. 1994).

840. S. Smaha, “Haystack: An Intrusion Detection System,” Proceedings of the
4th Aerospace Computer Security Applications Conference, pp. 37–44
(Dec. 1988).

Bishop.book Page 702 Tuesday, September 28, 2004 1:46 PM

Bibliography 703

841. C. Small, “Misfit: A Tool for Constructing Safe Extensible C++ Systems,”
Proceedings of the 3rd USENIX Conference on Object-Oriented
Technologies, pp. 38–48 (June 1997).

842. G. Smith and D. Volpano, “Secure Information Flow in a Multi-Threaded
Imperative Language,” Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 355–364
(Jan. 1998).

843. K. Smith and M. Winslett, “Entity Modelling in the MLS Relational
Model,” Proceedings of the 18th International Conference on Very Large
Data Bases, pp. 199–210 (Aug. 1992).

844. R. Smith, “Constructing a High Assurance Mail Guard,” Proceedings of the
17th National Computer Security Conference, pp. 247–253 (Oct. 1994).

845. T. Smith, “User Definable Domains as a Mechanism for Implementing the
Least Privilege Principle,” Proceedings of the 9th National Computer
Security Conference, pp. 143–148 (Sep. 1986).

846. S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. Levitt,
B. Mukherjee, S. Smaha, T. Grance, D. Teal, and D. Mansur, “DIDS
(Distributed Intrusion Detection System): Motivation, Architecture, and an
Early Prototype,” Proceedings of the 14th National Computer Security
Conference, pp. 167–176 (Oct. 1991).

847. B. Snow, “The Future Is Not Assured—But It Should Be,” Proceedings of the
1999 IEEE Symposium on Security and Privacy, pp. 240–241 (May 1999).

848. L. Snyder, “On the Synthesis and Analysis of Protection Systems,”
Proceedings of the Sixth Symposium on Operating Systems Principles,
pp. 141–150 (Nov. 1977).

849. L. Snyder, “Formal Models of Capability-Based Protection Systems,”
IEEE Transactions on Computers 30 (3), pp. 172–181 (Mar. 1981).

850. L. Snyder, “Theft and Conspiracy in the Take-Grant Protection Model,”
Journal of Computer and System Science 23 (3), pp. 333–347 (Dec. 1981).

851. M. Sobirey, S. Fischer-Hübner, and K. Rannenberg, “Pseudonymous Audit
for Privacy Enhanced Intrusion Detection,” Information Security in
Research and Business—Proceedings of the IFIP TC11 13th International
Conference on Information Security, pp. 151–163 (May 1997).

852. S. von Solms and D. Naccache, “On Blind Signatures and Perfect Crimes,”
Computers and Security 11 (6), pp. 581–583 (Oct. 1992).

853. A. Somayaji and S. Forrest, “Automated Response Using System-Call
Delays,” Proceedings of the 9th USENIX Security Symposium,
pp. 185–197 (Aug. 2000).

854. A. Somayaji, S. Hofmeyr, and S. Forrest, “Principles of a Computer
Immune System,” Proceedings of the 1997 New Security Paradigms
Workshop, pp. 75–82 (Sep. 1997).

Bishop.book Page 703 Tuesday, September 28, 2004 1:46 PM

704 Bibliography

855. I. Sommerville, Software Engineering, 6th Edition, Addison-Wesley,
Boston, MA (2001).

856. S. Son, C. Chaney, and N. Thomlinson, “Partial Security Policies to
Support Timeliness in Secure Real-Time Databases,” Proceedings of the
1998 IEEE Symposium on Security and Privacy, pp. 136–147 (May 1998).

857. E. Spafford, “The Internet Worm Program: An Analysis,” Computer
Communications Review 19 (1), pp. 17–57 (Jan. 1989).

858. E. Spafford, “Crisis and Aftermath,” Communications of the ACM 32 (6),
pp. 678–687 (June 1989).

859. E. Spafford, “Observing Reusable Password Choices,” Proceedings of the
3rd UNIX Security Symposium, pp. 299–312 (Sep. 1992).

860. E. Spafford, “OPUS: Preventing Weak Password Choices,” Computers and
Security 11 (3), pp. 273–278 (June 1992).

861. E. Spafford, K. Heaphy, and D. Ferbrache, Computer Viruses: Dealing
with Electronic Vandalism and Programmed Threats, ADAPSO, Arlington,
VA (1989).

862. E. Spafford and S. Weeber, “Software Forensics: Can We Track Code to Its
Authors?” Proceedings of the 15th National Information Systems Security
Conference, pp. 641–650 (Oct. 1992).

863. E. Spafford and D. Zamboni, “Intrusion Detection Using Autonomous
Agents,” Computer Networks 34 (4), pp. 547–570 (Oct. 2000).

864. P. Srisuresh and K. Egevang, Traditional IP Network Address Translator
(Traditional NAT), RFC 3022 (Jan. 2001).

865. W. Stallings, Network Security Essentials: Applications and Standards,
Prentice-Hall, Upper Saddle River, NJ (2000).

866. R. Stallman, “The Right to Read,” Communications of the ACM 40 (2),
pp. 85–87 (Dec. 1997).

867. R. Stallman and R. Pesch, “Debugging with GDB: The GNU Source-
Level Debugger,” www.Iuniverse.com, New York, NY (Dec. 2000).

868. S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle, “GrIDS—A Graph-
Based Intrusion Detection System for Large Networks,” Proceedings of
the 19th National Information Systems Security Conference, pp. 361–370
(Oct. 1996).

869. S. Staniford-Chen and L. Heberlein, “Holding Intruders Accountable on
the Internet,” Proceedings of the 1995 IEEE Symposium on Security and
Privacy, pp. 39–49 (May 1995).

870. A. Stavely, Toward Zero-Defect Programming, Addison-Wesley, Reading,
MA (1998).

871. L. Stein, Web Security: A Step-by-Step Reference Guide, Addison-Wesley,
Reading, MA (1998).

Bishop.book Page 704 Tuesday, September 28, 2004 1:46 PM

Bibliography 705

872. J. Steiner, C. Neuman, and J. Schiller, “Kerberos: An Authentication
Service for Open Network Systems,” Proceedings of the 1988 Winter
USENIX Conference, pp. 191–202 (Feb. 1988).

873. B. Sterling, The Hacker Crackdown: Law and Disorder on the Electronic
Frontier, Bantam Books, New York, NY (1993).

874. H. Stern, M. Eisler, and R. Labiaga, Managing NFS and NIS, 2nd Edition,
O’Reilly and Associates, Sebastopol, CA (2001).

875. D. Sterne, “On the Buzzword ‘Security Policy’,” Proceedings of the 1991
IEEE Symposium on Security and Privacy, pp. 219–230 (May 1991).

876. F. Stevenson, “Cryptanalysis of Contents Scrambling System” (Nov. 8,
1999); available at http://www.lemuria.org/DeCSS/crypto.gq.nu/.

877. H. Stiegler, “A Structure for Access Control Lists,” Software—Practice
and Experience 9 (10), pp. 813–819 (Oct. 1979).

878. C. Stoll, “Stalking the Wily Hacker,” Communications of the ACM 31 (5),
pp. 484–497 (May 1988).

879. C. Stoll, “An Epidemiology of Viruses and Network Worms,” Proceedings
of the 12th National Computer Security Conference, pp. 369–377
(Oct. 1989).

880. C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of
Computer Espionage, Pocket Books, New York, NY (1995).

881. J. Straw, “The Draft Federal Criteria and the ITSEC: Progress Towards
Alignment,” Proceedings of the 16th National Computer Security
Conference, pp. 311–323 (Sep. 1993).

882. E. Strother, “Denial of Service Protection—The Nozzle,” Proceedings of
the 16th Annual Computer Security Applications Conference,
pp. 32–41 (Dec. 2000).

883. J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, and G. Ganger,
“Self-Securing Storage: Protecting Data in Compromised Systems,”
Proceedings of the 4th Symposium on Operating Systems Design and
Implementation, pp. 165–179 (Oct. 2000).

884. P. Su and M. Bishop, “How to Encrypt /usr/dict/words in About a Second,”
Technical Report PCS-TR92-182, Department of Mathematics and
Computer Science, Dartmouth College, Hanover, NH (Jan. 1992).

885. J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O Devices
on VMware Workstation's Hosted Virtual Machine Monitor,” Proceedings
of the 2001 USENIX Annual Technical Conference, pp. 1–14 (June 2001).

886. Sun Microsystems, Inc., NFS: Network File System Protocol Specification,
RFC 1094 (Mar. 1989).

887. Sun Microsystems, Inc., Installing, Administering, and Using the Basic
Security Module, Sun Microsystems, Inc., Mountain View, CA (April
1992).

Bishop.book Page 705 Tuesday, September 28, 2004 1:46 PM

706 Bibliography

888. Sun Microsystems, Inc., Version 8.8.8 Sendmail for SunOS™ 5.6 and
5.5.1, Security Bulletin #00187 (June 1999).

889. Systems Security Engineering Capability Maturity Model Project, Systems
Security Engineering Capability Maturity Model, Version 2.0 (Apr. 1999).

890. P. Syverson, “Limitations on Design Principles for Public Key Protocols,”
Proceedings of the 1996 Symposium on Privacy and Security, pp. 62–72
(May 1996).

891. T. Takada and H. Koike, “Tudumi: Log Information Visualization System
for Intrusion Detection,” Technical Report UEC-IS-TR-2000-08, Graduate
School of Information Systems, University of Electro-Communications,
Chofu, Tokyo, Japan (Sep. 2000).

892. T. Takada and H. Koike, “MieLog: Visual Log Information Browsing
System With their Characteristics,” Transactions of the Information
Processing Society of Japan, 41 (12), pp. 3265–3275 (Dec. 2000).

893. A. Tanenbaum, Modern Operating Systems, Prentice-Hall, Englewood
Cliffs, NJ (1992).

894. A. Tanenbaum, Computer Networks, 3rd Edition, Prentice-Hall, Upper
Saddle River, NJ (1996).

895. J. Tardo and K. Alagappan, “SPX: Global Authentication Using Public
Key Certificates,” Proceedings of the 1991 IEEE Symposium on Research
in Security and Privacy, pp. 232–244 (May 1991).

896. T. Taylor, “Comparison Paper Between the Bell and LaPadula Model and
the SRI Model,” Proceedings of the 1984 Symposium on Security and
Privacy, pp. 195–202 (Apr. 1984).

897. H. Teng, K. Chen, and S. Lu, “Adaptive Real-Time Anomaly Detection
Using Inductively Generated Sequential Patterns,” Proceedings of the
1990 IEEE Symposium on Research in Security and Privacy, pp. 278–284
(May 1990).

898. C. Testa, B. Wilner, and V. Gligor, “Trusted RUBIX Architecture and
Policy Model Interpretation,” Proceedings of the 8th Annual Computer
Security Applications Conference, pp. 97–110 (Nov./Dec. 1992).

899. K. Thompson, “Reflections on Trusting Trust,” Communications of the
ACM 27 (8), pp. 761–763 (Aug. 1984).

900. D. Thomsen, “Sidewinder: Combining Type Enforcement and UNIX,”
Proceedings of the 11th Annual Computer Security Applications
Conference, pp. 14–20 (Dec. 1995).

901. M. Tompa and H. Woll, “How to Share a Secret with Cheaters,” Journal of
Cryptology 1 (2), pp. 133–138 (1988).

902. W. Trapp and L. Washington, Introduction to Cryptography with Coding
Theory, Prentice-Hall, Upper Saddle River, NJ (2002).

Bishop.book Page 706 Tuesday, September 28, 2004 1:46 PM

Bibliography 707

903. J. Trostle, “Modelling a Fuzzy Time System,” Proceedings of the 1993 IEEE
Symposium on Research in Security and Privacy, pp. 82–89 (May 1993).

904. Trusted Information Systems, A Proposed Interpretation of the TCSEC for
Virtual Machine Monitor Architectures, Trusted Information Systems,
Glenwood, MD (May 1990).

905. C.-R. Tsai, V. Gligor, and C. Chandersekaran, “A Formal Method for the
Identification of Covert Storage Channels in Source Code,” Proceedings of
the 1987 Symposium on Security and Privacy, pp. 108–121 (Apr. 1987).

906. C.-R. Tsai and V. Gligor, “A Bandwidth Computation Model for Covert
Storage Channels and Its Applications,” Proceedings of the 1988
Symposium on Security and Privacy, pp. 74–86 (Apr. 1988).

907. W. Tuchman, “Hellman Presents No Shortcut Solutions to DES,” IEEE
Spectrum 16 (7), pp. 40–41 (July 1979).

908. W. L. Tuchman and C. Meyer, “Efficacy of the Data Encryption Standard
in Data Processing,” Proceedings of Compcon ’78, pp. 340–347
(Sep. 1978).

909. P. Tyner, iAPX 432 General Data Processor Architecture Reference
Manual, Intel Corporation, Aloha, OR (1981).

910. K. van Wyk and R. Forno, Incident Response, O’Reilly and Associates,
Inc., Sebastopol, CA 95472 (Aug. 2001).

911. V. Varadharajan, “Security Enhanced Mobile Agents,” Proceedings of the
7th ACM Conference on Computer and Communications Security,
pp. 200–209 (Nov. 2000).

912. W. Venema, “TCP Wrapper: Network Monitoring, Access Control, and
Booby Traps,” Proceedings of the 3rd USENIX UNIX Security Symposium,
pp. 85–92 (Sep. 1992).

913. B. Venkatraman and R. Newman-Wolfe, “Capacity Estimation and
Auditability of Network Covert Channels,” Proceedings of the 1995
Symposium on Security and Privacy, pp. 186–198 (May 1995).

914. J. Viega and G. McGraw, Building Secure Software: How to Avoid Security
Problems the Right Way, Addison-Wesley, Boston, MA (2002).

915. D. Vincenzetti, S. Taino, and F. Bolognesi, “STEL: Secure TELnet,”
Proceedings of the 5th USENIX UNIX Security Symposium, pp. 75–83
(June 1995).

916. Virgil, The Aeneid (translated by R. Fitzgerald), Vintage Books, New York,
NY (1983).

917. P. Vixie, “DNS and BIND Security Issues,” Proceedings of the 5th
USENIX UNIX Security Symposium, pp. 209–216 (June 1995).

918. J. Voas, A. Ghosh, G. McGraw, P. Charron, and K. Miller, “Defining an
Adaptive Software Security Metric from a Dynamic Software Failure

Bishop.book Page 707 Tuesday, September 28, 2004 1:46 PM

708 Bibliography

Tolerance Measure,” Proceedings of the 11th Annual Conference on
Computer Assurance, pp. 250–263 (June 1996).

919. C. Vogt, “PUMA: A Capability-Based Architecture to Support Security
and Fault Tolerance,” Proceedings of the International Workshop on
Computer Architectures to Support Security and Persistence of
Information, pp. 217–228 (May 1990).

920. D. Volpano, C. Irvine, and G. Smith, “A Sound Type System for Secure
Flow Analysis,” Journal of Computer Security 4 (2, 3), pp. 167–187 (1996).

921. V. Voydock and S. Kent, “Security Mechanisms in High-Level Network
Protocols,” Computing Surveys 15 (2), pp. 135–171 (June 1983).

922. J. Wack and L. Carnahan, Computer Viruses and Related Threats: A
Management Guide, NIST Special Publication 500–166, National Institute
of Standards and Technology, Washington, DC (Aug. 1989).

923. D. Wagner, J. Foster, E. Brewer, and A. Aiken, “A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilities,” Proceedings of
the 2000 Symposium on Network and Distributed System Security,
pp. 1–15 (Feb. 2000).

924. D. Wagner and B. Schneier, “Analysis of the SSL 3.0 Protocol,”
Proceedings of the 2nd USENIX Workshop on Electronic Commerce,
pp. 29–40 (Nov. 1996).

925. R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient Software-
Based Fault Isolation,” Proceedings of the 14th Symposium on Operating
Systems Principles, pp. 202–216 (Dec. 1993).

926. M. Wahl, S. Kille, and T. Howes, Lightweight Directory Access Protocol
(v3): UTF-8 String Representation of Distinguished Names, RFC 2253
(Dec. 1997).

927. M. Waidner and B. Pfitzmann, “The Dining Cryptographers in the Disco:
Unconditional Sender and Recipient Untraceability with Computationally
Secure Serviceability,” Advances in Cryptology—Proceedings of
EUROCRYPT ’89, pp. 690 (Apr. 1989).

928. K. Walker, L. Badger, M. Petkac, D. Sterne, K. Oostendorp, and D.
Sherman, “Confining Root Programs with Domain and Type Enforcement
(DTE),” Proceedings of the 6th USENIX Security Symposium, pp. 21–36
(1996).

929. S. Walker, S. Lipner, C. Ellison, and D. Balenson, “Commercial Key
Recovery,” Communications of the ACM 39 (3), pp. 41–47 (Mar. 1996).

930. L. Wall, T. Christensen, and R. Schwartz, Programming Perl, 2nd Edition,
O’Reilly and Associates, Sebastopol, CA (Sep. 1996).

931. S. Warren and L. Brandeis, “The Right to Privacy,” Harvard Law Review
4, pp. 193ff. (1890).

Bishop.book Page 708 Tuesday, September 28, 2004 1:46 PM

Bibliography 709

932. C. Wee, “LAFS: A Logging and Auditing File System,” Proceedings of the
11th Annual Computer Security Applications Conference, pp. 231–240
(Dec. 1995).

933. M. Weiser, “Program Slicing,” IEEE Transactions on Software
Engineering, 10 (4), pp. 352–357 (July 1984).

934. C. Weissman, “Security Controls in the ADEPT-50 Time-Sharing System,”
Proceedings of the 1969 Fall Joint Computer Conference, pp. 119–133
(Nov. 1969).

935. C. Weismann, “Security Penetration Testing Guideline,” Chapter 10,
Handbook for the Computer Security Certification of Trusted Systems,
TM 5540:082A, Naval Research Laboratory, Washington, DC
(Jan. 1995).

936. C. Weismann, “Penetration Testing,” in Information Security:An
Integrated Collection of Essays [6], pp. 269–296.

937. D. Wheeler, “Secure Programming for Linux and UNIX HOWTO”;
available at http://www.dwheeler.com/secure-programs.

938. T. Whiteside, Computer Capers: Tales of Electronic Thievery,
Embezzlement, and Fraud, Crowell Publishers, New York, NY (1978).

939. A. Whitten and J. Tygar, “Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0,” Proceedings of the 8th USENIX Security
Symposium (Aug. 1999).

940. D. Wichers, D. Cook, R. Olsson, J. Corssley, P. Kerchen, K. Levitt, and R.
Lo, “PACLs: An Access Control List Approach to Anti-Viral Security,”
Proceedings of the 13th National Computer Security Conference,
pp. 340–349 (Oct. 1990).

941. D. Wiemer and M. Murray, “Wiemer-Murray Domain Security Policy
Model for International Interoperability,” Proceedings of the 21st National
Information Systems Security Conference, pp. 526–536 (Oct. 1998).

942. R. Wildes and J. Asmuth, “A System for Automatic Iris Recognition,”
Pattern Recognition 27, pp. 121–128 (1994).

943. M. Wilkes, Time-Sharing Computing Systems, 3rd Edition, Elsevier
McDonald Publishing Co., New York, NY (1975).

944. A. Wilkinson, D. Anderson, D. Chang, L. Hin, A. Mayo, I. Viney, R.
Williams, and W. Wright, “A Penetration Analysis of a Burroughs Large
System,” Operating Systems Review 15 (1), pp. 14–25 (Jan. 1981).

945. J. Williams and K. Ferraiolo, “P/sup 3/I–Protection Profile Process
Improvement,” Proceedings of the 22nd National Information Systems
Security Conference, pp. 175–188 (Oct. 1999).

946. W. Willis, D. Watts, and T. Strahan, Windows 2000 System Administration
Handbook, Prentice-Hall, Upper Saddle River, NJ (2000).

Bishop.book Page 709 Tuesday, September 28, 2004 1:46 PM

710 Bibliography

947. I. Winkler, “The Non-Technical Threat to Computing Systems,”
Computing Systems 9 (1), pp. 3–14 (Winter 1996).

948. H. Winkler-Parenty, “SYBASE: The Trusted Subject DBMS,”
Proceedings of the 13th National Computer Security Conference,
pp. 589–593 (Oct. 1990).

949. S. Wiseman, “A Secure Capability Computer System,” Proceedings of the
1986 IEEE Symposium on Security and Privacy, pp. 86–94 (Apr. 1986).

950. S. Wiseman, “Preventing Viruses in Computer Systems,” Computers and
Security 8 (5), pp. 427–432 (Aug. 1989).

951. T. Woo and S. Lam, “Authentication for Distributed Systems,” IEEE
Computer 25 (1), pp. 39–52 (Jan. 1992).

952. C. Wood, “Principles of Secure Information Systems Design,” Computers
and Security 9 (1), pp. 13–24 (Feb. 1990).

953. C. Wood, “Principles of Secure Information Systems Design with Groupware
Examples,” Computers and Security 12 (7), pp. 663–678 (Nov. 1993).

954. C. Wood, Information Security Policies Made Easy: A Comprehensive Set
of Information Security Policies, Version 4, Baseline Software, Sausalito,
CA (1994).

955. P. Wood and S. Kochan, UNIX System Security, Hayden Books,
Indianapolis, IN (1985).

956. J. Wray, “An Analysis of Covert Timing Channels,” Proceedings of the
1991 IEEE Symposium on Research in Security and Privacy, pp. 2–6
(May 1991).

957. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F.
Pollack, “HYDRA: The Kernel of a Multiprocessor System,”
Communications of the ACM 17 (6), pp. 337–345 (June 1974).

958. T. Yetiser, “Polymorphic Viruses: Implementation, Detection, and
Protection,” VDS Advanced Research Group, Baltimore, MD (Jan. 1993).

959. T. Ylönen, “SSH—Secure Login Connections over the Internet,”
Proceedings of the 6th Annual USENIX Security Symposium,
pp. 37–42 (June 1996).

960. C. Young, “Taxonomy of Computer Virus Defense Mechanisms,”
Proceedings of the 10th National Computer Security Conference,
pp. 220–225 (Sep. 1987).

961. J. Yuill, F. Wu, J. Settle, F. Gong, R. Forno, M. Huang, and J. Asbery,
“Intrusion-Detection for Incident-Response, Using a Military
Battlefield-Intelligence Process,” Computer Networks 34 (4),
pp. 671–697 (Oct. 2000).

962. A. Yulie, D. Cohen, and P. Halinan, “Feature Extraction Using a
Multilayer Perceptron,” Computer Vision and Pattern Recognition,
pp. 104–109 (1989).

Bishop.book Page 710 Tuesday, September 28, 2004 1:46 PM

Bibliography 711

963. Y. Zheng, J. Pieprzyk, and J. Seberry, “HAVAL—A One-Way Hashing
Algorithm with Variable Length of Output,” Advances in Cryptology—
Proceedings of AUSCRYPT ’92, pp. 83–104 (Dec. 1992).

964. D. Zimmerman, The Finger User Information Protocol, RFC 1288
(Dec. 1991).

965. P. Zimmermann, PGP Source Code and Internals, MIT Press, Boston, MA
(1995).

966. M. Zurko and R. Simon, “User-Centered Security,” Proceedings of the
1996 New Security Paradigms Workshop, pp. 27–33 (Sep. 1996).

967. E. Zwicky, S. Cooper, and D. Chapman, Building Internet Firewalls, 2nd
Edition, O’Reilly and Associates, Sebastopol, CA (2000).

968. E. Zwicky, S. Simmons, and R. Dalton, “Policy as a System
Administration Tool,” Proceedings of the 4th Systems Administration
Conference (LISA 1990), pp. 115–124 (Oct. 1990).

Bishop.book Page 711 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 712 Tuesday, September 28, 2004 1:46 PM

713

Index

1260 virus, 371, 372. See also malicious
logic.

4096 virus, 370. See also malicious logic.

A
a posteriori design

goals, 434–435
known violations of policy, 437–438
state-based auditing mechanism, 435–436
state-based logging mechanism, 435–436
transition-based auditing mechanism, 436
transition-based logging mechanism, 436
violations of known policy, 435–436

a posteriori verification, 13–14
A&A (Authorization and Authentication)

database, 66
AAFID (Autonomous Agents for Intrusion

Detection), 475–476
Abbreviations, ACLs, 238–240
Academic computers, security policy

example, 54–58
Access control. See also confinement

problem.
DAC (discretionary access control)

Bell-LaPadula model, 62
definition, 53–54
ORCON (originator controlled access

control), 91–92
defense against malicious logic, 378–381
of file permissions, 600–601
IBAC (identity-based access control), 53–54
MAC (mandatory access control)

Bell-LaPadula model, 62
definition, 53–54
ORCON (originator controlled access

control), 91–92
ORCON (originator controlled access

control), 54

types of, 53–54
user security

carrier drop, 561
login, 558–560
logoff, 560–562
passwords, 556–559
starting a session, 558–560
stopping a session, 560–562
trusted hosts, 560

Access control data, storing, 587–590
Access control lists (ACLs). See ACLs

(access control lists).
Access control matrix model

definition, 27–28
objects, 28–29
overview, 28–30
own right, 29
subjects, 28

Access control mechanisms
See also ciphers
See also cryptography
See also encryption
ACLs (access control lists)

abbreviations, 238–240
versus capabilities, 251–252
conflicts, 242–243
creation, 240–243
default permissions, 243
definition, 238
example, Windows NT, 244–245
groups, 242
maintenance, 240–243
modify rights, 241
overview, 237–238
privileged users, 242
revocation of rights, 243–244
user classes, 238–240
wildcards, 242

Bishop.book Page 713 Tuesday, September 28, 2004 1:46 PM

714 Index

Access control mechanisms continued
capabilities

versus ACLs, 251–252
amplifying, 248–249
copy flags, 248
copying, 248–249
global object tables, 250
implementation, 247–248
limits of, 250–252
overview, 246–247
revocation of rights, 249–250
tagged architecture, 247

capability lists, 246
gates, 255–256
keys, 252–254
locks, 252–254
PACLs (Propagated Access Control

Lists), 257–258
protection rings, 255–256
ring-based access control, 255–256
rings, 255–256
type checking, 253–254

Access control records, program security,
595–596

Access Principles 1-4, 89
Access rights. See access control matrix

model.
Access rights validation error class, 417, 419
Access to objects, principles of design,

203–204
Access to system entities, principles of

design, 203–204
ACLs (access control lists)

abbreviations, 238–240
versus capabilities, 251–252
conflicts, 242–243
creation, 240–243
default permissions, 243
definition, 238
example, Windows NT, 244–245
groups, 242
maintenance, 240–243
modify rights, 241
overview, 237–238
privileged users, 242

revocation of rights, 243–244
user classes, 238–240
wildcards, 242

Active wiretapping, 5
Adaptive directors, 469
Adaptive model, IDS, 459
Adleman, Len, 366–367
Administrative assurance, 316
Advanced Encryption Standard (AES), 112
AES (Advanced Encryption Standard), 112
Agent, IDS (intrusion detection systems),

465–468
Aggregation Principle, 90
Aging passwords, 184–186
AH (authentication header) protocol, 165–166
Amplifying capabilities, 248–249
Analyzer, auditing system, 426–427
Analyzing

intrusions. See intrusion detection.
system events. See auditing.
vulnerability. See vulnerability analysis.

Anomaly model, IDS, 459–461
Anonymity on the Web, 226–232
Anonymizers, 226
Anonymizing sanitizers, 431–433
Anonymous certificates, 219
Aslam's model

access rights validation error class, 417,
419

boundary condition error, 419
environment fault, 419
fingerd buffer overflow flaw, 419
flaw classes, 415
object installed with incorrect

permissions class, 417
overview, 414
race conditions class, 417
xterm log file flaw, 417–418

Assignment statements, 266
Assumptions, security policies and

mechanisms, 9–10
Assurance

administrative assurance, 316
built in versus added on, 324–328
definition, 310

Bishop.book Page 714 Tuesday, September 28, 2004 1:46 PM

Index 715

design assurance, 315–316
implementation assurance, 316
mechanisms for policy enforcement, 325
need for, 311–313
networks, 506
operational assurance, 316
policy assurance, 314–315
reference monitor, 325
requirements, definition, 313
requirements, role of, 313–314
RVM (reference validation mechanism),

325
secure and trusted systems

assembly from reusable components,
324

conception stage, 317–318
deployment, 319
exploratory programming, 323
extreme programming, 324
fielded product life, 319
fielding the system, 322
formal transformation, 323–324
implementation, 321–322
integration, 322
life cycle, 316–320
maintenance, 322
manufacturing stage, 318–319
operations, 322
program design, 321
proof of concept, 318
prototyping, 323
requirements definition and analysis,

320–321
requirements specification, 320–321
software design, 321
software development models,

323–324. See also life cycle of
systems; waterfall life cycle model.

system design, 321
system testing, 322
unit testing, 321–322
waterfall life cycle model, 320–323

security kernel, 325
security objectives, 313

security policies, 313–314
security policies and mechanisms

overview, 10–11
a posteriori verification, 13–14
system design, 11–12
system implementation, 12–14
system specification, 11–12
testing, 13–14

security requirements, 313
TCB (trusted computing base), 325
throughout the life cycle, 314–316
and trust, 309–316
trusted systems, 311

Assurance requirements, CC (Common
Criteria), 351

Asynchronous validation, 417, 418
Attack tools, 456
Attackers, 4–6
Attacks. See also problems; threats.

cryptographic, 98. See also
cryptoanalysis; cryptography.

definition, 4
man-in-the-middle, 130
passwords

backoff techniques, 183–184
counter measures, 175–184
dictionary, 174, 182–183, 189–190
disabling techniques, 184
disconnection techniques, 183–184
exponential backoff techniques,

183–184
guessing, 174–184
honeypots, 184
jailing techniques, 184
salting techniques, 182

Auditing. See also intrusion detection;
penetration studies.

browsing log files, 448–450
definition, 424
detection

known violations of policy,
437–438

state-based auditing mechanism,
435–436

Bishop.book Page 715 Tuesday, September 28, 2004 1:46 PM

716 Index

Auditing continued
state-based logging mechanism,

435–436
transition-based auditing mechanism,

436
transition-based logging mechanism,

436
violations of known policy, 435–436

examples
LAFS (logging and auditing file

system), 445–447
NFS Version 2 protocol, 441–445, 447

integrity policies, 74
logging, 423

Auditing mechanisms
nonsecure systems, 440–441
secure systems, 438–440

Auditing system
analyzer, 426–427
components of, 424–427
designing

anonymizing sanitizers, 431–433
implementation considerations, 429
log sanitization, 431–433
logging, 433–434
overview, 428
pseudonymizing sanitizers, 431–433
syntactic issues, 429–430

goals, 434–435
logger, 424–426
notifier, 427
a posteriori design

goals, 434–435
known violations of policy, 437–438
state-based auditing mechanism,

435–436
state-based logging mechanism,

435–436
transition-based auditing mechanism,

436
transition-based logging mechanism,

436
violations of known policy, 435–436

Authentication. See also origin integrity;
passwords.

biometrics
combining techniques, 192
eyes, 191
faces, 191–192
fingerprints, 190–191
keystrokes, 192
overview, 190
potential problems, 192
retinal images, 191
voices, 191

classical, 125–128
combining techniques, 193–195
definition, 171
GPS (Global Positioning System), 193
by location, 193
overview, 171–172
PAM (pluggable authentication modules),

194–195
passwords

definition, 172
overview, 172–174

public key, 129–130
system security

development system, 535–537
Web server, DMZ, 535, 537

Authentication header (AH) protocol,
165–166

Authorization and Authentication (A&A)
database, 66

Autokey ciphers, 150–151
Autonomous agents, 475–476
Autonomous Agents for Intrusion Detection

(AAFID), 475–476
Availability

blocking. See denial of service attacks.
description, 4
networks, 492, 507–510

B
B2 UNIX system, example, 66–70
Backoff techniques, 183–184
Bacteria, 374–375. See also malicious logic.
Bandwidth, covert channels, 295
Basic blocks, 269
Bell V22 Osprey crashes, 313

Bishop.book Page 716 Tuesday, September 28, 2004 1:46 PM

Index 717

Bell-LaPadula model
Chinese Wall model, 86–87
clinical information system policies,

90–91
clinical information systems policies,

90–91
confidentiality policy, 62–66
DAC (discretionary access control), 62
MAC (mandatory access control), 62

Biba model, integrity policies, 75–76
Binding

identities to cryptographic keys, 130
identities to subjects. See authentication.

Biometrics
combining techniques, 192
eyes, 191
faces, 191–192
fingerprints, 190–191
keystrokes, 192
overview, 190
potential problems, 192
retinal images, 191
voices, 191

Block ciphers, 151–153
Boot sector infectors virus, 367–368. See

also malicious logic.
Boundary condition error, 419
Boundary controllers, 481
Bounds checking, 612–613
Brain virus, 367, 368. See also malicious

logic.
Breach of security, 46
Burroughs System penetration study,

398–399

C
CA (certificate authority), 133
Caesar cipher, 97–98, 99, 100
Capabilities

versus ACLs, 251–252
amplifying, 248–249
copy flags, 248
copying, 248–249
global object tables, 250
implementation, 247–248

limits of, 250–252
overview, 246–247
revocation of rights, 249–250
tagged architecture, 247

Capability lists, 246
Capability Maturity Levels, 358
Carrier drop, 561
Categories, Bell-LaPadula model, 63
CC (Common Criteria)

assurance requirements, 351
CCIMB (Common Criteria Interpretation

Management Board), 355
CM (Configuration Management) class,

351
Communication class, 349
Cryptographics Support class, 349
Development class, 351
evaluating products or systems, 346–348
evaluating protection profiles, 344–346
evaluation assurance levels, 351–353
evaluation process, 353–354
Formally Verified Design and Tested

assurance level, 352
Functionally Tested assurance level, 351
future of, 354–356
Guidance Documentation class, 351
history of, 343–344
Identification and Authentication class,

350
impacts, 354
Life Cycle class, 351
Maintenance of Assurance class, 351
Methodically Designed, Tested, and

Reviewed assurance level, 352
Methodically Tested and Checked

assurance level, 352
methodology, 344–348
PP (CC protection profile), 344
Privacy class, 350
Protection of Security class, 350
Protection Profile Evaluation class, 351
protection profiles, 355–356
requirements, 348
Resource Utilization class, 350
Security Audit class, 349

Bishop.book Page 717 Tuesday, September 28, 2004 1:46 PM

718 Index

CC (Common Criteria) continued
security functional requirements,

349–350
Security Management class, 350
Security Target Evaluation class, 351
security targets, 355–356
Semiformally Designed and Tested

assurance level, 352
Semiformally Verified Design and Tested

assurance level, 352
ST (security target), 346–348
Structurally Tested assurance level, 352
Tests class, 351
TOE Access class, 350
Trusted Path class, 350
TSF (Toe Security Function), 344
TSP (Toe Security Policy), 344
User Data Protection class, 349
Vulnerabilities class, 351

CC protection profile (PP), 344
CCIMB (Common Criteria Interpretation

Management Board), 355
CD (company dataset), 84
CDIs (constrained data items), 77–79
Certificate authority (CA), 133
Certificate signature chains, 131–135
Certificates

anonymous, 219
checking, 575–576
definition, 131
identity, 215–221
invalid, list of, 137
issuers, 133
persona, 219
revocation list, 137

Certification rules, 77–79
Challenger explosion, 312
Challenge-response passwords, 186–190
Change class, improper, 411, 418
Changes, improper, 604–609
Checksums, 116–119
Chinese Wall model

Bell-LaPadula model, 86–87
CD (company dataset), 84
Clark-Wilson model, 87–88

COI (conflict of interest), 84
objects, 84
overview, 83–86

Chosen plaintext attack, 98
Cipher block chaining, 152
Cipher feedback mode, 151
Ciphers. See also access control;

cryptography; encryption.
autokey, 150–151
block, 151–153
Caesar, 97–98, 99, 100
cipher block chaining, 152
cipher feedback mode, 151
EDE (Encrypt-Decrypt-Encrypt), 153
exponentiation, 114–116
FEAL, 112
IDEA, 113
initialization vector, 152
LFSR (n-stage linear feedback shift

register), 148–149
LOKI89, 113
misordered blocks, 146
multiple encryption, 152–153
NewDES, 112
NLFSR (n-stage nonlinear feedback shift

register), 149–150
output feedback mode, 149–150
period of, 102
polyalphabetic, 102
potential problems, 145–147
precomputing possible messages, 145–146
product, 108
protocol examples

AH (authentication header) protocol,
165–166

DEK (data encipherment key), 158–159
electronic mail, 156–160
ESP (encapsulating security payload)

protocol, 166–167
interchange key, 158–159
IPsec, 161–167
MIC (message integrity check), 159
network-level security, 161–167
PEM (Privacy-enhanced Electronic

Mail) protocol, 156–157

Bishop.book Page 718 Tuesday, September 28, 2004 1:46 PM

Index 719

PEM versus PGP, 160
security gateways, 161
SSA (security association), 162–164
transport adjacency, 164–165
transport mode, 161
tunnel mode, 161

REDOC II, 112
round keys, 108
rounds (iterations), 108
RSA, 114–116
self-healing property, 151
self-synchronous stream, 150–151
statistical regularities, 146–147
stream, 148–151
substitution, 100–107
synchronous stream, 148–150
tableau (table), 102
transposition, 99–100
Vigenère, 101–107

Ciphertext only attack, 98
Clark-Wilson model

Chinese Wall model, 87–88
clinical information systems policies,

90–91
integrity policies

CDIs (constrained data items), 77–79
certification rules, 77–79
consistent state, 76
constraints, 77–79
enforcement rules, 77–79
IVPs (integrity verification

procedures), 77–79
versus other models, 80–81
overview, 76–81
requirements, 79–80
TPs (transformation procedures),

77–79
UDIs (unconstrained data items),

77–79
valid state, 77–79
well-formed transactions, 76

Classes of flaws. See flaws, classes.
Classical authentication, 125–128
Classical cryptosystems

frequency of letters, 103

index of coincidence, 103–107
key length, 102
one-time pad

definition, 107
simulating, 149

period of the cipher, 102
polyalphabetic ciphers, 102
substitution ciphers, 100–107
tableau (table), 102
transposition ciphers, 99–100
Vigenère cipher, 101–107

Classical key exchange, 125–128
Classical signatures, 138
Clinical information systems policies

Access Principles 1-4, 89
Aggregation Principle, 90
Bell-LaPadula model, 90–91
Clark-Wilson model, 90–91
clinicians, 88
Confinement Principle, 90
Creation Principle, 89
Deletion Principle, 90
Enforcement Principle, 90
overview, 88–90
patients, 88
personal health information, 88
principles, 88–90

Clinicians, clinical information systems
policies, 88

CM (Configuration Management) class, 351
CMV (Cryptographic Module Validation),

evaluating cryptographic models,
341–343

Cohen, Fred, 366–367
COI (conflict of interest), 84
Command access, 585–590
Commercial security policies, 50
Common Criteria (CC). See CC (Common

Criteria).
Common Criteria Interpretation

Management Board (CCIMB), 355
Communication class, 349
Company dataset (CD), 84
Compiler-based mechanisms

assignment statements, 266

Bishop.book Page 719 Tuesday, September 28, 2004 1:46 PM

720 Index

Compiler-based mechanisms continued
basic block, 269
compound statements, 267
concurrency, 274–276
conditional statements, 267–268
declarations, 264–266
exceptions, 272–273
GoTo statements, 269–272
immediate forward dominator, 271
infinite loops, 272–273
iterative statements, 268–269
loops, 268–269, 272–273
overview, 263–264
procedure calls, 272
program statements, 266–272
semaphores, 274–276
soundness, 276–277

Complete mediation principle, 203–204
Components of security. See availability;

confidentiality; integrity.
Compound statements, 267
Computer-generated passwords, 177–178
Concealment. See confidentiality.
Conception stage, 317–318
Concurrency, 274–276
Conditional commands, state transition,

33–34
Conditional statements, 267–268
Confidentiality, description, 2
Confidentiality policies

See also hybrid policies
See also integrity policies
See also security policies
Bell-LaPadula model, 62–66
categories, 63
current security level, 65
definition, 47, 51
examples

A&A (Authorization and
Authentication) database, 66

Data General B2 UNIX system,
66–70

implicit labels, 66–69
MAC labels, assigning, 66–69
MAC labels, using, 69–70

ranges, 69–70
upper/lower bounds, 69–70

goals of, 61
maximum security level, 65
security clearances, 62
trust, 50

Configuration Management (CM) class, 351
Confinement Principle, 90
Confinement problem. See also access

control.
covert channels

bandwidth, 295
definition, 288–289
detection, 296–303
existence, 295
goals of, 298–299
mitigation, 303–305
noiseless, 295
properties of, 295
pumps, 304–305
storage channels, 294–295
timing channels, 294–295

definition, 288
hardware, simulating, 290–292
isolation, 290–294
overview, 287–290
rule of transitive confinement, 289
safe environments, 292–294
sandboxes, 292–294
software fault isolation, 293
total isolation, 288
virtual machine monitors, 290
virtual machines, 290–292

Conflict of interest (COI), 84
Conflicts, ACLs, 242–243
Connection IDs, network intrusion

detection, 471–472
Consequences, development system,

521–522
Consistency, networks, 492–493
Consistent state, 76
Constrained data items (CDIs), 77–79
Containment phase, intrusion detection,

478–479
Continuously Improving maturity level, 358

Bishop.book Page 720 Tuesday, September 28, 2004 1:46 PM

Index 721

Controlled access protection class, 337
Cookies, identity, 225
Copy flags, 248
Copying, capabilities, 248–249
Copying files, 570–571
Corporate computer system penetration

study, 399–400
Cost-benefit analysis, 14–15
Counterattacking intruders, 482–484
Covert channels

bandwidth, 295
definition, 288–289
detection, 296–303
existence, 295
goals of, 298–299
mitigation, 303–305
noiseless, 295
properties of, 295
pumps, 304–305
storage channels, 294–295
timing channels, 294–295

Crackers. See malicious logic.
Creation, ACLs, 240–243
Creation Principle, 89
Credibility ratings, 383. See also malicious

logic.
Cross-certified CAs, 133
Cryptoanalysis

definition, 97
traffic analysis, 155–156

Cryptographic checksums, 116–119
Cryptographic keys. See keys,

cryptographic.
Cryptographic models, evaluating, 341–343
Cryptographic Module Validation (CMV),

evaluating cryptographic models,
341–343

Cryptographics Support class, 349
Cryptography

See also access control
See also ciphers
See also encryption
AES (Advanced Encryption Standard),

112
checksums, 116–119

chosen plaintext attack, 98
ciphertext only attack, 98
classical cryptosystems

frequency of letters, 103
index of coincidence, 103–107
key length, 102
one-time pad, definition, 107
one-time pad, simulating, 149
period of the cipher, 102
polyalphabetic ciphers, 102
substitution ciphers, 100–107
tableau (table), 102
transposition ciphers, 99–100
Vigenère cipher, 101–107

definition, 97
DES (Data Encryption Standard), 108–112
differential cryptoanalysis, 110
end-to-end encryption, 154–156
end-to-end protocol, 153–156
HMAC algorithm, 118–119
keyed checksums, 118
keyed hash function, 118–119
keyless checksums, 118
keys. See keys, cryptographic.
known plaintext only attack, 98
link encryption, 154–156
link protocol, 153–156
message digest, 116
networks, 153–156, 161–167
pigeonhole principle, 117
product ciphers, 108
public key, 113–116
Rijndael, 112
types of attacks, 98

Cryptosystems. See classical cryptosystems.
Current security level, Bell-LaPadula

model, 65
Cypherpunk remailers, 227–229

D
DAC (discretionary access control)

Bell-LaPadula model, 62
definition, 53–54
ORCON (originator controlled access

control), 91–92

Bishop.book Page 721 Tuesday, September 28, 2004 1:46 PM

722 Index

DAC (discretionary access control) continued
TCSEC (Trusted Computer System

Evaluation Criteria), 335–336
Data classes, networks, 489
Data encipherment key (DEK), 158–159
Data Encryption Standard (DES), 108–112
Data General B2 UNIX system, security

policy example, 66–70
Data integrity, 3
Data Mark Machine, 278–280
Data virus, 373. See also malicious logic.
Deallocation, improper

description, 411
program security, 611–612
xterm log file flaw, 416

Deception
active wiretapping, 5
definition, 4
delegation, 5
denial of receipt, 6
man-in-the-middle attack, 5
modification of information, 5
repudiation of origin, 6
spoofing, 5

Deception Toolkit, 479
Declarations, 264–266
Decoy servers, 479
DEK (data encipherment key), 158–159
Delay, 6
Delegation, 5
Deleting files, 565–566
Deletion, improper

description, 411
program security, 611–612

Deletion Principle, 90
Denial of receipt, 6
Denial of service attacks, 4, 6, 374–375
Dependence on secrecy, principles of

design, 204–205
Deployment stage, 319
DES (Data Encryption Standard), 108–112
Design assurance, 315–316
Design principles. See principles of design.
Design process, program security

access control data, storing, 587–590

command access, 585–590
error handling, 596–597
framework, 584–585
functions, 594–597
high-level design, 584–585
interface, 586
internals, 586–587
matching routines, error handling, 596–597
reading routines, error handling, 596–597
refinement, 590–594
role access, 585–590
user interface, 584

Designing
auditing systems. See auditing system,

designing.
program security. See program security,

design process.
Detection

See also auditing
See also IDS (intrusion detection systems)
See also intrusion detection
covert channels, 296–303
security goal, 8

Detection mechanisms, 3
Development class, 351
Development system

authentication, 535–537
consequences, 521–522
description, 550
files, 545–548
networks, 526–529
policy, 519–523
processes, 541–543
system security policy, 519–523
users, 531–534

Devices, user security
monitors, 569
smart terminals, 567–568
window systems, 569
writable, 567

Devnet. See development system.
Dictionary attacks, 174, 182–183, 189–190
DIDS (Distributed Intrusion Detection

System), 472–475
Differential cryptoanalysis, 110

Bishop.book Page 722 Tuesday, September 28, 2004 1:46 PM

Index 723

Digital signatures, 137–140
Director, IDS (intrusion detection systems),

469
Disabling techniques, 184
Disclosure

definition, 4
passive wiretapping, 5
snooping, 5

Disconnection techniques, 183–184
Discretionary access control (DAC). See

DAC (discretionary access control).
Discretionary protection class, 337
Disruption, 5
Distributed Intrusion Detection System

(DIDS), 472–475
Distribution, program security, 627–629
DMZ

definition, 493
DNS server, 503
log server, 503–504
mail server, 500–501
network infrastructure, 496–500
servers, 500–504
Web server. See Web server, DMZ.

DNS (domain name service), 224
DNS server, 503
Domain name service (DNS), 224
Duff, Tom, 367
Dynamic identifiers, 222–224

E
Economy of mechanism principle, 202–203
EDE (Encrypt-Decrypt-Encrypt), 153
Electronic communication, user security

certificate checking, 575–576
electronic mail, 575
unexpected content, 576

Electronic mail
ciphers, 156–160
Cypherpunk remailers, 227–229
Mixmaster remailers, 229–230
privacy, 156–157
pseudo-anonymous remailers, 227–230
pseudonymous remailers, 227–230
security, 575

security policy example, 55–56
type 1 remailers, 227–229
type 2 remailers, 229–230

E-mail. See electronic mail.
Encapsulating security payload (ESP)

protocol, 166–167
Encrypt-Decrypt-Encrypt (EDE), 153
Encrypted virus, 370–371. See also

malicious logic.
Encryption. See also access control; ciphers;

cryptography.
EDE (Encrypt-Decrypt-Encrypt), 153
end-to-end, 154–156
link, 154–156
multiple encryption ciphers, 152–153
user security, 571–572
viruses, 370–371. See also malicious

logic.
End-to-end encryption, 154–156
End-to-end protocol, 153–156
Enforcement Principle, 90
Enforcement rules, 77–79
Environment fault, 419
Eradication phase, intrusion detection,

479–482
Error checking, 614
Error handling, 596–597
ESP (encapsulating security payload)

protocol, 166–167
Euclidean Algorithm, 637–641
Evaluating systems. See also TCSEC.

assurance levels, 351–353
Capability Maturity Levels, 358
classes, 334, 337–338
commercial computer products. See

TCSEC.
Continuously Improving maturity level,

358
cryptographic models, 341–343
the decision to evaluate, 332–333
FIPS 140, 341–343
formal evaluation methodology, 332
goals of, 331–334
history of methodologies, 333–334
Performed Informally maturity level, 358

Bishop.book Page 723 Tuesday, September 28, 2004 1:46 PM

724 Index

Evaluating systems continued
process capability, 357
process maturity, 357
process performance, 357
products or systems, 346–348
protection profiles, 344–346
Quantitatively Controlled maturity level,

358
SFUG (Security Features User's Guide),

336
SSE-CMM (System Security

Engineering Capability Maturity
Model), 356–359

standards. See CC; ITSEC; TCSEC.
TFM (Trusted Facility Manual), 336
Well-Defined maturity level, 358

Examples
A&A (Authorization and Authentication)

database, 66
ACLs on Windows NT, 244–245
auditing

LFS (logging and auditing file
system), 445–447

NFS Version 2 protocol, 441–445, 447
Data General B2 UNIX system, 66–70
implicit labels, 66–69
information flow, 282–283
MAC labels, assigning, 66–69
MAC labels, using, 69–70
penetration studies

Burroughs System, 398–399
corporate computer system, 399–400
Michigan Terminal System, 396–398
UNIX system, 400–402
Windows NT system, 402–403

ranges, 69–70
security policies

academic computers, 54–58
electronic mail, 55–56
UC Davis, 54–58

SNSMG (Secure Network Server Mail
Guard), 282–283

SPI (security pipeline interface), 282
upper/lower bounds, 69–70

Exceptions, 272–273

Executable infectors virus, 368–369. See
also malicious logic.

Execution phase, viruses, 366. See also
malicious logic.

Execution-based mechanisms
Fenton's Data Mark Machine, 278–280
overview, 277
variable classes, 280–281

Existence, covert channels, 295
Exploitable logic error, 409, 417
Exploratory programming, 323
Exponential backoff techniques, 183–184
Exponentiation ciphers, 114–116
Extended Euclidean Algorithm, 637–641
Extreme programming, 324
Eyes, authentication by, 191

F
Faces, authentication by, 191–192
Fail-safe defaults principle, 202
False information for intruders, 479
Father Christmas worm, 374. See also

malicious logic.
Fault tolerance

defending against malicious logic,
383–384

and intrusion detection, 475–476
FEAL cipher, 112
Feedback, security policies and

mechanisms, 20–21
Fenton's Data Mark Machine, 278–280
Fielded product life, 319
Fielding the system, 322
File security

development system, 545–548
Web server, DMZ, 543–545, 547–548

Files
alteration, defending against, 382–383
identity, 212–213
improper content changes, 608
improper deletion, 611–612
targets of viruses, 366
user security

copying, 570–571
deleting, 565–566

Bishop.book Page 724 Tuesday, September 28, 2004 1:46 PM

Index 725

group access, 564–565
moving, 570–571
overview, 562–563
overwriting, 571
permissions on creation, 563–564

Filtering firewalls, 496
fingerd buffer overflow flaw, 418–419
Fingerprints, authentication by, 190–191
FIPS 140, 341–343
Firewalls

configuring, inner, 499–500
configuring, outer, 497–499
definition, 494
filtering, 496
goals, inner, 499–500
goals, outer, 497–499
intrusion detection, 480
overview, 494–496

Flaw Hypothesis Methodology, 393–396
Flaws

classes. See also specific flaws.
Aslam's model, 415
NRL taxonomy, 412–414
PA (Protection Analysis), 410–412
RISOS (Research Into Secure

Operating Systems), 408–409
elimination, 396
generalization, 395–396
samples

comparison and analysis, 415–420
description, 405–406
fingerd buffer overflow flaw, 418–419
xterm log file flaw, 416–418

testing, 395
Flooding networks, 507–510
Flow distance metric, 377–378. See also

malicious logic.
Follow-up phase, intrusion detection,

482–484
Formal transformation, 323–324
Formally Verified Design and Tested

assurance level, 352
4096 virus, 370. See also malicious logic.
Framework, program security, 584–585

Frameworks, vulnerability analysis. See
also vulnerability analysis.

Aslam's model
access rights validation error class,

417, 419
boundary condition error, 419
environment fault, 419
fingerd buffer overflow flaw, 419
flaw classes, 415
object installed with incorrect

permissions class, 417
overview, 414
race conditions class, 417
xterm log file flaw, 417–418

NRL taxonomy
fingerd buffer overflow flaw, 419
flaw classes, 412–414
inadvertent flaws, 412, 417
intentional flaw of

serialization/aliasing, 417
intentional flaws, 412, 417
malicious flaws, 412
nonmalicious flaws, 412, 417
versus other frameworks, 416–420
overview, 412–414
xterm log file flaw, 417

overview, 406
PA (Protection Analysis)

fingerd buffer overflow flaw, 418
flaw classes, 410–412
improper change class, 411, 418
improper choice of initial protection

domain flaws, 410, 416, 418
improper choice of operand or

operation, 412, 418
improper deallocation flaws, 411, 416
improper deletion errors, 411
improper indivisibility flaws, 412, 416
improper isolation of implementation

detail flaws, 410, 418
improper naming flaws, 411
improper protection domain

initialization and enforcement
flaws, 410

Bishop.book Page 725 Tuesday, September 28, 2004 1:46 PM

726 Index

Frameworks, vulnerability analysis continued
improper sequencing flaws, 412, 416
improper synchronization flaws, 411
improper validation flaws, 411, 418
versus other frameworks, 416–420
overview, 409–410
pattern-directed protection evaluation,

409–410
xterm log file flaw, 416–417

RISOS (Research Into Secure Operating
Systems)

asynchronous validation flaws, 417, 418
exploitable logic error flaws, 409, 417
fingerd buffer overflow flaw, 418–419
flaw classes, 408–409
implicit sharing of

privileged/confidential data flaws,
408

inadequate
identification/authorization/authent
ication flaws, 408, 418–419

inadequate serialization flaws, 417, 418
incomplete parameter validation

flaws, 408, 417–418
inconsistent parameter validation

flaws, 408
versus other frameworks, 416–420
overview, 406–407
protection analysis model, 409–410
violable prohibition/limit flaws, 409,

417, 418
xterm log file flaw, 417–418

Frequency of letters, cryptography, 103
Functionally Tested assurance level, 351
Functions, program security, 594–597

G
Gates, 255–256
Global object tables, 250
Global Positioning System (GPS), 193
Goals of security. See detection; prevention;

recovery.
GoTo statements, 269–272
Governmental security policies, 49
GPS (Global Positioning System), 193

Graphical Intrusion Detection System
(GrIDS), 470

GrIDS (Graphical Intrusion Detection
System), 470

Groups
ACLs (access control lists), 242
identity, 214–215

Guessing passwords, 174–184
Guidance Documentation class, 351

H
Hackers. See malicious logic.
Handling intrusions

boundary controllers, 481
containment phase, 478–479
counterattacking, 482–484
decoy servers, 479
eradication phase, 479–482
firewalls, 480
follow-up phase, 482–484
honeypots, 479
IDIP domains, 481
neighbors, 481
offering false information, 479
phases of, 477–478
targets, 479
wrappers, 480

Hardware, simulating, 290–292
Health information. See clinical information

systems policies.
Helicopter crashes, 313
Hiding information and resources. See

confidentiality.
Highland, Harold Joseph, Dr., 367
HMAC algorithm, 118–119
Honeypot Project, 479
Honeypots, 184, 479
Host identity, 221–224
Host-based information gathering, 466–468
Hosts, intrusion detection, 472–475
Human elements, principles of design, 206–207
Human issues, security policies and

mechanisms. See also user security.
insiders, 19–20
organizational problems, 18–19

Bishop.book Page 726 Tuesday, September 28, 2004 1:46 PM

Index 727

outsiders, 19–20
people problems, 19–20
social engineering attacks, 19–20

Hybrid policies
See also confidentiality policies
See also integrity policies
See also security policies
Chinese Wall model

Bell-LaPadula model, 86–87
CD (company dataset), 84
Clark-Wilson model, 87–88
COI (conflict of interest), 84
objects, 84
overview, 83–86

clinical information systems policies
Access Principles 1-4, 89
Aggregation Principle, 90
Bell-LaPadula model, 90–91
Clark-Wilson model, 90–91
clinicians, 88
Confinement Principle, 90
Creation Principle, 89
Deletion Principle, 90
Enforcement Principle, 90
overview, 88–90
patients, 88
personal health information, 88
principles, 88–90

ORCON (originator controlled access
control), 91–92

RBAC (role-based access control), 92–94

I
I&A (identification and authentication), 335
IBAC (identity-based access control), 53–54
IBM Christmas card worm, 374. See also

malicious logic.
IDEA cipher, 113
Identification and authentication (I&A), 335
Identification and Authentication class, 350
Identity

anonymous certificates, 219
binding to

cryptographic keys, 130
subjects. See authentication.

certificates, 215–221
definition, 211
files, 212–213
groups, 214–215
login names, 213–214
naming, 215–221
objects, 212–213
overview, 211–212
persona certificates, 219
principals, 211
roles, 214–215
trust, 220–221
UIDs (user identification numbers),

213–214
users, 213–214
on the Web

anonymity, 226–232
anonymizers, 226
cookies, 225
Cypherpunk remailers, 227–229
DNS (domain name service), 224
dynamic identifiers, 222–224
host identity, 221–224
Mixmaster remailers, 229–230
proxy servers, 226
pseudo-anonymous remailers, 227–230
pseudonymous remailers, 227–230
state, 225
static identifiers, 222–224
type 1 remailers, 227–229
type 2 remailers, 229–230

Identity-based access control (IBAC),
53–54

IDF virus, 370. See also malicious logic.
IDIP (Intrusion Detection and Isolation

Protocol), 470–471
IDIP domains, 481
IDS (intrusion detection systems). See also

intrusion detection.
architecture

adaptive directors, 469
agent, 465–468
director, 469
host-based information gathering,

466–468

Bishop.book Page 727 Tuesday, September 28, 2004 1:46 PM

728 Index

IDS continued
network-based information gathering,

467–468
notifier, 469–471

definition, 457
goals, 457–458
models

adaptive, 459
anomaly detection, 459
anomaly modeling, 459–461
comparison of, 464–465
misuse detection, 461
misuse modeling, 461–463
specification modeling, 463–464
specification-based detection, 463
static, 459
time-based inductive learning, 460

organization of
AAFID (Autonomous Agents for

Intrusion Detection), 475–476
DIDS (Distributed Intrusion Detection

System), 472–475
NSM (Network Security Monitor),

471–472
ifconfig program, 456
Immediate forward dominator, 271
Impersonation. See delegation; spoofing.
Implementation, capabilities, 247–248
Implementation assurance, 316
Implementation rules, program security,

621–622
Implementation stage, 321–322
Implicit labels, security policy example,

66–69
Implicit sharing of privileged/confidential

data, 408
Improper

change, program security, 604–609
choice of initial protection domain

description, 410
fingerd buffer overflow flaw, 418
program security, 598–603
xterm log file flaw, 416

choice of operand or operation
description, 412

fingerd buffer overflow flaw, 418
program security, 619–621

deallocation
description, 411
program security, 611–612
xterm log file flaw, 416

deletion
description, 411
program security, 611–612

indivisibility
description, 412
program security, 617–618
xterm log file flaw, 416

isolation of implementation detail
description, 410
fingerd buffer overflow flaw, 418
program security, 603–605

naming, 411, 609–611
protection domain initialization and

enforcement, 410
sequencing

description, 412
program security, 618–619
xterm log file flaw, 416

synchronization, 411
validation

description, 411
fingerd buffer overflow flaw, 418
program security, 612–617

Improper change class, 411, 418
Inadequate

identification/authorization/authentica
tion, 408, 418–419

Inadequate serialization, 417, 418
Inadvertent flaws, 412, 417
Incomplete parameter validation, 408,

417–418
Inconsistent parameter validation, 408
Index of coincidence, cryptography,

103–107
Indivisibility, improper

description, 412
program security, 617–618
xterm log file flaw, 416

Infinite loops, 272–273

Bishop.book Page 728 Tuesday, September 28, 2004 1:46 PM

Index 729

Information assurance, 310. See also
assurance.

Information content, integrity, 3
Information flow

compiler-based mechanisms
assignment statements, 266
basic block, 269
compound statements, 267
concurrency, 274–276
conditional statements, 267–268
declarations, 264–266
exceptions, 272–273
GoTo statements, 269–272
immediate forward dominator, 271
infinite loops, 272–273
iterative statements, 268–269
loops, 268–269, 272–273
overview, 263–264
procedure calls, 272
program statements, 266–272
semaphores, 274–276
soundness, 276–277

examples
SNSMG (Secure Network Server

Mail Guard), 282–283
SPI (security pipeline interface), 282

execution-based mechanisms
Fenton's Data Mark Machine,

278–280
overview, 277
variable classes, 280–281

guards, 326
metrics, 377–378. See also malicious

logic.
overview, 261–263

Information gathering and flaw hypothesis,
394–395

Information source, integrity, 3
Information Technology Security

Evaluation Criteria (ITSEC),
evaluating cryptographic models, 341

Infrastructure analysis, networks, 496–500
Initial protection domain, improper choice of

description, 410
fingerd buffer overflow flaw, 418

program security, 598–603
xterm log file flaw, 416

Initialization vector, ciphers, 152
Input checking, 615–616
Insertion phase, viruses, 366. See also

malicious logic.
Insiders, 19–20
Integration, 322
Integrity

authentication, 3
data, 3
description, 3
detection mechanisms, 3
information content, 3
information source, 3
origin, 3
prevention mechanisms, 3

Integrity policies
See also confidentiality policies
See also hybrid policies
See also security policies
auditing, 74
Biba model, 75–76
Clark-Wilson model

CDIs (constrained data items), 77–79
certification rules, 77–79
consistent state, 76
constraints, 77–79
enforcement rules, 77–79
IVPs (integrity verification

procedures), 77–79
versus other models, 80–81
overview, 76–81
requirements, 79–80
TPs (transformation procedures),

77–79
UDIs (unconstrained data items),

77–79
valid state, 77–79
well-formed transactions, 76

definition, 47, 51
goals of, 73–74
principles of operation, 73–74
requirements, 73–74
separation of duty, 74

Bishop.book Page 729 Tuesday, September 28, 2004 1:46 PM

730 Index

Integrity policies continued
separation of function, 74
trust, 50

Integrity verification procedures (IVPs),
77–79

Intentional flaw of serialization/aliasing, 417
Intentional flaws, 412, 417
Interchange keys, 124, 158–159
Intermediate hosts, 507–508
Internal networks, 504–506
Internet Research Task Force on Privacy, 157
Intrusion detection

See also auditing
See also IDS (intrusion detection

systems)
See also penetration studies
autonomous agents, 475–476
basic process, 456–458
connection IDs, 471–472
and fault tolerance, 475–476
host monitoring, 472–475
network monitoring, 471–475
NID (network identification number),

473
principles, 455–456
signatures, 471–472
tools

attack tools, 456
Deception Toolkit, 479
DIDS (Distributed Intrusion Detection

System), 472–475
GrIDS (Graphical Intrusion Detection

System), 470
Honeypot Project, 479
IDIP (Intrusion Detection and

Isolation Protocol), 470–471
ifconfig program, 456
netstat program, 456
NSM (Network Security Monitor),

471–472
rootkit tool, 456–457
SATAN, 470
zapper program, 457

Intrusion Detection and Isolation Protocol
(IDIP), 470–471

Intrusion response
handling

boundary controllers, 481
containment phase, 478–479
counterattacking, 482–484
decoy servers, 479
eradication phase, 479–482
firewalls, 480
follow-up phase, 482–484
honeypots, 479
IDIP domains, 481
neighbors, 481
offering false information, 479
phases of, 477–478
targets, 479
wrappers, 480

jailing attackers, 477
prevention, 476–477

IPsec, 161–167
Isolation. See confinement problem.
Isolation of implementation detail, improper

description, 410
fingerd buffer overflow flaw, 418
program security, 603–605

Israeli virus, 369. See also malicious logic.
Iterative statements, 268–269
ITSEC (Information Technology Security

Evaluation Criteria), evaluating
cryptographic models, 341

IVPs (integrity verification procedures), 77–79

J
Jailing techniques, 184, 477
Jerusalem virus, 369. See also malicious logic.
Judges, 137

K
Kerberos protocol, 128–129
Keyed checksums, 118
Keyed hash function, 118–119
Keyless checksums, 118
Keys, 252–254
Keys, cryptographic

autokey, 150–151
binding identities to, 130

Bishop.book Page 730 Tuesday, September 28, 2004 1:46 PM

Index 731

CA (certificate authority), 133
certificate revocation list, 137
certificate signature chains, 131–135
certificates

definition, 131
invalid, list of, 137
issuers, 133

classical authentication, 125–128
classical key exchange, 125–128
classical signatures, 138
cross-certified CAs, 133
digital signatures, 137–140
exchange, 124–130
infrastructures, 130–135
interchange, 124
judges, 137
Kerberos protocol, 128–129
length

classical cryptosystems, 102
DES (Data Encryption Standard), 111
random, infinite, simulating, 148–150

Needham-Schroeder protocol, 125–128
obtaining from messages, 150–151
PGP program, 134–135
public, 113–116
public key authentication, 129–130
public key exchange, 129–130
public key infrastructure, 136
public key signatures, 139–140
revoking, 137
round key ciphers, 108
session, 124
storing, 136–137
user security, 571–572
X.509 Directory Authentication

Framework protocol, 132–133
Keystrokes, authentication by, 192
Known plaintext only attack, 98
Known violations of policy, 437–438

L
LAFS (logging and auditing file system),

445–447
Lattices, 633–635
Laws and customs, 16–17

Layer methodology, penetration studies, 393
Layering tests, penetration studies, 392
Least common mechanism principle, 206
Least privilege principle, 201–202
LFSR (n-stage linear feedback shift

register), 148–149
Life Cycle class, 351
Life cycle of systems, 316–320. See also

waterfall life cycle model.
Link encryption, 154–156
Link protocol, 153–156
Location, authentication by, 193
LOCK (Logical Coprocessor Kernel), 376.

See also malicious logic.
Locks, 252–254
Log files

browsing, 448–450
sanitization, 431–433

Log server, 503–504
Logger, 424–426
Logging

definition, 423
designing an auditing system, 433–434

Logging and auditing file system (LAFS),
445–447

Logic bombs, 375. See also malicious logic.
Logical Coprocessor Kernel (LOCK), 376.

See also malicious logic.
Login, 558–560
Login names, identity, 213–214
Logoff, 560–562
LOKI89 cipher, 113
Loops, 268–269, 272–273

M
MAC (mandatory access control)

Bell-LaPadula model, 62
definition, 53–54
ORCON (originator controlled access

control), 91–92
TCSEC (Trusted Computer System

Evaluation Criteria), 335
MAC labels, security policy example

assigning, 66–69
using, 69–70

Bishop.book Page 731 Tuesday, September 28, 2004 1:46 PM

732 Index

MacMag Peace virus, 367. See also
malicious logic.

Macro virus, 372–373. See also malicious
logic.

Mail server, 500–501
Maintenance

ACLs (access control lists), 240–243
life cycle stage, 322
program security, 623–627

Maintenance of Assurance class, 351
Malicious flaws, 412
Malicious logic

bacteria, 374–375
defenses against

acting as both data and instructions, 376
actions outside specification, 383–384
altering files, 382–383
assuming user identity, 377–381
credibility ratings, 383
exposure by sharing, 381–382
fault tolerance, 383–384
flow distance metric, 377–378
information flow metrics, 377–378
limiting user rights, 378–381
LOCK (Logical Coprocessor Kernel),

376
MDCs (manipulation detection

codes), 382–383
PCC (proof-carrying code), 384
sandboxes, 381
statistical characteristics, 384–385
trust, 385
virtual machines, 381

definition, 364
denial of service attacks, 374–375
Father Christmas worm, 374
IBM Christmas card worm, 374
logic bombs, 375
propagating Trojan horse, 365
rabbits, 374–375
replicating Trojan horse, 365
Trojan horses, 364–365
user security, 574
viruses

actions, 366

definition, 366
execution phase, 366
insertion phase, 366
origin of, 366–367
overview, 365–367
spread conditions, 366
target files, 366

viruses, types of
1260, 371, 372
4096, 370
boot sector infectors, 367–368
Brain, 367, 368
data, 373
encrypted, 370–371
executable infectors, 368–369
IDF, 370
Israeli, 369
Jerusalem, 369
MacMag Peace, 367
macro, 372–373
Melissa, 373
multipartite, 369
Pakistani, 367
polymorphic, 371–372
Stealth, 370
TSR (terminate and stay resident),

370
worms, 373–374

Mandatory access control (MAC). See MAC
(mandatory access control).

Man-in-the-middle attacks, 5, 130
Manipulation detection codes (MDCs),

382–383. See also malicious logic.
Manufacturing stage, 318–319
Masquerading. See delegation; spoofing.
Matching routines, error handling, 596–597
Maximum security level, Bell-LaPadula

model, 65
MDCs (manipulation detection codes),

382–383. See also malicious logic.
Mechanisms

See also access control mechanisms
See also compiler-based mechanisms
See also security mechanisms
detection, 3

Bishop.book Page 732 Tuesday, September 28, 2004 1:46 PM

Index 733

execution-based
Fenton's Data Mark Machine, 278–280
overview, 277
variable classes, 280–281

for policy enforcement, 325
prevention, 3
RVM (reference validation mechanism),

325
state-based auditing, 435–436
state-based logging, 435–436
transition-based auditing, 436
transition-based logging, 436

Medical policies. See clinical information
systems policies.

Melissa virus, 373. See also malicious logic.
Memory allocation, networks, 508–510
Memory changes, 605–608
Memory protection, 601–602
Message digest, 116
Message integrity check (MIC), 159
Methodically Designed, Tested, and

Reviewed assurance level, 352
Methodically Tested and Checked assurance

level, 352
MIC (message integrity check), 159
Michigan Terminal System penetration

study, 396–398
Military security policies, 49
Misordered cipher blocks, 146
Misuse model, IDS, 461–463
Mitigation, covert channels, 303–305
Mixmaster remailers, 229–230
Modeling security. See security models.
Modification of information, 5
Monitors, 569
Moving files, 570–571
Multics, security features, 326
Multipartite virus, 369. See also malicious

logic.
Multiple encryption, ciphers, 152–153

N
Naming

identity, 215–221
improper, 411, 609–611

National Computer Security Center
(NCSC), 339

NCSC (National Computer Security
Center), 339

Needham-Schroeder protocol, 125–128
Neighbors, 481
netstat program, 456
Network identification number (NID), 473
Network Security Monitor (NSM), 471–472
Network TCB (NTCB), 339
Network-based information gathering,

467–468
Network-level security, 161–167
Networks

anticipating attacks, 510–512
assurance, 506
availability, 507–510
development system, 526–529
DMZ

definition, 493
DNS server, 503
log server, 503–504
mail server, 500–501
network infrastructure, 496–500
servers, 500–504
Web server. See Web server, DMZ.

firewalls
configuring, inner, 499–500
configuring, outer, 497–499
definition, 494
filtering, 496
goals, inner, 499–500
goals, outer, 497–499
overview, 494–496

flooding, 507–510
infrastructure analysis, 496–500
intermediate hosts, 507–508
internal, 504–506
intrusion detection, 471–475
memory allocation, 508–510
NTCB (Network TCB), 339
organization, 493–496
policy development

availability, 492
consistency, 492–493

Bishop.book Page 733 Tuesday, September 28, 2004 1:46 PM

734 Index

Networks continued
data classes, 489
overview, 488–489
user classes, 490–491

proxies, 494–496
security, 153–156, 161–167
SYN cookies, 509
SYN flood, 507–508
TCP state, 508–510
TCP wrappers, 527
TNI (Trusted Network Interpretation),

339
Web server, DMZ, 524–526, 528–529

NewDES cipher, 112
NFS Version 2 protocol, auditing example,

441–445, 447
NID (network identification number), 473
NIMDA worm, 575
NLFSR (n-stage nonlinear feedback shift

register), 149–150
Noiseless covert channels, 295
Nonmalicious flaws, 412, 417
Nonsecure systems, auditing mechanisms,

440–441
Notifier, auditing system, 427
Notifier, IDS (intrusion detection systems),

469–471
NRL taxonomy

fingerd buffer overflow flaw, 419
flaw classes, 412–414
inadvertent flaws, 412, 417
intentional flaw of serialization/aliasing,

417
intentional flaws, 412, 417
malicious flaws, 412
nonmalicious flaws, 412, 417
versus other frameworks, 416–420
overview, 412–414
xterm log file flaw, 417

NSM (Network Security Monitor), 471–472
n-stage linear feedback shift register

(LFSR), 148–149
n-stage nonlinear feedback shift register

(NLFSR), 149–150
NTCB (Network TCB), 339

O
Object installed with incorrect permissions

class, 417
Objects

access control matrix model, 28–29
Chinese Wall model, 84
identity, 212–213

1260 virus, 371, 372. See also malicious
logic.

One-time pad
definition, 107
simulating, 149

One-time passwords, 187–188
Open design principle, 204–205
Operand or operation, improper choice of

description, 412
fingerd buffer overflow flaw, 418
program security, 619–621

Operation, program security, 623–627
Operational assurance, 316
Operational issues, security policies and

mechanisms
cost-benefit analysis, 14–15
laws and customs, 16–17
risk analysis, 15–16

Orange Book. See TCSEC.
ORCON (originator controlled access

control), 54, 91–92
Organizational problems, 18–19
ORGCON. See ORCON (originator

controlled access control).
Origin integrity, 3, 46. See also

authentication.
Originator controlled access control

(ORCON), 54, 91–92
Osprey crashes, 313
Output feedback mode, 149–150
Outsiders, 19–20
Own right, access control matrix model, 29

P
PA (Protection Analysis)

fingerd buffer overflow flaw, 418
flaw classes, 410–412
improper change class, 411, 418

Bishop.book Page 734 Tuesday, September 28, 2004 1:46 PM

Index 735

improper choice of initial protection
domain flaws, 410, 416, 418

improper choice of operand or operation,
412, 418

improper deallocation flaws, 411, 416
improper deletion errors, 411
improper indivisibility flaws, 412, 416
improper isolation of implementation

detail flaws, 410, 418
improper naming flaws, 411
improper protection domain initialization

and enforcement flaws, 410
improper sequencing flaws, 412, 416
improper synchronization flaws, 411
improper validation flaws, 411, 418
versus other frameworks, 416–420
overview, 409–410
pattern-directed protection evaluation,

409–410
xterm log file flaw, 416–417

PACLs (Propagated Access Control Lists),
257–258

Paging, virtual machines, 647–648
Pakistani virus, 367. See also malicious logic.
PAM (pluggable authentication modules),

194–195
Partial ordering, 633–635
Pass algorithms, 186–187
Passive wiretapping, 5
Passwords. See also authentication.

aging, 184–186
attacks

backoff techniques, 183–184
counter measures, 175–184
dictionary, 174, 182–183, 189–190
disabling techniques, 184
disconnection techniques, 183–184
exponential backoff techniques,

183–184
guessing, 174–184
honeypots, 184
jailing techniques, 184
salting techniques, 182

challenge-response, 186–190
computer generated, 177–178

ease of guessing, 178–182
one-time, 187–188
pass algorithms, 186–187
phonemes, 177
proactive checking, 180–182
proactive selection, 178–182
pronounceable, 177–178
random selection, 176–177
requiring change, 184–186
reusing, 182–183
time limits, 176–177
tokens, 188
user security, 556–559, 571–572
user selected, 178–182

Patients, 88
Pattern-directed protection evaluation,

409–410
PCC (proof-carrying code), 384. See also

malicious logic.
PEM (Privacy-enhanced Electronic Mail)

protocol, 156–157, 160
Penetration studies. See also intrusion

detection.
examples

Burroughs System, 398–399
corporate computer system, 399–400
Michigan Terminal System, 396–398
UNIX system, 400–402
Windows NT system, 402–403

flaw elimination, 396
flaw generalization, 395–396
Flaw Hypothesis Methodology, 393–396
flaw testing, 395
goals, 391–392
information gathering and flaw

hypothesis, 394–395
layer methodology, 393
layering tests, 392

People problems, 19–20
Performed Informally maturity level, 358
Period of ciphers, 102
Period of the cipher, 102
Permissions

ACL defaults, 243
assigning on creation, 563–564

Bishop.book Page 735 Tuesday, September 28, 2004 1:46 PM

736 Index

Permissions continued
file access control, 600–601
object installed with incorrect

permissions class, 417
Persona certificates, 219
Personal health information, 88. See also

clinical information systems policies.
PGP program, 134–135, 160
Phonemes, passwords, 177
Pigeonhole principle, 117
Pluggable authentication modules (PAM),

194–195
Policies

See also confidentiality policies
See also hybrid policies
See also integrity policies
See also security policies
program security, 580–583
system security

development system, 519–523
Web server, DMZ, 518–519, 522–523

user security, 555–556
Policy assurance, 314–315
Policy development, networks

availability, 492
consistency, 492–493
data classes, 489
overview, 488–489
user classes, 490–491

Polyalphabetic ciphers, 102
Polymorphic virus, 371–372. See also

malicious logic.
Potential violations. See threats.
PP (CC protection profile), 344
Prevention, 8
Prevention mechanisms, 3
Prevention phase, intrusion detection,

476–477
Principals, identity, 211
Principles of design

access to objects, 203–204
access to system entities, 203–204
complete mediation, 203–204
dependence on secrecy, 204–205
economy of mechanism, 202–203

fail-safe defaults, 202
human elements, 206–207
least common mechanism, 206
least privilege, 201–202
open design, 204–205
overview, 199–201
privilege restrictions, 201–202, 205–206
psychological acceptability, 206–207
restriction, 199–200
separation of privilege, 205–206
sharing, 206
simplicity, 199–200

Privacy
electronic mail, 156–157
Internet Research Task Force on Privacy,

157
PEM (Privacy-enhanced Electronic Mail)

protocol, 156–157
Privacy Research Group, 157

Privacy class, 350
Privacy Research Group, 157
Privacy-enhanced Electronic Mail (PEM)

protocol, 156–157
Privilege restrictions, principles of design,

201–202, 205–206
Privileged users, ACLs, 242
Privileges, virtual machines, 645–646
Proactive checking passwords, 180–182
Proactive selection of passwords, 178–182
Problems, program security. See also

attacks; threats.
access control of file permissions,

600–601
bounds checking, 612–613
data validity checking, 614–615
error checking, 614
file content changes, 608
improper change, 604–609
improper choice of initial protection

domain, 598–603
improper choice of operand or operation,

619–621
improper deallocation, 611–612
improper deletion, 611–612
improper indivisibility, 617–618

Bishop.book Page 736 Tuesday, September 28, 2004 1:46 PM

Index 737

improper isolation of implementation
detail, 603–605

improper naming, 609–611
improper sequencing, 618–619
improper validation, 612–617
input checking, 615–616
memory changes, 605–608
memory protection, 601–602
overview, 597–598
process privileges, 598–600
race conditions, file access, 608–609
resource exhaustion, 603–604
restricting role process protection

domain, 604–605
time-of-check-to-time-of-use problem,

608–609
trust in the system, 602–603
type checking, 613–614
UIDs (user identifiers), 603–604
validating access control entries, 604
validation design, 617

Procedure calls, 272
Processes

capability, 357
maturity, 357
performance, 357
privileges, 598–600
system security

development system, 541–543
Web server, DMZ, 537–540, 542–543

user security
copying files, 570–571
cryptographic keys, 571–572
encryption, 571–572
limiting privileges, 573
malicious logic, 574
moving files, 570–571
overwriting files, 571
passwords, 571–572
search paths, 574
start-up settings, 573

Product ciphers, 108
Program design, 321
Program security

access control records, 595–596

common problems
access control of file permissions,

600–601
bounds checking, 612–613
data validity checking, 614–615
error checking, 614
file content changes, 608
improper change, 604–609
improper choice of initial protection

domain, 598–603
improper choice of operand or

operation, 619–621
improper deallocation, 611–612
improper deletion, 611–612
improper indivisibility, 617–618
improper isolation of implementation

detail, 603–605
improper naming, 609–611
improper sequencing, 618–619
improper validation, 612–617
input checking, 615–616
memory changes, 605–608
memory protection, 601–602
overview, 597–598
process privileges, 598–600
race conditions, file access, 608–609
resource exhaustion, 603–604
restricting role process protection

domain, 604–605
time-of-check-to-time-of-use

problem, 608–609
trust in the system, 602–603
type checking, 613–614
UIDs (user identifiers), 603–604
validating access control entries, 604
validation design, 617

design process
access control data, storing, 587–590
command access, 585–590
error handling, 596–597
framework, 584–585
functions, 594–597
high-level design, 584–585
interface, 586
internals, 586–587

Bishop.book Page 737 Tuesday, September 28, 2004 1:46 PM

738 Index

Program security continued
matching routines, error handling,

596–597
reading routines, error handling,

596–597
refinement, 590–594
role access, 585–590
user interface, 584

distribution, 627–629
implementation rules, 621–622
location, obtaining, 594–595
maintenance, 623–627
operation, 623–627
policy, 580–583
requirements, 580–583
roles

authorized access, 582–583
definition, 579
unauthorized access, 581–582

testing, 623–627
threats, 581–583

authorized role access, 582–583
unauthorized role access, 581–582

Program statements, 266–272
Pronounceable passwords, 177–178
Proof of concept, 318
Proof-carrying code (PCC), 384. See also

malicious logic.
Propagated Access Control Lists (PACLs),

257–258
Propagating Trojan horse, 365. See also

malicious logic.
Properties, of covert channels, 295
Protection Analysis (PA). See PA

(Protection Analysis).
Protection analysis model, 409–410
Protection domain initialization and

enforcement, improper, 410
Protection of Security class, 350
Protection Profile Evaluation class, 351
Protection profiles, 355–356
Protection rings, 255–256
Protection state. See also access control

matrix model.
overview, 27–28

state transition
conditional commands, 33–34
definition, 28
overview, 31–33
transformation procedures, 31

Protection system, 27. See also access
control matrix model.

Prototyping, 323
Proxies, 494–496
Proxy servers, 226
Pseudo-anonymous remailers, 227–230
Pseudonymizing sanitizers, 431–433
Pseudonymous remailers, 227–230
Psychological acceptability principle,

206–207
Public key

authentication, 129–130
cryptography, 113–116
exchange, 129–130
infrastructure, 136
signatures, 139–140

Pumps, 304–305

Q
Quantitatively Controlled maturity level, 358

R
Rabbits, 374–375. See also malicious logic.
Race conditions, file access, 608–609
Race conditions class, 417
Radiation overdose, 312
RAMP (Ratings Maintenance Program), 338
Random selection passwords, 176–177
Ranges, security policy example, 69–70
Ratings Maintenance Program (RAMP), 338
RBAC (role-based access control), 92–94
Reading routines, error handling, 596–597
Recording system events. See logging.
Recovery, 8–9
REDOC II cipher, 112
Reference monitor, 325
Reference validation mechanism (RVM), 325
Repairing damage. See recovery.
Replicating Trojan horse, 365. See also

malicious logic.

Bishop.book Page 738 Tuesday, September 28, 2004 1:46 PM

Index 739

Repudiation of origin, 6
Requirements, Clark-Wilson model, 79–80
Research Into Secure Operating Systems

(RISOS). See RISOS (Research Into
Secure Operating Systems).

Resource exhaustion, 603–604
Resource Utilization class, 350
Restricting role process protection domain,

604–605
Restriction, principles of design, 199–200
Retinal images, authentication by, 191
Reusing passwords, 182–183
Revocation of rights

ACLs (access control lists), 243–244
capabilities, 249–250

Revoking certificates, 137
Rijndael, 112
Ring-based access control, 255–256
Rings, 255–256
Risk analysis, 15–16
RISOS (Research Into Secure Operating

Systems)
asynchronous validation flaws, 417, 418
exploitable logic error flaws, 409, 417
fingerd buffer overflow flaw, 418–419
flaw classes, 408–409
implicit sharing of privileged/

confidential data flaws, 408
inadequate

identification/authorization/authent
ication flaws, 408, 418–419

inadequate serialization flaws, 417, 418
incomplete parameter validation flaws,

408, 417–418
inconsistent parameter validation flaws,

408
versus other frameworks, 416–420
overview, 406–407
protection analysis model, 409–410
violable prohibition/limit flaws, 409,

417, 418
xterm log file flaw, 417–418

Role access, 585–590
Role-based access control (RBAC), 92–94

Roles
identity, 214–215
program security

authorized access, 582–583
unauthorized access, 581–582

Rootkit tool, 456–457
Round key ciphers, 108
Rounds (iterations), cipher, 108
RSA cipher, 114–116
Rule of transitive confinement, 289
RVM (reference validation mechanism), 325

S
Safe environments, 292–294
Safety problem, 38–43
Salting techniques, 182
Sandboxes, 292–294, 381
SATAN, 470
Scrambling data. See cryptography.
Search paths, user security, 574
Secure, definition, 37
Secure Network Server Mail Guard

(SNSMG), 282–283
Secure systems

auditing mechanisms, 438–440
definition, 45

Security association (SSA), 162–164
Security assurance, 310. See also assurance.
Security Audit class, 349
Security clearances, Bell-LaPadula model,

62
Security domains, 337
Security Features User's Guide (SFUG), 336
Security functional requirements, 349–350
Security gateways, 161
Security kernel, 325
Security Management class, 350
Security mechanisms. See also detection

mechanisms; prevention mechanisms.
assumptions, 9–10
definition, 7, 48
human issues

insiders, 19–20
organizational problems, 18–19

Bishop.book Page 739 Tuesday, September 28, 2004 1:46 PM

740 Index

Security mechanisms continued
outsiders, 19–20
people problems, 19–20
social engineering attacks, 19–20

importance of feedback, 20–21
operational issues

cost-benefit analysis, 14–15
laws and customs, 16–17
risk analysis, 15–16

overview, 7–8
Security mechanisms, trust

assurance
overview, 10–11
a posteriori verification, 13–14
system design, 11–12
system implementation, 12–14
system specification, 11–12
testing, 13–14

overview, 9–10
Security models

definition, 49
foundational results, 37–43
IDS

adaptive, 459
anomaly detection, 459
anomaly modeling, 459–461
comparison of, 464–465
misuse detection, 461
misuse modeling, 461–463
specification modeling, 463–464
specification-based detection, 463
static, 459
time-based inductive learning, 460

proof of effectiveness, 37–43
safety problem, 38–43

Security pipeline interface (SPI), 282
Security policies

See also confidentiality policies
See also hybrid policies
See also integrity policies
access control, types of, 53–54
assumptions, 9–10
confidentiality. See also hybrid policies.

Bell-LaPadula model, 62–66
categories, 63

current security level, 65
definition, 47, 51
goals of, 61
maximum security level, 65
security clearances, 62
trust, 50

confidentiality, examples
Data General B2 UNIX system, 66–70
implicit labels, 66–69
MAC labels, assigning, 66–69
MAC labels, using, 69–70
ranges, 69–70
upper/lower bounds, 69–70

DAC (discretionary access control)
Bell-LaPadula model, 62
definition, 53–54
ORCON (originator controlled access

control), 91–92
definition, 7, 45
examples

academic computers, 54–58
electronic mail, 55–56
UC Davis, 54–58

human issues
insiders, 19–20
organizational problems, 18–19
outsiders, 19–20
people problems, 19–20
social engineering attacks, 19–20

hybrid
ORCON (originator controlled access

control), 91–92
RBAC (role-based access control),

92–94
hybrid, Chinese Wall model

Bell-LaPadula model, 86–87
CD (company dataset), 84
Clark-Wilson model, 87–88
COI (conflict of interest), 84
objects, 84
overview, 83–86

hybrid, clinical information systems
policies

Access Principles 1-4, 89
Aggregation Principle, 90

Bishop.book Page 740 Tuesday, September 28, 2004 1:46 PM

Index 741

Bell-LaPadula model, 90–91
Clark-Wilson model, 90–91
clinicians, 88
Confinement Principle, 90
Creation Principle, 89
Deletion Principle, 90
Enforcement Principle, 90
overview, 88–90
patients, 88
personal health information, 88
principles, 88–90

IBAC (identity-based access control),
53–54

implicit versus explicit, 48–49
importance of feedback, 20–21
information flow, 47
information flow policy. See

confidentiality policies.
integrity. See also hybrid policies.

auditing, 74
Biba model, 75–76
goals of, 73–74
principles of operation, 73–74
requirements, 73–74
separation of duty, 74
separation of function, 74

integrity, Clark-Wilson model
CDIs (constrained data items), 77–79
certification rules, 77–79
consistent state, 76
constraints, 77–79
enforcement rules, 77–79
IVPs (integrity verification

procedures), 77–79
versus other models, 80–81
overview, 76–81
requirements, 79–80
TPs (transformation procedures),

77–79
UDIs (unconstrained data items),

77–79
valid state, 77–79
well-formed transactions, 76

MAC (mandatory access control)
Bell-LaPadula model, 62

definition, 53–54
ORCON (originator controlled access

control), 91–92
operational issues

cost-benefit analysis, 14–15
laws and customs, 16–17
risk analysis, 15–16

ORCON (originator controlled access
control), 54

overview, 7–8
separation of duties, 47
statement of, 47–48
types of

See also confidentiality policies
See also hybrid policies
See also integrity policies
commercial, 50
governmental, 49
military, 49
transaction-oriented integrity, 50

Security policies, trust
assurance

overview, 10–11
a posteriori verification, 13–14
system design, 11–12
system implementation, 12–14
system specification, 11–12
testing, 13–14

overview, 9–10
role of, 51–53

Security Target Evaluation class, 351
Security targets, 346–348, 355–356
Self-healing property, 151
Self-synchronous stream, 150–151
Semaphores, 274–276
Semiformally Designed and Tested

assurance level, 352
Semiformally Verified Design and Tested

assurance level, 352
Sensitive data structure, 645–646
Sensitive instruction, 645–646
Separation of duties, 47
Separation of duty, integrity policies, 74
Separation of function, integrity policies, 74
Separation of privilege principle, 205–206

Bishop.book Page 741 Tuesday, September 28, 2004 1:46 PM

742 Index

Sequencing, improper
description, 412
program security, 618–619
xterm log file flaw, 416

Servers
decoy, 479
DMZ, 500–504
DNS, 503
DNS server, 503
log, 503–504
log server, 503–504
mail, 500–501
mail server, 500–501
proxy, 226
Web server, DMZ

authentication, 535, 537
description, 501–502, 549
files, 543–545, 547–548
networks, 524–526, 528–529
policy, 518–519, 522–523
processes, 537–540, 542–543
users, 529–531, 534

Session keys, 124
SFUG (Security Features User's Guide), 336
Sharing, principles of design, 206
Shoulder surfing, 559
Signatures, intrusion detection, 471–472
Simplicity, principles of design, 199–200
Single-key cryptosystems. See classical

cryptosystems.
Smart terminals, 567–568
Snooping, 5
SNSMG (Secure Network Server Mail

Guard), 282–283
Social engineering attacks, 19–20
Software design, 321. See also auditing

system, designing; program security,
design process.

Software development models, 323–324
Software fault isolation, 293
Space shuttle explosion, 312
Specification model, IDS, 463–464
Specification-based detection, IDS, 463
SPI (security pipeline interface), 282

Spoofing, 5
Spread conditions, viruses, 366. See also

malicious logic.
SSA (security association), 162–164
SSE-CMM (System Security Engineering

Capability Maturity Model), 356–359
Starting a session, 558–560
Start-up settings, user security, 573
State

consistent, 76
identity, 225
transition

conditional commands, 33–34
definition, 28
overview, 31–33
transformation procedures, 31

validity, 77–79
State-based auditing mechanism, 435–436
State-based logging mechanism, 435–436
Static identifiers, 222–224
Static model, IDS, 459
Statistical characteristics, defense against

malicious logic, 384–385
Statistical regularities, ciphers, 146–147
Stealth virus, 370. See also malicious logic.
Stopping a session, 560–562
Storage channels, 294–295
Stream ciphers, 148–151
Structurally Tested assurance level, 352
Structured protection class, 337
Subjects, access control matrix model, 28
Substitution ciphers, 100–107
Symmetric cryptosystems. See classical

cryptosystems.
SYN cookies, networks, 509
SYN flood, networks, 507–508
Synchronization, improper, 411
Synchronous stream ciphers, 148–150
System design, 11–12, 321
System implementation, 12–14
System security

authentication
development system, 535–537
Web server, DMZ, 535, 537

Bishop.book Page 742 Tuesday, September 28, 2004 1:46 PM

Index 743

development system
authentication, 535–537
description, 550
files, 545–548
networks, 526–529
policy, 519–523
processes, 541–543
users, 531–534

files
development system, 545–548
Web server, DMZ, 543–545, 547–548

networks
development system, 526–529
TCP wrappers, 527
Web server, DMZ, 524–526, 528–529

overview, 517
policy

development system, 519–523
Web server, DMZ, 518–519, 522–523

processes
development system, 541–543
Web server, DMZ, 537–540, 542–543

users. See user security.
Web server, DMZ

authentication, 535, 537
description, 549
files, 543–545, 547–548
networks, 524–526, 528–529
policy, 518–519, 522–523
processes, 537–540, 542–543
users, 529–531, 534

System Security Engineering Capability
Maturity Model (SSE-CMM),
356–359

System specification, 11–12
System testing, 322

T
Tableau (table), ciphers, 102
Tagged architecture, capabilities, 247
Target files, viruses, 366. See also malicious

logic.
Targets, 479
TCB (trusted computing base), 325
TCP state, networks, 508–510

TCSEC (Trusted Computer System
Evaluation Criteria). See also
evaluating systems.

contributions, 340–341
controlled access protection class, 337
discretionary protection class, 337
evaluation classes, 337–338
evaluation process, 338
impacts of, 338–341
process limitations, 339–340
RAMP (Ratings Maintenance Program),

338
requirements

assurance, 336–337
audit, 335–336
configuration management, 336
DAC (discretionary access control),

335–336
design specification and verification,

336
functional, 335–336
I&A (identification and

authentication), 335
label, 335
MAC (mandatory access control), 335
object reuse, 335
overview, 334–335
product documentation, 336
system architecture, 336
testing, 336
trusted distribution, 336
trusted path, 335

scope limitations, 339
security domains, 337
structured protection class, 337
verified protection, 337–338

TDI (Trusted Database Management
System Interpretation), 339

Terminate and stay resident (TSR) virus,
370. See also malicious logic.

Testing
description, 13–14
program security, 623–627
TCSEC (Trusted Computer System

Evaluation Criteria), 336

Bishop.book Page 743 Tuesday, September 28, 2004 1:46 PM

744 Index

Tests class, 351
TFM (Trusted Facility Manual), 336
Therac 25 radiation overdose, 312
Threats. See also attacks; problems.

acceptance of false data. See deception.
attackers, 4–6
attacks, 4
classes of, 4–6
deception

active wiretapping, 5
definition, 4
delegation, 5
denial of receipt, 6
man-in-the-middle attack, 5
modification of information, 5
repudiation of origin, 6
spoofing, 5. See also delegation.

disclosure
definition, 4
passive wiretapping, 5
snooping, 5

disruption, 5
false denials. See denial of receipt;

repudiation of origin.
interruption of operations. See

disruption.
program security

authorized role access, 582–583
unauthorized role access, 581–582

unauthorized information access. See
disclosure.

unauthorized system control. See
usurpation.

usurpation
active wiretapping, 5
definition, 5
delay, 6
delegation, 5
denial of service, 6
man-in-the-middle attack, 5
modification of information, 5
spoofing, 5. See also delegation.

Three Mile Island failure, 313
Time limits on issuing passwords, 176–177
Time-based inductive learning, IDS, 460

Time-of-check-to-time-of-use problem,
608–609

Timing channels, 294–295
TNI (Trusted Network Interpretation), 339
TOE Access class, 350
Toe Security Function (TSF), 344
Toe Security Policy (TSP), 344
Tokens, passwords, 188
Total isolation, 288
Total ordering, 633–635
TPs (transformation procedures), 77–79
Traffic analysis, 155–156
Transaction-oriented integrity security

policies, 50
Transformation procedures, state transition,

31
Transformation procedures (TPs), 77–79
Transition-based auditing mechanism, 436
Transition-based logging mechanism, 436
Transport adjacency, 164–165
Transport mode, 161
Transposition ciphers, 99–100
Trojan horses, 364–365. See also malicious

logic.
Trust

and assurance, 309–316
confidentiality policies, 50
defense against malicious logic, 385
identity, 220–221
integrity policies, 50

Trust, security policies and mechanisms
assurance

overview, 10–11
a posteriori verification, 13–14
system design, 11–12
system implementation, 12–14
system specification, 11–12
testing, 13–14

overview, 9–10
Trust in the system, 602–603
Trusted Computer System Evaluation

Criteria (TCSEC). See TCSEC
(Trusted Computer System Evaluation
Criteria).

Trusted computing base (TCB), 325

Bishop.book Page 744 Tuesday, September 28, 2004 1:46 PM

Index 745

Trusted Database Management System
Interpretation (TDI), 339

Trusted distribution, 336
Trusted Facility Manual (TFM), 336
Trusted hosts, user security, 560
Trusted Network Interpretation (TNI), 339
Trusted path, 335
Trusted Path class, 350
Trusted systems, 311
Trustworthy, definition, 310. See also integrity.
TSF (Toe Security Function), 344
TSP (Toe Security Policy), 344
TSR (terminate and stay resident) virus,

370. See also malicious logic.
Tunnel mode, 161
1260 virus, 371, 372. See also malicious

logic.
Type 1 remailers, 227–229
Type 2 remailers, 229–230
Type checking, 253–254, 613–614

U
UC Davis, security policy example, 54–58
UDIs (unconstrained data items), 77–79
UIDs (user identifiers), 213–214, 603–604
Unconstrained data items (UDIs), 77–79
Unexpected content, 576
Unit testing, 321–322
UNIX system penetration study, 400–402
UNIX System V, security features, 326–328
Upper/lower bounds, security policy

example, 69–70
User classes

ACLs (access control lists), 238–240
networks, 490–491

User Data Protection class, 349
User identifiers (UIDs), 213–214, 603–604
User interface, program security, 584
User security. See also human issues.

access control
carrier drop, 561
login, 558–560
logoff, 560–562
passwords, 556–559
starting a session, 558–560

stopping a session, 560–562
trusted hosts, 560

copying files, 570–571
development system, 531–534
devices

monitors, 569
smart terminals, 567–568
window systems, 569
writable, 567

electronic communication
certificate checking, 575–576
electronic mail, 575
unexpected content, 576

files
copying, 570–571
deleting, 565–566
group access, 564–565
moving, 570–571
overview, 562–563
overwriting, 571
permissions on creation, 563–564

identity, 213–214
identity theft, defending against, 377–381
limiting privileges, 573
moving files, 570–571
overwriting files, 571
policy, 555–556
processes

copying files, 570–571
cryptographic keys, 571–572
encryption, 571–572
limiting privileges, 573
malicious logic, 574
moving files, 570–571
overwriting files, 571
passwords, 571–572
search paths, 574
start-up settings, 573

shoulder surfing, 559
Web server, DMZ, 529–531, 534

User-selected passwords, 178–182
Usurpation

active wiretapping, 5
definition, 5
delay, 6

Bishop.book Page 745 Tuesday, September 28, 2004 1:46 PM

746 Index

Usurpation continued
delegation, 5
denial of service, 6
man-in-the-middle attack, 5
modification of information, 5
spoofing, 5

V
Valid state, 77–79
Validation

access control entries, 604
data checking, 614–615
designing for, 617
improper

description, 411
fingerd buffer overflow flaw, 418
program security, 612–617

Variable classes, 280–281
Verified protection, 337–338
Vigenère cipher, 101–107
Violable prohibition/limit, 409, 417, 418
Violations of known policy, 435–436
Virtual machine monitors, 290, 644–648
Virtual machines

defense against malicious logic, 381
isolation, 290–292
paging, 647–648
physical resources, 646–647
privilege, 645–646
sensitive data structure, 645–646
sensitive instruction, 645–646
structure, 643–644

Viruses. See also malicious logic.
actions, 366
definition, 366
execution phase, 366
insertion phase, 366
origin of, 366–367
overview, 365–367
spread conditions, 366
target files, 366
types of

1260, 371, 372
4096, 370
boot sector infectors, 367–368

Brain, 367, 368
data, 373
encrypted, 370–371
executable infectors, 368–369
IDF, 370
Israeli, 369
Jerusalem, 369
MacMag Peace, 367
macro, 372–373
Melissa, 373
multipartite, 369
Pakistani, 367
polymorphic, 371–372
Stealth, 370
TSR (terminate and stay resident),

370
Voices, authentication by, 191
Vulnerabilities class, 351
Vulnerability

classification, 404–406
definition, 389
sample flaws. See also flaws.

comparison and analysis, 415–420
description, 405–406
fingerd buffer overflow flaw, 418–419
xterm log file flaw, 416–418

Vulnerability analysis. See also frameworks.
overview, 389–390
penetration studies

flaw elimination, 396
flaw generalization, 395–396
Flaw Hypothesis Methodology,

393–396
flaw testing, 395
goals, 391–392
information gathering and flaw

hypothesis, 394–395
layer methodology, 393
layering tests, 392

penetration studies, examples
Burroughs System, 398–399
corporate computer system, 399–400
Michigan Terminal System, 396–398
UNIX system, 400–402
Windows NT system, 402–403

Bishop.book Page 746 Tuesday, September 28, 2004 1:46 PM

Index 747

W
Waterfall life cycle model, 320–323. See

also life cycle of systems.
Web, identity on

anonymity, 226–232
anonymizers, 226
cookies, 225
Cypherpunk remailers, 227–229
DNS (domain name service), 224
dynamic identifiers, 222–224
host identity, 221–224
Mixmaster remailers, 229–230
proxy servers, 226
pseudo-anonymous remailers, 227–230
pseudonymous remailers, 227–230
state, 225
static identifiers, 222–224
type 1 remailers, 227–229
type 2 remailers, 229–230

Web server, DMZ
authentication, 535, 537
description, 501–502, 549
files, 543–545, 547–548
networks, 524–526, 528–529

policy, 518–519, 522–523
processes, 537–540, 542–543
users, 529–531, 534

Well-Defined maturity level, 358
Well-formed transactions, 76
Wildcards, ACLs, 242
Window systems, 569
Windows NT system, penetration study,

402–403
Wiretapping, 5
Worms, 373–374, 575. See also malicious

logic.
Wrappers, 480
Writable devices, 567
WWW server. See Web server, DMZ.

X
X.509 Directory Authentication Framework

protocol, 132–133
xterm log file flaw, 416–418

Z
Zapper program, 457

Bishop.book Page 747 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 748 Tuesday, September 28, 2004 1:46 PM

Bishop.book Page 749 Tuesday, September 28, 2004 1:46 PM

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

IIT ad 8/22/02 1:27 PM Page 750

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

� Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you relevance-
ranked results in a matter of seconds.

� Immediate results.
With InformIT Online Books, you can select the book you want
and view the chapter or section you need immediately.

� Cut, paste and annotate.
Paste code to save time and eliminate typographical errors.
Make notes on the material you find useful and choose whether
or not to share them with your work group.

� Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering its
members a 10 book subscription risk-free for 14 days. Visit
http://www.informit.com/onlinebooks for details.

On
lin

e
Bo

ok
s

safariad 8/22/02 1:29 PM Page 751

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

	Contents
	Preface
	Chapter 1: An Overview of Computer Security
	Chapter 2: Access Control Matrix
	Chapter 3: Foundational Results
	Chapter 4: Security Policies
	Chapter 5: Confidentiality Policies
	Chapter 6: Integrity Policies
	Chapter 7: Hybrid Policies
	Chapter 8: Basic Cryptography
	Chapter 9: Key Management
	Chapter 10: Cipher Techniques
	Chapter 11: Authentication
	Chapter 12: Design Princples
	Chapter 13: Representing Identity
	Chapter 14: Access Control Mechanisms
	Chapter 15: Information Flow
	Chapter 16: Confinement Problem
	Chapter 17: Introduction to Assurance
	Chapter 18: Evaluating Systems
	Chapter 19: Malicious Logic
	Chapter 20: Vulnerability Analysis
	Chapter 21: Auditing
	Chapter 22: Intrusion Detection
	Chapter 23: Network Security
	Chapter 24: System Security
	Chapter 25: User Security
	Chapter 26: Program Security
	Chapter 27: Lattices
	Chapter 28: The Extended Euclidean Algorithm
	Chapter 29: Virtual Machines
	Bibliography
	Index

